AlSi_9Mg合金半固态坯料制备有限元分析及工艺参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了从根本上解决近液相线浇注法制备半固态坯料的工艺参数多而复杂相关、质量难保证的“瓶颈”问题。将数值模拟技术应用于近液相线浇注法制备AlSi_9Mg合金半固态坯料过程的分析,研究了浇注温度、浇注速度、冷却方式、浇注高度等工艺参数对充型、凝固过程中的速度场、温度场的影响,进而分析其对半固态微观组织的影响;总结出各工艺参数对半固态微观组织的影响规律。得出了一定的结论:浇注过程中,金属液以轴向流动为主,周向流动相对较弱。随着浇注的进行,周向流动逐渐增强。浇注过程中金属液的扰动剪切力很大,是形成非枝晶组织的重要原因。浇注温度的降低,浇注速度的增加,冷却强度的降低、浇注高度的增加都有利于获得优异的半固态非枝晶组织。
     基于数值模拟研究得到的温度场、流场规律,选取合适的工艺参数,再根据正交试验设计原理,设计正交试验数据表,进行正交试验及多目标分析,得出各工艺参数的主次关系、重要程度,进而优化半固态坯料制备的工艺参数,并得出了一定的结论。就对温度场的影响而言,各工艺参数的主次关系为:冷却方式>浇注温度>浇注速度>浇注高度;冷却方式对温度场的影响最为显著,浇注温度、浇注速度其次,而浇注高度最弱。相对冷却方式而言,其他三个因素的影响可以忽略。就对流场的影响而言,各工艺参数的主次关系为:浇注速度>浇注高度>浇注温度>冷却方式;浇注速度对流场的影响最为显著,浇注高度、浇注温度其次,而冷却方式最弱,相对于浇注速度而言,其他三个因素的影响几乎可以忽略。
     在所选的参数范围内,最优的一组工艺参数组合为:浇注温度为610℃,浇注速度为1.2kg/s,浇注高度为20mm,冷却方式为模具预热温度200℃。
     实验研究结果表明:本文数值模拟分析的结果是正确的;近液相线浇注法能有效地获得具有均匀、细小的粒状初生晶的AlSi_9Mg合金半固态坯料。
To promote the application of semi-solid forming to industry, the numerical simulation technology has been applied to the analysis of the process of AlSi_9Mg alloy semi-solid billet production by pouring near liquids. The effect of pouring temperature, pouring height, pouring velocity and cooling condition on the velocity field and temperature gradient has been investigated, and the effect on microstructure of the semi-solid billet has also been researched. The results of numerical simulation and experiment shows that: the liquid metal flows mainly along axis, only a little metal along radius, but more and more metal will flow along radius. As a result, the shearing strength of the liquid metal is very large, which have a significant influence on the forming of non-dendrite grains. A lower pouring temperature, a lower cooling intensity, a higher pouring height and a higher pouring velocity are prone to forming spherical or nodular grains.
     Then based on the results of the numerical simulation and the principle of the orthogonal experimentation, select appropriate technical parameters, and research the relation of the technical parameters. The result shows that as far as the temperature, the effect of cooling intensity is the biggest, following with pouring temperature, pouring velocity, pouring height. Compared with the effect of the cooling intensity, the others can be ignored. As far as the flow field, the effect of pouring velocity is the biggest, following with pouring height, pouring temperature, cooling intensity. Compared with the effect of the pouring velocity, the others can be ignored. The best technical parameter array is the one of pouring temperature is 610℃, pouring velocity is 1.2kg/s, pouring height is 20mm, and the die heat up to 200℃.
     The experiment result of the true process shows that the result of the numerical simulation is correct, and this technology can obtain the wonderful AlSi_9Mg alloy semi-solid billet with spherical or nodular grains.
引文
[1] Flemings MC.Behavior of alloys in the semi-solid state. Metal Trans B, 1991, 22B(5): 269-293.
    [2] 毛卫民.半固态金属成形技术.机械工业出版社,2004.
