CMOS ΣΔ分数频率综合器的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率综合器是射频前端电路中的关键模块之一,在设计中面临着小面积,高性能和低功耗的挑战。本论文研究针对无线射频应用的ΣΔ分数频率综合器,完成了以下工作:
     从系统级角度分析了大量的设计问题,这有助于正确地选择合适的电路模块和环路参数,合理地分配各个模块的非线性指标。
     提出一套包括模块电路非线性的锁相环电压域verilogA/verilog模型。这种方式使得设计者能控制和评估各个噪声源的影响,预测闭环的锁相环分数频率综合器的静态和动态特性,有助于提高仿真速度和在设计的早期阶段深入了解电路特性并优化。仿真和测量结果验证了这些行为级模型的有效性和灵活性。
     设计和实现了一个基于个人移动通信系统(PHS)应用的自适应,自调谐的分数锁相环频率综合器。压控振荡器采用数模混合技术实现,从而在一个小的增益下获得一个大的频率调谐范围。自适应环路用来实现环路的自动调整,有助于提高频谱纯度和减少建立时间。吞脉冲分频器仅需要一个可编程计数器。测试结果表明:频率调谐范围>600MHz、相位噪声<-119dBc/Hz@1MHz、杂散<-70dBc、建立时间<100μs、功耗<34mW、面积<1.7mm×1.5mm。
     提出一种基于IEEE 802.11a/b/g WLAN应用的自调谐锁相环结构,它能单独实现锁相环的功能,也能作为锁相环频率锁定的辅助电路。为了使环路迅速收敛到正确的控制字,它引入了自适应控制。测试结果表明它有一个2.5GHz-4.1GHz频率调谐范围、建立时间<500μs、相位噪声<-115dBc/Hz@1MHz、杂散<-90dBc、功耗<36mW、面积<1.7mm×1.5mm。
     提出一种基于电荷平均原理的杂散减少技术,它使杂散信号降低30dBc,适合应用在高性能锁相环设计中。
     提出一种可变延时缓存器的相位校正结构,这种结构是数字可控的,对温度,工艺变化不敏感。仿真和测试结果表明该方案能正确地工作,可变延时缓存器在L波段消耗的电流小于10mA,正交相移范围<10o。
Frequency synthesizer is a key block in the wireless transceiver. There exist challenges like small layout area, high performance and low power dissipation in the design. In this dissertation, the design and analysis ofΣΔfractional-n frequency synthesizer for RF applications is conducted, and the principal contributions of this dissertation are described in the following.
     The dissertation presents a number of system issues and design considerations/tradeoffs that are involved in the design of such a frequency synthesizer from the system point of view. These considerations help to properly select loop parameters and key building blocks, and specify noise and nonlinearity of components used in aΣΔfractional-n frequency synthesizer.
     A set of behavioral voltage-domain verilogA/verilog models allowing a systematic design ofΣΔfractional-n frequency synthesizer is presented in the dissertation. The approach allows the designer to predict the dynamic or stable characteristic of the closed loop by including nonlinear effects of building blocks in the models. So it helps to a speed-up over transistor simulation and a grasp of the fundamentals at the early stage of the design and optimization design at the system level. Simulation and measured results show that behavioral modeling is effective and flexible.
     A self-adaptive, self-tuning fractional-n PLL based frequency synthesizer is proposed in the dissertation. A combined tuning technique of digital tuning and analog tuning is introduced to effectively enlarge the frequency tuning range in a low gain of VCO. The self-adaptive loop is used to realize automatic adjustment of the loop bandwidth, which can reduce the settling time and improve the spectral purity. Only a programmable counter is needed for the swallow pulse divider. The proposed architecture is implemented in a Personal Handy-phone System (PHS) transceiver, and measured results show that the synthesizer has a <-119dBc/Hz@1MHz phase noise, a <-70dBc spur and a <100μs settling time. The chip consumes 34mW at 1.8V and occupies 1.5mm×1.7mm.
