微纳光纤环MOEMS加速度传感器理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种基于微纳光纤环形谐振腔的MOEMS加速度传感器结构。微纳光纤是一种介观量级的光波导线结构,它既不同于普通光纤,也不同于集成光波导,这种微纳光纤是利用大比例的倏逝波传输,具有高色散区、强倏逝波耦合、低弯曲损耗等特性。利用微纳光纤所制作的光学器件,在一定程度上既解决普通光纤制作的光学器件尺寸很难缩小的问题,同时又能弥补集成光波导器件制作难度高和损耗较大的缺点和不足,并且微纳光纤的制作过程相对于集成光波导的制作工艺更为简单可行。而由这种微纳光纤构成的环形谐振腔具有低损耗、品质因素高的特点,因此微纳光纤环形谐振腔可以作为一种高灵敏度的光学传感器件。微纳光纤环与硅MEMS传感结构相结合的MOEMS加速度传感器是一种体积小、重量轻、功耗低、灵敏度高、动态范围大的加速度传感器。本文的主要研究内容包括以下几个方面:
     1、对加速度传感器的测量原理,发展历史和主要分类作了简要介绍。并结合MEMS和MOEMS的概念,分析了目前一些典型的MEMS和MOEMS加速度传感器的工作原理及各自的优缺点。提出了本文的主要研究内容、研究目标以及主要创新点。
     2、详细介绍了亚微米直径微纳光纤的传输理论和制作方法,并分析了微纳光纤的物理特性。深入研究了由微纳光纤构成的环形谐振腔的传输特性,以及影响谐振腔Q值的主要因素。
     3、结合微纳光纤环形谐振腔高Q值、高灵敏度的特点,我们首次提出了一种将微纳光纤环形谐振腔与硅MEMS传感结构相结合的加速度传感理论,并建立了基于该MOEMS加速度传感结构的数学模型,分析了其探测灵敏度和动态范围,并根据该传感结构的输出特性,提出了信号检测的方法。
     4、围绕硅MEMS加速度传感结构的参数设计、有限元仿真、制作工艺等展开详细研究,确定了该MEMS传感结构的几何参数、制作方法以及工艺流程,最后通过双面环氧树脂聚合物保护的深度体硅湿法刻蚀工艺完成该MEMS传感结构的制作。
     5、结合该MOEMS传感器的结构特点,我们构建了微纳光纤环与MEMS传感结构相粘接的微操作装置,并详细介绍了MOEMS加速度传感器的制作过程。通过实验对制作完成的MOEMS加速度传感器的输出光谱特性,模拟高g值的光谱检测、低频动态响应特性、重力场翻转输出光强的灵敏度检测以及温度效应进行了测试,测试结果表明我们制作的MOEMS加速度传感器采用光谱检测的方式可以实现超过30g大动态范围的测量,重力场翻转实验中输出光强的探测灵敏度为624.7mV/g,为普通商用MEMS加速度传感器实际输出灵敏度的6~10倍。而相关研究表明微光纤环形谐振腔的Q值还有较大的提升空间,随着微光纤环Q值的提高(从目前10~3增加到10~6),该MOEMS加速度传感器的探测灵敏度还将大幅提升。
     文章最后对本文所涉及的研究工作进行了总结,并对未来的主要工作方向提出了展望。
This dissertation presents a novel MOEMS (Micro-Optical Electronical Mechanical System) accelerometer based on microfiber loop resonantor. Microfiber is a new type of waveguide wires with the diameters on the micro, even nanometer scale, and the characteristics of this microfiber are different from both conventional optical fibers and integrated optical waveguide structures. The microfiber loop resonantor, which is coupling by optical evanescent wave in the coupling region, and has shown the low-loss and high Q factor, so this resonator can be used for high sensitivity optical sensor devices. Moreover, the MOEMS accelerometer which combines microfiber technology with silicon MEMS (Micro-ElectroMechanical System) technology is presented in this dissertation.
     At the beginning of this dissertation, we introduced the background of this subject, and made a comparison with various kinds of MEMS and MOEMS accelerometers. The research object、main contents and novel ideas of this work were also introduced.
     As the microfiber is an important part of this MOEMS accelerometer. we analysed the principle of the transmission and physical characteristics of the microfiber, which is essential for the microfiber fabrication and application. The research of the mirofiber loop resonantor demonstrated that the Q-factor of microresonantors created by microfibers could potentially compete with the extremely high-Q and much low-loss whispering gallery mode microcavities.
     As the microfiber loop resonantor can be used for high sensitivity optical sensor devices, we designed a novel MOEMS accelerometer which based on this microfiber loop resonantor and silicon MEMS structure. We provided the sensing process and mathematical mode of this device, and analyzed its performances as well as the signal detecting methods.
