基于SIMA法的AZ91镁合金半固态组织演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车业和3c产业的轻量化趋势为镁合金应用提供了广阔的空间。作为零件近净成形的半固态加工技术,SIMA法特别适合于易挥发、易燃烧的镁合金零件生产。本文使用500T挤压机,对铸态AZ91镁合金进行热挤压变形,然后二次加热熔化激活形成半固态合金,水淬激冷制备试样。应用SEM和XRD分析了挤压变形组织特征,采用Quantmet-500定量分析仪测定半固态组织固相率和颗粒尺寸,研究了AZ91镁合金SIMA半固态组织演变规律。
     试验结果表明,热挤压变形消除了镁合金中粗大的树枝晶,获得细小的再结晶等轴晶组织,组织处于较高的应力状态,为后续SIMA法半固态等温处理奠定了能量和物质条件。随着变形量的增大,挤压条纹细密,等轴晶细小;随挤压温度的提高,挤压组织有明显的粗化趋势。推荐的挤压工艺参数:T≈380℃,λ≈10。
     AZ91镁合金的SIMA法半固态组织不仅取决于加热温度和等温时间,而且在很大程度上受合金原始应变状态的影响。随加热温度升高,f_S单调减小,晶粒平均直径有一定程度的长大;随等温时间延长,较小的颗粒或熔化消失、或聚合成较大的颗粒,较大的颗粒发生一定程度的长大,在7min~9min内固相率达到稳定。对挤压态、铸态和镦粗态三种不同加工状态下的半固态组织演变进行对比研究,发现挤压态镁合金在565℃等温5min,即可获得大约56%固相率,颗粒细小、形态圆整、分布均匀的半固态浆料。铸态镁合金二次加热过程中缺乏必要的应变诱发熔化激活,等温12min组织才开始粒化,其半固态组织形状不规则、分布不均匀。镦粗态
    
    西安理工大学硕士学位论文
    镁合金半固态组织球状化程度大大高于铸态合金,但因其应变诱发熔化激活存在不
    均匀性,组织不及挤压态的均匀。
     推荐的挤压态AZgl镁合金半固态等温参数为:T尧565℃,t七5一7min。
     挤压态AZgl镁合金SIMA法半固态组织中固相率f、与温度T的回归关系式为:
     关=一2568.86917+10.58326T一0.01052T’
The lightening tendency of mobile industry and 3C industries provides a widely application space for Mg alloys. As a near-forming technique, SIMA semi-solid forming is particularly suitable for those manufacturing parts, which are easy to vaporize and oxidize. In this paper, as-cast AZ91 alloy is processed by heat extrusion using a 5007 extruder at first, and then the alloy is re-melted into a semi-solid state, and rapidly quenched in water to obtain the final samples. The microstructure characteristics of extrusion deformation have been analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Then using a quantimet-500 apparatus, the solid phase fraction and particle diameter d in semi-solid-state microstructures are measured in details. Finally, the microstructure evolution of semi-solid AZ91 Magnesium alloy based on SIMA process has been studied.
    The results show that the coarse dendrites are eliminated and the fine equiaxed microstructure resulting from recrystallization has been obtained via heat extruded deformation. Therefore, the extruded microstructure is of a high stress state and hence provides a mass and energy condition for subsequent holding temperature treatment based on SIMA semi-solid-state technique. With the increase of deformation degree, the extrusion bends become compact and the recrystallized equiaxed grains become fine. And with the increase of extrusion temperature, the extrusion microstructure has a remarkable tendency of coarsening. Experimentally, the optimal extrusion parameters are determined as: T=380℃, λ=10
    The microstructures of AZ91 Magnesium alloy at semi-solid-state depend not only on the heating temperature and holding time, but also on the initial stress states at a great extent. With the increase of the heating temperature, the solid phase fraction decreases steadily and the average diameter of particles increases in some extent. With the increase of the holding time,
    