     TheΣΔfractional-n frequency synthesizer with adaptive digital tuning techniques is deeply discussed in the dissertation. The proposed one can be independently used as a PLL, and it can also be used as a frequency-lock aid for the conventional PLL. An adaptive control is for fast convergence to a proper control word. The proposed architecture is implemented in an IEEE 802.11a/b/g WLAN transceiver, and measured results show that the synthesizer has a <-115dBc/Hz@1MHz phase noise, a <-90dBc spur, a 2.5GHz-4.1GHz frequency tuning range and a <500μs settling time. The chip consumes 36mW at 1.8V and occupies 1.5mm×1.7mm.
     A spur reduction technique based on charge-averaging principle is presented in the dissertation. The proposed technique can reduce the spurious tones over 30dBc, so it can easily be implemented in the high performance PLL.
     A new phase self-calibrated scheme for variable delay buffer (VDB) is proposed in the dissertation. The digitally controlled phase calibration removes the disadvantage of conventional analog calibration circuit whose performance is sensitive to process and temperature variations and aging. It is shown that the proposed scheme works properly, and the VDBs consume a 10mA current at L frequency band, and have a <10o quadrature phase shift range.
引文
[1] Chun-Huat Heng, and Bang Sup Song. A 1.8-GHz CMOS fractional-n frequency synthesizer with randomized multiple VCO. IEEE Journal of Solid-State Circuits, 2003, 38(6): 848-854.
    [2] N, J. R. King. Phase locked loop variable frequency generator. Patent US 4 204 174, May 1980.
    [3] Hyungki Huh, Yido Koo, et al. Comparison frequency doubling and charge pump matching techniques for dual-band ΣΔ fractional-n frequency synthesizr. IEEE Journal of Solid-State Circuits, 2005, 40(11): 2228-2236.
    [4] T. P. Kenny, T. A. D. Riley, N. M. Filiol, et al. Design and realization of ΣΔ modulator for fractional-n frequency synthesizer. IEEE Transactions on Vehicular Technology, 1999, 48(2): 510-321.
    [5] Bram De Muer, Michel S. J. Steyaert. A CMOS monolithic ΣΔ-controlled fractional-n frequency synthesizer for DCS-1800. IEEE Journal of Solid-State Circuits, 2002, 37(7): 835-844.
    [6] Daba Series. 7000 digiphase frequency synthesizers, Publication 980428, Dana Laboratories, Inc., 1973, 60~65.
    [7] V. Reinhardt. Spur reduction techniques in direct digital synthesizers. Proceedings of 47th Frequency control Symposium, Salt Lake City, UT, USA, 1993, 230-241.
    [8] T. A. Riley, M. Copeland, and T. Kwasniewski. Delta-sigma modulation in fractional-n frequency synthesis. IEEE Journal of Solid-State Circuits, 1993, 28 (5): 553-559.
    [9] T. Weigandt and S. Mehta. A phase interpolation technique for fractional-n frequency synthesis. RF Integrated Circuit Design Group, http://Kabuki.eecs.berkeley.edu/rf/.
    [10] W. Rhee. Design of low-jitter 1-GHz phase-locked loops for digital clockgeneration. IEEE International Symposium on Circuits and Systems, Orlando, FL, USA, 1999, 520-523.
    [11] T. Nakagawa and T. Ohira. A phase noise reduction technique for MMIC frequency synthesizers that uses a new pulse generator LSI. IEEE Transactions on Microwave Theory and Technique, 1994, 42 (12): 2579-2582.
    [12] B. Miller and R. Conley. A multiple modulator fractional divider. IEEE Transactions on Instrumentation and Measurement, 1990, 40(3): 578-583.
    [13] L. Sun, T. Lepley, Fnozahic, A. Bellissant, T. Kwasniewski, et al. Reduced complexity, high performance digital delta-sigma modulator for fractional-n Frequency synthesis. IEEE International Symposium on Circuits and Systems, Orlando, FL, USA, 1999, 152-155.