     We also made much effort to the fabrication of the MEMS sensing structure. Firstly, we designed the geometry parameters of the MEMS structure. Secondly, we made the FEA (Finite Element Analysis) analysis of the design by ANSYS. At last, the MEMS acceleration sensing structure was designed, and fabricated by double-faced KOH anisotropic etching with epoxy polymer protecting.
     After the MEMS structure fabrication, we cemented the microfiber loop resonantor under a microscopical manipulation system, and tested the performances of this MOEMS accelerometer with the transmission spectrum in high-g driving, optical intensity sensitivity in gravity field, dynamic response and temperature effect. The test results demonstrated that this MOEMS accelerometer could support more than 30g acceleration load and its static optical intensity sensitivity is about 624.7mV/g, which is related to Q-factor of the microfiber loop resonantor and MEMS structure parameters. Along with the improvement of Q-factor from 10~3 to 10~6 in the future, the MEMS structure parameters would be optimized through experiments, this MOEMS accelerometer could achieve thousandfold intensity of detecting sensitivity.
引文
[1]干国强,《导航与定位:现代战争的北斗星》,国防工业出版社,北京,2000.2
    [2]万德钧,房建成,《惯性导航初始对准》,东南大学出版社,南京,1998.12
    [3]黄德鸣,程禄,《惯性导航系统》,国防出版社,哈尔滨船舶工程学院,1996.4
    [4]姜复兴,庞志成,《惯导测试设备原理与设计》,哈尔滨工业大学出版社,哈尔滨工业大学,1998.12
    [5]邓正隆,《惯性导航原理》哈尔滨工业大学出版社,1994.1
    [6]董景新,《微惯性仪表》,清华大学出版社,2002
    [7]王琪民,《微型机械导论》,中国科学技术大学出版社,2003
    [8]Tar-Ran Hsu著,王晓浩等译,《MEMS和微系统设计与制造》,机械工业出版社,2004
    [9]格雷戈里T.A.科瓦奇,张文栋等译,《微传感器与微执行器》,科学出版社,2003
    [10]泽田廉士等,李元懿等译,《微光机电系统》,科学出版社,2005
    [11]W.Menz J.Mohr O.paul等,王春海等译,《微系统技术》,化学工业出版社,2003
    [12]李圣怡,刘宗林,吴学忠,微加速度传感器研究的进展,国防科技大学学报,Vol.26,No.6,(2004)
    [13]刘月明,刘君华,硅微机械传感器的技术特点及发展趋势.仪表技术与传感器,(2000)(2);
    [14]杨畅,导弹与航天运载技术,北京控制仪器研究所,,Missiles and Space Vehicles Vol.1,(2000):17-20
    [15]杨立溪,国外惯性技术的发展现状与展望,导航与控制,Vol.2,(2004):58-62
    [16]黄德鸣,惯性技术的发展沿革,海陆空天惯性世界,(2003):8-24
    [17]刘妤,温志渝,张流强等,微加速度传感器的研究现状及发展趋势,光学精密工程,12(3),(2004):81-86
    [18]童志义,赵晓东,国内外MEMS器件现状及发展趋势,电子工业专用设备,04(31),(2002):200-206
    [19]吴俊伟,惯性技术基础,哈尔滨工程大学出版社,哈尔滨,(2002),2
    [20]刘惠兰等,差动式光纤Bragg光栅加速度传感器传感头设计与仿真,北京航空航天大学学报,11(11),(2006):1369-1372
    [21]毋正伟等,一种扭摆式硅微机械加速度传感器,传感器与微系统(Transducer and Microsystem Technologies),8(8),(2006):85-88
    [22]任杰等,一种双轴电容式微机械加速度传感器,传感技术学报,10(5),(2006):2174-2176
    [23]胡晓明等,加速度传感器偏置及敏感度测量方法的研究,压电与声光,6(6),(2006):728-729,732
    [24]刘波等,新型光纤光栅加速度传感器的设计与实现,仪器仪表学报,1(1),(2006):42-44
    [25]裘安萍等,硅微振梁式加速度传感器中微杠杆结构的设计,传感技术学报,5(5),(2006):2204-2207
    [26]宋颖等,导航系统MEMS加速度传感器的设计,仪器仪表与检测技术,5(25),(2006):56-58
    [27]王雅萍等,一种三维加速度传感器弹性体的分析与设计,传感器与微系统,2(25),(2006):61-63
    [28]杨国光等,《微光学与系统》,浙江大学出版社,2008.3
    [29]Jose.A.Plaza,BESOI-Based Integrated Optical Silicon Accelerometer,Journal of microelectromechanical system,VOL.13,NO.2,(2004):355-364
    [30]Nin.C.Loh,Sub-10cm3 Interferometric Accelerometer With Nano-g Resolution,Journal of microelectromechanical system,VOL.11,NO.3,(2002):182-187
    [31]Gerold Schropfer,Lateral optical accelerometer micromachined in(100) silicon with remote readout based on coherence modulation,Sensors and Actuators A 68(1998):344-349
    [1] Limin Tong, Subwavelength-diameter silica wires for low-loss optical wave guiding, Nature, Vol. 426, No. 6968, (2003) :816-819
    [2] M. Sumetsky, Fabrication and study of bent and coiled free silica nanowires:Self-coupling microloop optical interferometer, Opt. Express Vol.12,(2004):3521.
