船轴用34MnV钢的热处理及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,本文利用Formastor-F全自动相变仪完成了对成分改进后的微合金船轴用钢-34MnV钢的连续冷却转变曲线测定,并通过会相显微镜观察了各冷速下的金相组织。34MnV钢在冷却速度小于0.1℃/s时主要转变产物为铁素体+珠光体,冷却速度高于0.2℃/s时即有贝氏体出现,在冷却速度达到20℃/s时,则为全马氏体转变。
     对34MnV钢试样分别进行不同工艺的热处理,利用Olympus BX60M金相显微镜、Zwick Z050电子拉伸试验机和JB-30B冲击试验机对热处理后的试样进行显微组织观察和力学性能测试。研究结果表明34MnV钢经过900℃保温1h后炉冷以及900℃保温1h后空冷的试样,强度和韧性都明显提高,但各有侧重,前者侧重于提高材料的韧性,而后者侧重于提高材料的强度;34MnV钢经过二次或三次奥氏体化后,晶粒尺寸减小,材料的强韧性进一步提高。
     最后,通过ABAQUS有限元分析软件模拟了曲拐在900℃奥氏体化后冷却过程的温度场分布特性,冷却方式为水雾冷却。对模拟结果分析可以推测,曲拐内部转变产物为珠光体+铁素体组织,韧性较好;曲拐表层及边缘部位的主要转变产物为贝氏体,强度较高,曲拐通过该工艺参数的热处理可以获得外强内韧的力学性能,符合工件的使用条件。
The critical points and CCT curves of 34MnV steel used for crankshafts were tested byFormastor-F full-automatic transformation testing instrument. The CCT curves and themicrostructures at different cooling rates showed that the transformation products of34MnV were ferrite and pearlite when its cooling rate was lower than 0.1℃/s, while bainiteappeared when the rate was higher than 0.2℃/s. And the microstructure of 34MnV wasahnost martensite at the cooling rate of 20℃/s.
     The microstructures and the mechanical properties of 34MnV steel after different heattreatments were studied by Olympus-BX60M optical microscopy, Z050 automation tensiletester and JB-30B impact tester. The experimental evidences revealed that the strength andimpact toughness of 34MnV steel held at 900℃for 1 hour and furnace-cooling or held at900℃for 1 hour and air-cooling were enhanced obviously, however, furnace-cooling putemphasis on improving toughness of materials, and air-cooling emphasized theenhancement of strength. After austenitizing for two or three times, the strength of 34MnVwas increased, meanwhile, its impact toughness was improved further and its grain sizewas smaller.
     The crank austenitized at 900℃was cooled by water mist and the three dimensionaltemperature fields of the cooling process were simulated by means of ABAQUS software.The simulated results indicated that the inner of the crank was transformed into ferrite andpearlite, having better toughness. Furthermore, there existed bainite on the surface layer ofthe crank, whose strength was higher. Therefore this heat treatment process can provide thecrank with the excellent mechanical properties of strengthened surface and toughened inner, which meets working condition of materials well.
引文
[1] 中国船舶工业行业协会.2004年船舶工业经济主要数据[J].中国船检,2005,(3):72-73
    [2] 佚名.船用曲轴国产在即[J].交通建设与管理,2006,(8):28-29
    [3] 武汉水利工程学院内燃机教研室.船舶柴油机[M].北京:人民交通出版社,1990.25-29
    [4] Yasumasa Yoshida, Dr.Hiroyuki, Yasunori Kagawa. High Strength Cast Steel Crankthrows for Semi-built-up Type Crankshafts[J]. R·D Kobe Steel Engineering Peports. 2005, 55 (3): 7-9
    [5] Shogo Fukaya, Nobuyuki Fujitsuna, Yasunori Kagawa. High Tensile Strength Low Alloy Steel for Solid Type Crankshafts[J]. R·D Kobe Steel Engineering Peports. 2005, 55 (3): 22-25
    [6] 李群,聂绍珉,武玉波.大型船用曲拐弯锻成形缺陷分析[J].燕山大学学报,2006,30(4):305-308
    [7] 陈纯乙.低速柴油机曲轴的制造工艺及加工设备[J].造船工业建设,1998,(1):44-47