    [14] W. Rhee, B. Song, and Akbar Ali. A 1.1-GHz CMOS fractional-n frequency synthesizer with a 3-b third-order ΣΔ modulator. IEEE Journal of Solid-State Circuits, 2000, 35(10): 1453-1460.
    [15] T. Musch, I. Rolfes and B. Schiek. A highly linear frequency ramp generator based on a fractional divider phase-locked-loop. IEEE Transaction on Instruments and Measurement. 1999, 52(2): 634-637.
    [16] R. E. Best. Phase-locked loops. 2nd ed., New York, NY: McGraw-Hill, 1993.50~55.
    [17] H. Kondoh, H. Notani, T.Yoshimura, and Y. Matsuda. A 1.5-V 250-MHz to 3.3-V 622MHz CMOS phase-locked loop with precharge type CMOS phase-detector. IEICE Trans. Electron., 1995, E78-C(4): 381-338.
    [18] Henrik O. Johansson. A simple precharged CMOS phase frequency detector. IEEE Journal of Solid-State Circuits, 1998, 33(2): 292-259.
    [19] M. Mizuno, K. Furuta, T. Andoh, A. Tanabe, et al. A 0.18μm CMOS hot-standby PLL using a noise-immune adaptive-gain VCO. IEICE Transactions on Electronics, 1997, E80-C (12): 1560-1571.
    [20] W. H. Lee, J. D. Cho, and S. D. Lee. A high speed lower power phase-frequency detector and charge-pump. Design Automation Conference. Proc. of theASP-DAC’99. Asia and South Pacific, Wan Chai Hong Kong, 1999. 269-272.
    [21] Best R.E. Phase-locked loops, theory, design and applications (2nd ed). McGraw-Hill, 1993.
    [22] Maneatis J G. Low-jitter process-independent DLL and PLL based on self-biased techniques. IEEE Journal of Solid-State Circuits, 1996 31(11): 1723-1732.
    [23] V. Kaenel, D.Aebischer, C.Piguet, and E.Dijkstra. A 320MHz, 1.5mW @ 1.35V CMOS PLL for microprocessor clock generation. IEEE Journal of Solid-State Circuits, 1996, 31(11): 1715-1722.
    [24] I. A. Young, J. K. Greason, and K. L. Wong. A PLL clock generator with 5 to 110MHz of lock range for microprocessors. IEEE Journal of Solid-State Circuits, 1992, 27(11): 1599-1607.
    [25] M.Johnson and E.Hudson. A variable delay line PLL for CPU-coprocessor synchronization. IEEE Journal of Solid-State Circuits, 1988, 23(5): 1218-1223.
    [26] W. Rhee. Design of high-performance CMOS charge pumps in phase-locked loops. IEEE International Symposium on Circuits and Systems, Orlando, FL, USA, 1999. 545-548.
    [27] H. Knapp, J. Bock, M. Wurzer, G. Ritzberger, K. Aufinger, and L. Treriinger. A 2-GHz/2-mW and 12-GHz/30-mW dual-modulus prescalers in silicon bipolar technology. IEEE Journal of Solid-State Ciruits, 2001, 36(9): 1420-1423.
    [28] J. Yuan, C. Svensson. High-speed CMOS circuit technique. IEEE Journal of Solid-State Circuits, 1989, 24(1): 62-70.
    [29] J. Yuan, C. Svesson. New signle-clock CMOS latches and flipflops with improved speed and power saving. IEEE Journal of Solid-State Circuits, 1997, 32(1): 62-69.
    [30] J. N. Soarses, W.A.M. Van Noije. A 1.6GHz dual modulus prescaler using the extended true-single-phase-clock CMOS circuit technique (E-TSPC). IEEE Journal of Solid-State Circuits, 1999, 34(1): 97-102.