    [3] G. Brambilla, Ultra-low-loss optical fiber nanotapers, Opt. Express Vol.12,(2004):2258
    [4] S.G. Leon-Saval, Supercontinuum generation in submicron fibre waveguides,Opt .Express Vol.12, (2004) :2864
    [5] M. Sumetsky, Optical fiber microcoil resonator, Opt. Express Vol.12,(2004) :2303.
    [6] F. L. Kien, Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber, Opt. Commun. Vol.242,(2004):445
    [7] V. I. Balykin, Atom trapping and guiding with a subwavelength-diameter optical fiber, Phys. Rev. A Vol.70, (2004) :011401.
    [8] P.E. Barclay, Probing the dispersive and spatial properties of planar photonic crystal waveguide modes via highly efficient coupling from optical fiber tapers,App. Phys. Lett., Vol.85, (2004): 4.
    [9] L. M. Tong, Assembly of silica nanowires on silica aerogels for microphotonic devices, Nano Lett. Vol.5, (2005): 259.
    [10] J. Y. Lou,, Modeling of silica nanowires for optical sensing, Opt. Express Vol.13,(2005): 2135
    [11] H. C. Nguyen, Tapered photonic crystal fibres: properties, characterization and applications, Appl. Phys. B Vol.81, (2005): 377
    [12] M. Sumetsky, Optical microfiber loop resonator, Appl. Phys. Lett. Vol.86,(2005):161108
    [13] G. Brambilla, Compound-glass optical nanowires, Electron. Lett. Vol.41, (2005): 400
    [14] P. Polynkin, Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels, Opt. Lett. Vol.30, (2005): 1273
    [15] M. Sumetsky, Uniform coil optical resonator and waveguide: transmission spectrum,eigenmodes, and dispersion relation, Opt Express Vol.13, (2005): 4331
    [16] J. Villatoro, Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers, Opt.Express Vol.13, (2005):5087
    [17] M. Sumetsky, The Microfiber Loop Resonator: Theory, Experiment,andApplication, IEEE J. Lightwave Technol. Vol.24, (2006): 242.
    [18] L. Tong, Photonic nanowires directly drawn from bulk glasses, Opt.Express Vol.14, (2006): 82
    [19] G. Brambilla, Fabrication of optical fibre nanowires and their optical and mechanical characterization,Electron. Lett. Vol.42, (2006): 517.
    [20] M. Sumetsky, Sensing an optical fiber surface by a microfiber with angstrom accuracy, in Optical Fiber Communication conference, (Anaheim, 2006).
    [21] M. Sumetsky, Optical surface microscopy with a moving microsphere, in Nanophotonics Topical Meeting, OSA (Uncasville, 2006).
    [22] M. Sumetsky, How thin can a microfiber be and still guide light, Opt. Lett.Vol.31,(2006):870
    [23] M. Sumetsky, Probing optical microfiber nonuniformities at nanoscale, Opt. Lett.Vol.31, (2006): 2393.
    [24] X. Jiang, Demonstration of optical microfiber knot resonators, Appl. Phys.Lett.Vol.88, (2006): 223501.
    [25] M. Sumetsky, Optics of tunneling from adiabatic nanotapers, Opt. Lett., Doc. ID 73142 (posted 08/11/2006, in press).
    [26] P.J. Roberts, Loss in solid-core photonic crystal fibers due to interface roughness scattering, Opt. Express Vol.13, (2005): 7779
    [27] T.A. Birks, The shape of fiber tapers, IEEE J. Lightwave Technol. Vol. 10,(1992): 432.
    [28] A. W. Snyder, Optical waveguide theory (Kluwer Academic Publishers, Norwell,2000).