    [8] 梁启康.提升船舶设计开发能力适应国际船舶市场竞争的需求[J].船舶,2003,(6):8-12
    [9] 彭丽华.内燃机曲轴制造技术新论[J].金属成型工艺,2004,22(2):15-18
    [10] 李井会,许维军等,刘洪波等.曲轴制造工艺综述[J].船艇,2002,(7):29-34
    [11] Khalid, Fazal A. Precipitation and Compositional Changes in the Structural Phases of Microalloyed Automotive Steels[J]. Materials Science and Engineering, 2002, 325(1): 281
    [12] Nikolaou J, Papadimitriou GD. Microstructures and Mechanical Properties After Heating of Reinforcing500 MPa Class Weldable Steels Produced by Various Processes[J]. Construction and Building Materials, 2004, 18(4): 243
    [13] 雍歧龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989
    [14] M.科恩.钢的微合金化及控制轧制[M].北京:冶金工业出版社.1985
    [15] 鲁茨,德迈耶.带钢轧制过程中材料性能的优化[M].北京:冶金工业出版社,1996
    [16] 苏连锋.800MPa级高强度钢的物理冶金行为研究[D].沈阳:东北大学.2002
    [17] 陈蕴博,马炜,金康.强韧微合金非调制钢的研究动向[J].材料导报,2000,14(8):3-7
    [18] 范海东.非调质油井管坯钢35MnVNbTi的成分、组织与性能研究[D].北京:北京科技大学.2004
    [19] 万毅.含铌非调质钢的组织与性能[J].江西冶金,1995,15(5):25
    [20] 范海东,翁绍华,35MnVNbTi钢的微合金化与品粒度的关系[J].理化检验.物理分册,2004,40(10):490-493
    [21] 索进平,董瀚,40MnV钢中微合金元素氮-碳化物的析出行为.特殊钢[J].2005,26(4):19-22
    [22] 谢邦文,徐国庆.改善F35MnVN非调制钢韧性的热处理工艺及其应用[J].热处理,2005,20(3).27-38
    [23] 要承勇.45MnV钢弥散强化机理的探讨[J]_理化检验.物理分册,2003,39(12):617-619
    [24] 完卫国,王莹,吴结才.钒氮微合金化技术的研究与应用综述[J].江两冶金,2004,24(5):26-30
    [25] 董成瑞,任海鹏等.微合金非调制钢[M].北京:冶金工业出版社.2000:27-41
    [26] 陈博时.钒和氮微合金化的高强低碳锰钢[J].上海钢研,1999,(2):58-60
    [27] 徐曼,孙新军,刘清友等.低碳含钒钢组织变化及V(C, N)析出规律[J].钢铁钒钛,2005,26(2):25-30
    [28] 崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,1998.322-328
    [29] 孙珍宝等.合金钢手册[M].北京:冶金工业出版社.1984
    [30] 兰纳伯格R等.钒在微合金相中的作用[M].北京:北京钢铁研究总院,2000
    [31] 孟繁茂.铌、钒、钛在特殊钢中的应用[J].微合金化技术,2001,11(3):28-31
    [32] 钟云龙等.新型油井管钢33Mn_2V的动态再结晶规律的研究[J].钢铁,2003,38(2):42-45
    [33] 钟云龙等.新型油井管钢33Mn_2V的奥氏体品粒长大规律[J].金属学报,2003,39(7):699-703
    [34] 马鸣图,李志钢.钒对弹簧钢35SiMnB淬透性和等温转变曲线的影响[J].特殊钢,2001,22 (6):13-14
    [35] 马鸣图,李志钢,卢向阳.钒对35SiMnB弹簧钢脱碳敏感性的影响[J].特殊钢,2001,22(5):9-11
    [36] Tadeusz SIWECHI.再结晶控轧期间显微组织演变的模拟[J].重钢技术,1996,(3):49-59
    [37] 刘晰棕.含钛、铌钢板的控制轧制[J].辽宁冶金,1995,(4):33-35
    [38] 卫开旗.锰含量对15MnV钢组织性能的影响[J].马钢职工大学学报,2003,13(3):6-8
    [39] 荆秀芝,陈文,杨武鸣.金属材料应用手册[M].西安:陕西科学技术出版社.1989.1-3
    [40] 尹立新,郭雁行,刘晓岚.图像分析仪在金相检验中的应用.物理测试,2004,(2):38-42
    [41] 林慧国,傅代直.钢的奥氏体转变曲线[M].北京:机械工业出版社.1998
    [42] 张世中,钢的过冷奥氏体转变曲线图集[M].北京:冶金工业出版社,1993
    [43] 徐进,刘宗昌.S7钢CCT图的测定及研究[J].包头钢铁学院学报,2000,19(1):46-49
    [44] 金自力,陈刚.Gleeble 1500测定45钢CCT曲线的结果分析[J].包头钢铁学院学报.2004,23(4):326-328
    [45] 那顺桑,李如春,田薇等.30MnSiV钢连续冷却转变曲线[J].河北理]j学院学报,2000,22(5月增刊):125-128
    [46] 胡怡.GQ112A钢CCT图的测定[J].金属热处理,2001,26(7):38-39
    [47] 肖国华,肖寄光,王福明等.含钒高强度船体结构钢的连续冷却转变[J].北京科技大学学报,2006,28(9):830-834
    [48] 张发云.AZ61镁合金SIMA法半固态制备及二次加热的研究[D].南昌:南昌大学.2005
    [49] 中国机械工程学会,中国机械设计大典编委会.中国机械设计大典[M].江西科学技术出版社,2003
    [50] 谢贻权,何福保.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1981
    [51] 庄茁等.ABAQUS/Standard有限元软件入门指南[M].北京:清华大学出版社,1999
    [52] 林伯年.金属热态成形传输原理[M].哈尔滨:哈尔滨工业大学出版社,2000.145-146
    [53] 樊新民,孔见,孙斐.材料科学与工程中的计算机技术[M].徐州:中国矿业大学出版社,2001.26-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700