    [31] R. Rogenmoser, Q. Huang, F. Piazza. 1.57GHz asynchronous and 1.4GHz dualmodulus 1.2μm CMOS prescalers. IEEE Custom Integrated Circuits Conference, San Diego, CA, USA, 1994. 387-390.
    [32] J. Craninckx and M. Steyaert. A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7-μm CMOS. IEEE Journal of Solid-State Circuits, 1996, 31(7): 890-897.
    [33] H. Rategh, H. Samavati, and T. Lee. A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver. IEEE Journal of Solid-State Circuits, 2000, 35(5): 780-787.
    [34] B. Zhang, P.E. Allan, J.M. Huard. A fast switching PLL frequency synthesizer with an on-chip passive discrete-time loop filter in 0.25μm CMOS. IEEE Journal of Solid-State Circuits, 2003, 38(6): 855-865.
    [35] K.Shu, E. Sanchez-sinencio, J. Silva-Martinez, et al. A 2.4GHz monolithic fractional-n frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier. IEEE Journal of Solid-State Circuits, 2003, 38(6): 866-874.
    [36] Lin Jia, Jian-Guo Ma, Kiat Seng Yeo, and Manh Anh Do. 9.3-10.4-GHz-band cross-couple complementary oscillator with low phase-noise performance. IEEE, Transactions on microwave theory and techniques, 2004, 52(4): 1273-1278.
    [37] D. Mijuskovic, M.J.Bayer, T.F. Chomicz.N.K.Garg, F.James, P.W.McEntarfer and J.A. Porter. Cell based fully integrated CMOS frequency synthesizers. IEEE Journal of Solid-State Circuits, 1994, 29(3): 271-279.
    [38] Emad Hegazi, Henrik Sjoland, Asad A.Abidi. A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits, 2001, 36(12): 1921-1930.
    [39] Emad Hegazi, Asad A. Abidi. Varactor characteristics, oscillator tuning curves, and AM-FM conversion. IEEE Journal of Solid-State Circuits, 2003, 38(6): 1033- 1039.
    [40] Fenglin Yang, Zhaofeng, Baoqi Li and Hao Min. Zhang A 4.8GHz CMOS fullyintegrated LC balanced oscillator with symmetry noise filterng technique, International Conference on Solid-State and Integrated Circuits Technology, Beijing, China, 2004. 1315-1320.
    [41] B. D. Muer and M. S. J. Steyaert. On the analysis of ΣΔ fractional-n frequency synthesizers for high spectral purity,” IEEE Trans. Circuits Syst. II, Analog Digital Signal Processing, 2004, 50(11): 784-793.
    [42] Thomas A. D. Riley, Norman M. Filiol. Techniques for in-band phase noise reduction in ΣΔ synthesizers. IEEE Transaction of Circuits Syst. II, Analog Digit. Signal Process., 2003, 50(11): 794-803.
    [43] D. Banerjee, (2001) PLL performance, simulation and design. http://www.national.com/appinfo/wireless/files/Deansbook_4_01.pdf, 2001.
    [44] M. H. Perrot, M. D. Trott, and C.G. Sodini. A modeling approach for Σ-Δ fractional-n frequency synthesizers allowing straightforward noise analysis. IEEE Journal of Solid-State Circuits, 2002, 37(8): 1028-1038.
    [45] Yiwu Tang and Mohammed Ismail. A methodology for fast SPICE simulation of frequency synthesizers. IEEE Circuits and Devices Magazine, 2000, 16(4): 10-15.
    [46] K. Kundert. Predicting the phase noise and jitter of PLL-based frequency synthesizer. Available from www.designers-guide.com, May, 2003.
    [47] Abhijit Phanse, Ramin Shirani. Behavioral modeling of a phase locked loop. Southcon Conference, Orlando, FL, USA, 1996. 400-404.
    [48] Hyungki Huh, Yido Koo, Kang-Yoon Lee, et al. Comparison frequency doubling and charge pump matching techniques for dual-band ΣΔ. IEEE Journal of Solid-State Circuits, 2005, 40(11): 2228-2235.