    [29] Xiaoshun Jiang, All-fiber add-drop filters based on microfiber knot resonators,Opt. Lett. Vol. 32, No. 12, (2007):1710
    [30] Wu yu, A tunable all-fiber filter based on microfiber loop resonator, Appl.Phys.Lett. Vol.92, (2008) : 191112
    [31] Fei Xu, Optical microfiber coil resonator refractometric Sensor, Opt.Express.Vol. 15,No. 12, (2007): 7888
    [32] Otto Schwelb, Transmission,Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filter-A Tutorial Overview, Journal of Lightwave Technology,Vol.22,No.5, (2004) :1380
    [1]Isa Kiyat,Integrated micro ring resonator displacement sensor for scanning probe microscopies,Journal Of Micromechanics and Microengineering 14(2004)374-381
    [2]Bipin Bhola,Polymer Microresonator Strain Sensors,IEEE Photonics Technology Letters,VOL.17,NO.4,(2005):867-869
    [3]Payam rabiei,Polymer Micro-Ring Filter and Modulators,Journal of Lightwave Technology,Vol,20.No,11.(2002):1968-1975
    [4]L.F.Stokes,All-single-mode fiber resonator,Optics Letters,Vol.7,No.6,(1982):288
    [5]Maximillian A.Perez,Design and Demonstration of a Bulk Micromachined Fabry-Perot ug-Resolution Accelerometer,IEEE Sensors Journal,Vol.7,No.12,(2007):1653-1662
    [6]张旭琳等,谐振式光纤陀螺调相检测分析,中国激光,vol.32,No.11,(2005):1529-1533
    [1]王大珩.现代仪器仪表技术与设计.第一版.北京:科学出版社,(2002):547-549
    [2]董景新等,《微惯导仪表》,清华大学出版社,(2002):54-77
    [3]单光宝等,悬臂梁式硅微加速度传感器的设计仿真,微电子学与计算机,2003年第3期:68-72
    [4]单光宝等,悬臂梁式硅微加速度传感器的研制,电子元件与材料,Vol.24,No.5,(2005):17-20
    [5]陈德勇等,一种硅梁谐振加速度传感器结构设计与模拟分析,微纳电子技术,2007年第7/8期:282-284
    [6]阮勇等,一种控制硅深刻蚀损伤方法的研究,微电子技术,2007年第7/8期:37-39
    [7]Andreas Bertz,A novel high aspect ratio technology for MEMS fabrication using standard silicon wafers,Sensors and Actuators A,97-98(2002):691-701
    [8]Siddhartha Panda,Effect of rare gas addition on deep trench silicon etch,Microelectronic Engineering 75(2004):275 - 284
    [9]L.P.Lee,High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography,Sensors and Actuators A 71(1998):144-149
    [10]W.J.Park,High aspect ratio via etching conditions for deep trench of silicon,Surface and Coatings Technology 171(2003):290-295
    [11]Qi Chen,Isotropic etch for SiO2 microcantilever release with ICP system,Microelectronic Engineering(2007):1-8
    [12]L.Fu,Study of deep silicon etching for micro-gyroscope fabrication,Applied surface science,177(2001):78-84
    [13]张凯等,MEMS中硅的深度湿法刻蚀研究,湖北大学学报,Vol.29,No.3,(2007):254-257
    [14]方华斌等,MEMS微拾振器制备工艺研究,电子元件与材料,Vol.25,No.7,(2006):69-71
    [15]Kirt R.Williams,Etch Rates for Micromachining Processing[J].Journal Of Microelectromechanical Systems,Vol.5,No.4,(1996):256-269
    [16]Kirt R.Williams,Etch Rates for Micromachining Processing--Part Ⅱ[J].Journal Of Microelectromechanical Systems,Vol.12,No.6,(2003):761-778。
    [17]Mitsuhiro Shikida,Differences in Anisotropic Etching Properties of KOH and TMAH Solutions.Sensors and Actuators,Vol.80,No.2:179-188
    [18]张正元,徐世六,刘玉奎等.用于MEMS的硅湿法深槽刻蚀技术研究,微电子学,34(5),(2004):519-521
    [19]Wu yu,.Structure Design of a High-sensitivity MOEMS Accelerometer IET,The International Technology and Innovation Conference 2006,(2006),11
    [20]E.D.Palik,Etching roughness for(100) silicon surfaces in aqueous KOH.J.Appl.Phys,70(6),(1991):3291-3300.
    [21]董玮,陈维友,刘彩霞等.(100)硅片的各向异性腐蚀及微反射镜的制作[J].光子学报,31(0Z2),(2002):151-154。
    [1]蔡晨光等,一种谐振式传感器频率特性测试平台,新技术新仪器,2007年27卷第一期:11-13
    [2]杨国光等,《近代光学测试技术》,浙江大学出版社,1997年9月
    [3]曹家年等,干涉型光纤加速度传感器综合指标的分析与设计,仪器仪表学报,2003年6月,第24卷第3期:268-271
    [4]张典荣,ADXL05型加速度传感器在倾角测量中的应用,石油仪器,2000年第14卷第5期:34-36
    [5]王巍等,陀螺加速度输出装置设计与测试,导弹与航天运载技术,1995年第3期:36-43
    [6]吴宇,腔长可调的全光纤F-P腔纳米位移微传感器的实验研究[J],光电子·激光2007.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700