    
    
    
    some small particles tend to dissolve and disappear and the others coalesce into slightly larger particles, whose size reaches a steady state within 7 to 9 minutes.
    The semi-solid-state microstructure evolution under extrusion, cast and forge processing conditions is compared. For as-extrusion alloy, it is found that fine spherical particles are distributed uniformly in the continuous liquid phase of the slurry with a solid fraction of fs= 56%, held at the temperature of 565℃ for 5 minutes. Whereas the microstructures of as-cast alloy do not particularize until the holding time attains 12 minutes at 565℃ and irregular and large particles are distributed inhomogeneously in the slurry, for lacking of the necessary S1MA. The as-forge semi-solid-state microstructure is finer and more uniform than the as-cast one, but is not so homogeneous as the as-extrusion microstructure.
    The optimal holding temperature T and holding time t at semi-solid-state for as-extrusion AZ91 magnesium alloy are 565℃ and 5~7min, respectively.
    The relationship between the holding temperature and the solid phase fraction under SIMA semi-solid-state condition for extruded AZ91 Magnesium alloy is determined as:
    fs =-2568.86917+ 10.58326T-0.01052T2
引文
1.甄子胜,毛卫民等.半固态镁合金的研究进展.特制铸造及有色合金.2001(6):32~35
    2.吕苇白,杨湘杰等.镁合金新型绿色产业的发展,江西冶金2002(4):23~27
    3. C. G. Kang and H. K. Jung. A study on solutions for avoiding liquid segregation phenomena in thixoforming process: part Ⅱ. Net shape manufacturing of automotive scroll component. Metallurgical and materials transactions B. Vol. 32B, 2001(2): 129~136
    4.程钢,樊刚.镁合金半固态铸造技术(SSP)的研究与应用.第二届中国中西部地区压铸技术研讨会论文集.2001(5):41~43
    5. Kirkwood D.H, Semisolid Metal Forming. International Materials Reviews. 1994, 39(5): 173~189
    6.罗守靖等.21世纪最具有发展前景的近净成形技术.2001中国压铸、挤压铸造、半固态加工学术年会论文集
    7. Fan Z, Ji S, Bevis M J. Twin-Screw Rheomoulding—a New Semi-Solid Processing Technology. Proc. of the 6th Int. Coif. on the Semi-Solid Processing of Alloys and Composites, Torino haly, Sep. 27~29, 2000:61~66
    8. Andreas Dworog et al. Semisolid injection of magnesium alloys, International congress 'magnesium alloys and their application', September 2000 in Munich. 577~583
    9.祖丽君,罗守靖,孙家宽.应变速率、液体体积分数和液体粘度对金属半固态成形力的影响.中国有色金属学报.2000,10(增刊1):192~197
    10.孙家宽,罗守靖.半固态下LY12的变形力学行为.中国有色金属学报.1999(3):493~498
    11.郭钧,丁志勇,谢水生等.半固态A1-6.6%Si合金的变形行为.中国有色金属学报,2000,10(增刊1):115~119
    12.杨湘杰等,非枝晶铝合金(A356)半固态感应加热模式及控制模型.2001
    
    中国压铸、挤压铸造、半固态加工学术年会论文集
    13.朱鸣芳,苏华钦.半固态等温处理制备粒状组织AZ12合金的研究.铸造.1996(4):1~5
    14.李涛,黄卫东,林鑫.半固态处理球晶形成与演化的直接观察研究。中国有色金属学报.2000(10):635~639
    15.陈体军,郝远,路松,许广济.ZA27合金在SIMA处理过程中形变量和等温温度对组织的影响.金属热处理学报.2000(3):26~30
    16.吴炳尧,戴挺.半固态触变成形坯料二次加热技术分析.特种铸造及有色合金.2000(6):58~61
    17. W. Lapkowski. Some studies regarding thixoforming of metal alloys. Journal of Materials Processing Technology 111(2001): 463~468
    18. Trung L S and Wang L K. Rheological Behavior and Modelling of Semisolid Sn-15%Pb Alloy. Journal of Materials Science. 26(1991): 2173~2183
    19. Shigeharu Kamado et al. Application of semisolid forming to Mg-Zn-Al-Ca alloys, Materials science forum. Vols. 350~351(2000): 205~214
    20.罗守靖,杜之明.半固态金属加工(SSP)分类及新发展.热加工工 艺.1999(5):46~49
    21. Vivesc. Elaboration of semisolid alloys by means of new electron-magnetic rheocasting process[J]. Metallugical Transactions B.1992(2): 189~205
    22.谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社,1999:74~96
    23.张奎,刘国钧,张永忠等.半固态金属制备原理与应用.稀有金属.1998(3):447~449
    24.张广安,罗守靖,霍文灿等.液态异步轧制制备合金半固态坯机理.哈尔滨工业大学学报.2000(5):67~68
    25.刘丹.铝合金液相线铸造制浆及半固态加工工艺及理论研究.[博士学位论文].东北大学.1999.
    