    [49] T. A. Riley, M. Copeland, and T. Kwasniewski. Delta-sigma modulation in fractional-n frequency synthesizer. IEEE Journal of Solid-State Circuits, 1993, 28 (5): 553-559.
    [50] A. Kral. RF-CMOS Oscillators with switched tuning. IEEE Custom IntegratedCircuits Conference, New York, NY, USA, 1998. 555-558.
    [51] Larsson, P.. High-speed architecture for a programmable frequency divider and a dual-modulus prescaler. IEEE Journal of Solid-State Circuits, 1996, 31(5): 744~748.
    [52] Ching-Yuan, Guang-Kaai Dehng. New dynamic flip-flops for high-speed dual-modulus prescaler. IEEE J. Solid-State Circuits, 1998, 33 (10): 1568~1571.
    [53] Jae-Shin Lee, Min-Sun Keel, Shin-II Lim and Suki Kim. Charge pump with perfect current matching characteristics in phase-locked loops. Electronics Letters, 2000, 36(23): 1907-1908.
    [54] Joonsuk Lee and Beomsup Kim. A low-noise fast-lock phase-locked loop with adaptive bandwidth control. IEEE Journal of Solid-State Circuits, 2000, 35 (8): 1137-1145.
    [55] C. Vauncher and D. Kasperkovitz. A wide-band tuning system for fully integrated satellite receivers. IEEE J. Solid-State Circuits, 1998, 33 (7): 987-998.
    [56] Hamid R. Rategh, Thomas H. Lee. A CMOS frequency synthesizer with an injection-locked frequency divier for a 5-GHz wireless LAN receiver. IEEE Journal of Solid-State Circuits, 2000, 35(5): 780-787.
    [57] Aleksandar Tasicm Wouter A, Serdijn, and John R. Long. Design of multistandard adaptive voltage-controlled oscillators. IEEE Transactions on Microwave Theory and techniques, 2005, 53(2): 556-563.
    [58] Zhang Li, Chi Baoyong, Yao Jinke, Wang Zhihua, and Chen Hongyi. A 2GHz low power differentially tuned CMOS monolithic LC-VCO. 半导体学报, 2006, 27(9): 1543-1547.
    [59] F. Svelto, S. Deantoni and R. Castello. A 1mA, -120.5dBc/Hz at 600 kHz from 1.9GHz fully tunable LC CMOS VCO. IEEE Customed Integrated Circuits Conference, Iasi, Romania, 2000. 577-580.
    [60] Rizwan Murji, and M. Jamal Deen. A 1.8V monolithic CMOS nested-loop frequency synthesizer for GSM receiver at 1.8GHz. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Philadelphia, PA, United States, 2003. 292-294.
    [61] Pietro Andreani and Sven Mattisson. A 1.8GHz CMOS tuned by accumulation-mode mos varactor. IEEE International Symposium on Circuit and System, Geneva, Switzeland, 2000, I-315-I-318.
    [62] B. De Muer, N. Itoh, M. Borremans, and M. Steyaert. A 1.8GHz highly-tunable low-phase-noise CMOS VCO. IEEE Customed Integrated Circuits Conference, Iasi, Romania, 2000. 585-588.
    [63] J. -K. Cho, H. -I. Lee, K. -S. Nah, and B. -H. A 2-GHz wide band low phase noise voltage controlled oscillator with on-chip tank. IEEE Customed Integrated Circuits conference, San Jose, CA, United States, 2003. 559-562.
    [64] Axel D. Berny, Ali M. Niknejad, and Robert G. Meyer. A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration. IEEE Journal of Solid-State Circuits, 2005, 40(4): 909-917.
    [65] Erik Pedersen. RF CMOS varactors for wireless applications: [Ph.D. dissertation]. Denmark: Aalborg University, 2001.
    [66] Jaideep Prakash. System and method for voltage controlled oscillator automatic band selection. Patent No.: 5648744, Jul. 1997.