    [3] 罗守靖,田文彤,谢水生等.半固态加工技术及应用.中国有色金属学报,2000,10(6):765-773
    [4] 徐跃,康永林,王朝晖等.机械搅拌法制备半固态镁合金的组织及性能研究.铸造技术,2004,Vol25:670-672
    [5] R. Haghayeghi, E.J. Zoqui, A. Halvaee.etal. An investigation on semi-solid A1-7Si-0.3Mg alloy produced by mechanical stirring. Journal of Materials Processing Technology, 2005, 169:382-387
    [6] 崔建忠,路贵民.半固态浆料制备技术的新进展.哈尔滨工业大学学报, 2000(4),32:110-113
    [7] 何书华,张励忠,焦众生等.半固态金属流变成形模具失效与选材.特种铸造及有色合金,2004,(2):33-35
    [8] 冯鹏发,唐靖林,李双寿等.半固态合金流变成形技术的研究现状与发展.铸造,2004,Vol153:963-966
    [9] C.Vives, Elaboration of metal matrix composites from thixotropic alloy slurries using a new magnetoyro dynamic caster, Metall.Trans.B, 1993(3), 24B: 493-510
    [10] 杨卯生,赵爱民,毛卫民等.钢的半固态电磁搅拌力场与组织转变.钢铁研究学报,2003,15(4):18-23
    [11] 宋仁伯,康永林,李激光等.60Si2Mn半固态浆料的制备和流变轧制的组织形貌.金属学报,2003,39(3):310-314
    [12] 张早明,弭光宝,薛克敏.半固态坯料制备工艺的研究进展.铸造,2006,7:673-677
    [13] 蒋益民,蒋宗宇,陈刚.半固态金属成形技术现状与展望.铸造设备研究,2001.61:5-15
    [14] 黄维超,卢雅琳,江海涛等.Al-4Cu-Mg合金半固态压缩过程中的微观组织演变.特种铸造及有色合金,2004,06:8-10
    [15] 黄维超,卢雅琳,江海涛等.工艺参数对半固态Al-4Cu-Mg合金微观组织与性能的影响.特种铸造及有色合金,2004,(3):13-15
    [16] Nursen Saklakoglu, I.EtemSaklakoglua, Metin Tanoglu.etal. Mechanical properties and microstructural evaluation of A5013 aluminum alloy treated in the semi-solid state by SIMA process. Journal of Materials Processing Technology, 2004, 148:103-107.
    [17] M.Kiuchi, S.Sugiyama, Application of mashy state extrusion,Mater. Shaping Technology. 1990(1), 8:39-46
    [18] 甄子胜,赵爱民,毛卫民等.喷射沉积A1-30Si组织及其半固态保温转变规律.材料科学与工艺,2001,9(2):162-165
    [19] TsujikaqaM, TanakaK. Advanced Materials Research. 1997, Vols.4-5:321-326.
    [20] 蔡卫华,杨湘杰,郭洪民等.斜管法流变制浆设备工艺参数的研究.南昌大学学报(工科版)2003,Vol.25,No.3:13-17
    [21] 郭洪民,杨湘杰,胡斌.转动输送管制浆工艺参数对A356合金半固态组织的影响.中国有色金属学报,2004,14(12):2049-2054
    [22] 潘冶,张春燕,袁浩扬.结晶初期熔体流动对半固态合金粒状初晶形成的作用.金属学报,2001,10:1035-1039
    [23] CGKang.PKSeo. SWYoun.Finite element analysis of thixoforming process with arbitrary shape dies. Journal of Materials Processing Technology, 2005, 59: 321-329
    [24] Liu Dan(刘丹).铝合金液相线铸造制浆及半固态加工工艺及理论研究.Shenyang:Northeastern University,1999.
    [25] 赵建新,朱鸣芳,金宰民等.A1-Si合金在凝固过程中颗粒和枝晶组织的演变.理化检验,物理分册Vol.40,No.9,433-438
    [26] Flemings. Behavior of metal alloys in the semi-solid state.Metall.Trans.B, 1991(3), 22B:269-293
    [27] 杨为佑,陈振华,吴艳军等.半固态非枝晶组织合金的制备技术.铝加工,2001.24:32
    [28] 朱鸣芳,苏华钦.半固态铸造技术的研究现状.特种铸造及有色合金,1996.2:29-32.