    
    26. Kapranos P, Gibson R C, Kirkwood, D H. Induction Heating and Partial Melting of High Melting Point Thixoformable Alloys. Proc. of 4th Int. Conf. on Semisolid Processing of Alloys and Composites. Sheffield, Englonud, 1996
    27.吴艳军,陈振华.半固态金属触变性质及应用新进展.特制铸造及有色合金.2001(1):44~46
    28. Lee Song-Yong, Lee Jung-Hwan, Lee Young-Seon. Characterization of Al 7075 alloys after cold working and heating in the semisolid temperature range. Journal of Materials processing technology. 111(2001): 42~47
    29. Kirkwood D.H. Semisolid Metal Forming. International Materials Reviews. 1994, 39(5): 173~189
    30.江海涛,李淼全.半固态金属材料的制备技术及应用.重型机械.2002(2):1~5
    31. Stephen P. Midson, Brad J. Hormiston, Olivier Gabis. The Influence of Key Parameters on the Uniformity of Slug Re-heating During Semisolid Metal Forming. Die Casting Engineer. 1999(Nov/Dec): 62~70
    32.甄之胜等.半固态镁合金研究进展.2001中国压铸、挤压铸造、半固态加工学术年会论文集
    33. Evangelos Tzimas et al. Evolution of near-equiaxed microstructure in the semisolid state,Material science and engineering, A289 (2000) 228~240
    34. Luo Shoujing, Tian Wentong, Zhang Guangan, Structural evolution of LC4 alloy in making thixotropic billet by SIMA method, Trans. Nonferrous Met. Soc. China ,Vol. 11(2001) No.4, 547~550
    35. Jae Chan Choi et al. Microstructural characteristics of aluminum 2040 by cold working in the SIMA process, Journal materials processing technology 82(1998) 107~116
    36.刘昌明,邹茂华等.形变诱发法半固态加热工艺参数对LY12合金组织
    
    和晶粒尺寸的影响.中国有色金属学报.2002(6):436~440
    37.张猛,胡亚民.金属塑性变形[M].重庆大学出版社.1983:10~23.
    38. Yasumasa Chino et al. Forging characteristics of AZ31 Mg alloy, Material transactions. Vol.42,No. 3 (2001) 414~417
    39. Kenneth Savage and John F. King, Hydrostatic extrusion of magnesium, International congress 'magnesium alloys and their application', September 2000 in Munich. 599~614
    40. K.U. Kainer, Microstructure, mechanical properties and deformation behaviour of extruded magnesium alloys, International congress 'magnesium alloys and their application', September 2000 in Munich. 596~601
    41.Chen C M, Yng C C, Chao C G semisolid forming of a damper housing with dendritic and non-dendritic Al-Si-Mgalloy. 2001中国压铸、挤压铸造、半固态加工学术年会论文集.160~163
    42.杨全,张真.金属凝固与铸造过程数值模拟.浙江大学出版社.1996.
    43. Brody .HH. D. and Flemings .M.C., Trans AIME,236(1966), 615
    44.大中逸雄.计算机传热凝固解析入门.机械工业出版社.1988.
    45. N.V.Ravi Kumar,J.J.Blandin,M.Suery,Effects of thermomechanical treatment on the microstructure of AZ91 alloy, International congress 'magnesium, alloys and their application', held from 26 to 28, September 2000 in Munich. 161~167
    46.李元东,郝远等.AZ91D镁合金在半固态等温热处理中的组织演变.中国有色金属学报.2001.NO 4,571~575
    47. E. Tzimas and A. Zavallangos. Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content. Acta materials. Vol. 47, No. 2:517~528
    48. F. Czerwinski, A. Zielinska-lipiec, Correlating the microstructure and tensile
    
    properties of a thixomolded AZ91D magnesium alloy. Acta materials, 49(2001): 1225~1235
    49.李元东,郝远,金玉花等.半固态等温热处理AZ91D镁合金组织的影响.甘肃工业大学学报.2001(1):27~30
    50.吴炳尧,戴挺.半固态触变成形坯料二次加热技术分析.特种铸造及有色合金.2000(6):58~61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700