    [67] Emad Hegazi. A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits, 2001, 36(12): 1921-1930.
    [68] Takeshi Yasunage. A fully integrated PLL frequency synthesizer LSI for mobile communication system. IEEE Radio Frequency Integrated Circuits Symposium, Phoenix, AZ, 2002. 65-68.
    [69] Nilakantan Sehan. Design of low power 2.4GHz CMOS LC oscillators with low phase-noise and large tuning range. IEEE International Symposium on Circuits and Systems. Phoenix, AZ, 2002, IV/409-IV/412.
    [70] Raul Salvi. Method and apparatus for self-tuning voltage controlled oscillator (VCO). Patent No.: 5,831,482, Nov. 3, 1998.
    [71] Jaideep Prakash. System and method for voltage controlled oscillator automatic band selection. Patent No.: 5,648,744, Jul.15, 1997.
    [72] Karl J. Huehne. Step-down clock control and metod for improving convergence for a digitally controlled self-calibrating VCO. Patent No.: US 6496556 B1, Dec. 17, 2002.
    [73] W.B.Wilson, U.K.Moon, K.R.Lakshmikumar, and L.Dai. A CMOS self-calibrating frequency synthesizer IEEE Journal of Solid_state Circuits, 2000, 35(10): 1437-1444.
    [74] Yi-Cheng Chang and Edwin W.Greeneich. A current-controlled oscillator coarse-steering acquisition-aid for high frequency SOI CMOS PLL circuit. IEEE International Symposium on Circuits and Systems, Orlando, FL, USA, 1999. 561-564.
    [75] Abdellatif Bellaouar. Fast lock/self-tuning VCO based PLL. Patent No.: US 6,566,966 B1, May 20, 2003.
    [76] William B. Wilson. Self-calibrated phase-lock loop with auto-trim operations for oscillator operation curve. Patent No.: 5,942,949, Aug. 24, 1999.
    [77] Dale H.Nelson. VCO gain self-calibration for low voltage phase lock-loop applications. Patent No.: US 6,552,618 B2, Apr. 22, 2003.
    [78] Scott R. Justice. Tunable voltage controlled oscillator circuit having aided acquisition and methods for operation the same. Patent No.: US 6,424,229 B1. Jul. 23, 2002.
    [79] Yido Koo, Hyungki Huh, and Yongsik Cho, et al. A fully integrated CMOS frequency synthesizer with charge-averaging charge-pump and dual-path loop filter for PCS- and cellular-CDMA wireless systems. IEEE Journal of Solid-State Circuits, 2002, 37(5): 536-542.
    [80] I.Vassiliou et al. A single-chip digitally calibrated 5.15-5.825 GHz 0.18μm CMOS transceiver for 802.11a wireless LAN. IEEE Journal of Solid-StateCircuits, 2003, 38(12): 2221-2231.
    [81] R.Ahola et.al. A single-chip CMOS transiceiver for 802.11a/b/g wireless LANs. IEEE Journal of Solid-State Circuits, 2004, 39(11): 2250-2258.
    [82] Ari Yakov Valero-Lopez, et.al. Self-calibrated quadrature generator for WLAN multi-standard frequency synthesizer. Journal of Solid-state Circuits, 2006, 41(5): 1031-1041.
    [83] Ruifeng Liu, Yongming Li, Hongyi Chen. Analysis and design of an auto-IQ phase calibration circuit based on DLL using a quadrature phase detector. Analog Integrated Circuits and Signal Processing, 2006, 47(2): 229-232.
    [84] S. Mehrmanesh, et al. An ultra low-voltage Gm-C filter for video applications. IEEE International Symposium on Circuits and Systems. Babgkok, Thailand, 2003, I561-I564.
    [85] Mostafa A. I. Elmala, and Sherif H. K. Emdbabi. Calibration of phase and gain mismatches in weaver image-reject receiver. IEEE Journal of Solid-State Circuits, 2004, 39(2): 283-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700