    [29] NussbaumAI.Semi-solid forming of aluminum and magnesium. Light Metal Age, 1996, 6:6
    [30] 丁志勇,潘洪平,谢水生.加热工艺对半固态A1Si7Mg合金的重熔组织的影响.中国有色金属学报,2002,12(6):1246-1251
    [31] RSQin.ERWallach.Phase-field simulation of semi -solid metal processing under conditions of laminar and turbulent flow. Materials Science and Engineering, A357 (2003) 45-54
    [32] Jersey Petera.Monika Kotynia.The finite element model of non-isothermal semi-solid fluid flow International. Journal of Heat and Mass Transfer 47 (2004) 1483-1498
    [33] CGKang.PKSeo. SWYoun.Finite element analysis of thixoforming process with arbitrary shape dies. Journal of Materials Processing Technology, 59 (2005), 321-329
    [34] Dae-CheolKo.Gyu-SikMin.Byung-MinKim.et al. Finite element analysis for the semi-solid state forming of aluminum alloy considering induction heating. Journal of Materials Processing Technology, 100 (2000), 95-104
    [35] M.Modigell, J.Koke.Rheological modeling on semi -solid metal alloys and simulation of thixocasting process. Journal of Materials Processing Technology, 111(2001), 53-58
    [36] Reiner.Kopp.JongungChoi.DagNeudenberger.Simple compression test and simulation of a Sn-15%Pb alloy in the semi-solid state. Journal of Materials Processing Technology, 135 (2003), 317-323
    [37] Jae-HoHwang, Dae-CheolKo, Gyu-Sik etal .Finite element simulation and experiment for extrusion of semi-solid A1 2024. International Journal of Machine Tools & Manufacture, 0 (2000), 1311-1328
    [38] M.Shiomi Dtakano KosakadaMOtsu.Forming of aluminum alloy at temperatures just below melting point. International Journal of Machine Tools & Manufacture, 43 (2003), 229-235
    [39] 姜巨福.新SIMA法制备AZ91D半固态坯料及其触变模锻研究.哈尔滨:哈尔滨工业大学,2005
    [40] 王顺成,陈彦博,周天国等.SCR技术半固态制浆热流耦合场的三维有限元模拟.铸造技术,2004,25(11):821-824
    [41] A.Das, Z.Fan.A Monte-Carlo simulation of solidification structure formation under melt shearing. Materials Science and Engineering, 2004, A365:330-335
    [42] 管仁国,温景林,刘相华.单辊搅拌技术制备ZAll半固态材料过程的数值模拟.东北大学学报(自然科学版)Vol123,No.3,255-258
    [43] 吴树森,吴雪平,肖泽辉等.半固态金属组织的形成模型及模拟.金属学报,2004,40(4):429-433.
    [44] 张春燕.结晶控制法获得半固态铝合金与粒状晶的形成.南京:东南大学,2000
    [45] 张颂阳、耿茂鹏、谢水生等.镁合金成形技术研究进展.热加工工艺,2006.131:77-80
    [46] 谢水生,朱琳.高效、节能、短流程加工技术在有色金属加工中的应用.中国机械工程,2002,13(19):1631-1634
    [47] 数理统计编写组.数理统计.西北工业大学出版社,1999年.
    [48] 中国科学院数学研究所数理统计组.正交试验法.人民教育出版社,1975
    [49] 徐仲安,王天保等.正交试验设计法简介.科技情报开发与经济,2002(5)
    [50] 赵选民.试验设计方法.科学出版社,2006:4-5
    [51] Atkinson A. C. & A.N. Done Optimum Experimental Design, Oxford Science Publications, Oxford, 1992
    [52] 吴梅村.数理统计学基本原理和方法.西南财经大学出版社,2006
    [53] 马希文.正交设计的数学理论.人民教育出版社,1981
    [54] 谭超.建立基于神经网络和正交设计的个人信用评分体系初探.武汉:武汉科技大学,2005
    [55] 冯铁.基于神经网络与模糊评判的正交设计系统研制与开发.沈阳:东北大学,2003
    [56] 迟美.倾转浇注充型和凝固过程的数值模拟.沈阳:沈阳工业学院.2004
    [57] 荆涛,柳百成校.凝固过程数值模拟.清华大学机械工程系,1994.
    [58] 饶寿期,有限元法和边界元法基础.北京航空航天大学出版社,1989
    [59] 杨嚷根,流体力学有限元.哈尔滨工程大学出版社,1995
    [60] 苗雨川.双辊铸轧薄带钢凝固过程的数值模拟.沈阳:东北大学,2001
    [61] 程军.计算机在铸造中的应用.机械工业出版社,1993
    [62] 熊守美,许庆彦,康进武编著.铸造过程模拟仿真技术.机械工业出版社,2004
    [63] 尤江.铝合金铸件凝固过程的有限元数值模拟研究.沈阳:沈阳工业学院,1999
    [64] 马兆敏.铸造凝固过程三维温度场及热应力场有限元技术研究.南宁:广西大学,2002.
    [65] ESI Group. ProCAST User Manual.2004
    [66] Chalmers B J.The Structure of Ingots. Austinst Met, 1963, 8:255-263
    [67] Jackson K A, Hunt J D, Uhlmann D R, etal. On the Origin of the Equiaxed Zone in Castings. Trans AIME, 1966, 236:149-158
    [68] 大野笃美著.金属凝固学.机械工业出版社,北京,1983
    [69] 陈平昌,朱六妹,李赞.材料成形原理.机械工业出版社,北京,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700