吉林西部洋沙泡水库水土环境中氟的迁移转化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对引嫩入白供水工程洋沙泡水库水质改善问题开展专题研究,运用水环境化学、水文地球化学、环境水力学、土壤化学等多学科综合方法,采用野外取样、室内模拟实验等手段,全面系统地研究了洋沙泡水库水质、湖库底泥化学成分和氟的分布特征及其影响因素,表明洋沙泡属于高氟湖库,氟主要来源于二龙涛河来水、周边地表水径流和底泥释放;采用水槽底泥氟释放、水柱底泥氟释放、水质混合模拟等多种实验方法,系统研究并揭示了高氟底泥中氟长期缓慢释放的规律和机理,计算了洋沙泡底泥氟的释放速率及释放量;建立了湖泊底泥氟长期缓慢释放的动力学模型,依据实验资料拟合了多种条件下氟累积释放方程;采用水量平衡方程与溶质守恒定律耦合模型、水流水质数值模拟模型,预测了不同引水方案下洋沙泡水质变化的时空特征,提出了水质改善的可行方案。研究成果对于高氟湖库区水资源合理配置与保护利用具有重要的参考价值。
The subject is chosen and specific studies are carried out according to the problem of water quality improvement of Yangshapao Reservoir for Water Supply Project from Nenjiang River to Baicheng City, which is one of the most important water resources projects of“the Eleventh Five-year Program”in Jilin Province. The Yangshapao (also name as Yangsha lake) reservoir is located in the arid and semiarid low plain area in western Jilin Province, where the fluorine content in environment is high. The reservoir is a natural lake and its water comes mainly from the seasonal recharge of upstream Erlongtao River. So the lake has been dried for several times, and the total dissolved solids, concentration of fluorine and iron are quite high, and fluorine has great effects on the water quality. Therefore, it is of great practical value to find out not only the origin, distribution characteristics and influencing factors of the fluorine, but also the long-term release and transfer principle of fluorine in the bottom mud, which also has great academic and practical value for the management and protection of water resources in arid and semiarid areas.
     Since there has been few the domestic and foreign references about the research on spacial & temporal changes of fluorine in high concentration lakes, the principle of fluorine transfer through the interface of water and soil, the release characteristics of the fluorine in the bottom mud of lake, moreover, the research on the absorption and desorption of fluorine by soil is very limited in the practical projects because of the short period and little scale. It is necessary to carry out experiments, to lengthen the research period, and to enlarge the scale for the research on long-term release characteristics of the fluorine in bottom mud of lake, for the study of the effects on fluorine in the water environment by the release of the bottom mud, and for the analysis of transfer principle of fluorine in water & soil environment. According to the experiment data and analysis results from the actual samplings in situ, the spacial & temporal changes of fluorine in Yangshapao reservoir are forecast after the diversion project put into use.
     Sampling was carried out during six different periods and 84 samples of water and ice from Yangsha Lake, 15 samples from groundwater around the lake, 14 samples from Nenjiang River, 2 samples from the Erlongtao River, 88 samples from the bottom mud, and 15 samples from the lake banks were analyzed. The sampling periods was over a year, which covers 4 different seasons (spring, summer, autumn and winter), low and high water periods, frozen and thaw periods, which made the samplings typical. The experiments were designed as follows: beaker experiment, fluorine release experiment from the bottom mud in flume (or trough) and in column, water quality mixture simulation experiment, surface runoff simulation experiment from the bank soil, chemical dynamic fluorine release experiment from the bottom mud or soil, and so on. Each experiment was designed for several schemes. In practice, the beaker experiment period was one day; fluorine release experiment from bottom mud in flume took 176 days and in four schemes with 38×4 samplings;fluorine release experiment from bottom mud in column took 171 days and in six schemes, with 18×6 samplings;water quality mixture simulation experiment took 149 days and in one scheme, with 7 samplings each time and with 231 total samplings; surface runoff simulation experiment took one day, with 34 samplings; chemical dynamic release experiment from bottom mud tookr four days and twice, with two schemes and 40 samplings. And 13 samplings were analyzed for different forms of fluorine.
     The fluorine concentration was high at the beginning of 2007, which is about 5~10 times of the drinking water standard level. The distribution characteristic in the lake is that it is the highest near the southeast bank among Chagan, Dongping and Xiyangsha, and the lowest in Donyangsha. However, the concentration gradient in water is not big.
     The main influencing factors are the fluorine concentration in bottom mud, the water body entering the lake, the hydrodynamic conditions, the lithology, wind dynamic conditions and so on. The fluorine in spring, or thaw period, is the lowest, and increases gradually. The change of fluorine in bottom mud is big. The total fluorine content in the bootom mud is 588~1157 mg/kg and that in the western part of the lake is higher than that in the eastern part. The fluorine in soluble salts is 13.13~82.53 mg/kg in bottom mud, and the fluorine is high among the Xinyangsha and Donyangsha, while low in southeast, which decreases from west to east. The fluorine in unconfined pore water is 2.05~4.20 mg/L, and that is more than 1.0mg/L and less than 1.5mg/L in confined water.
     The experiment indicated that the max fluorine release quantity from the bottom mud is 81.58~132.11mg/kg, which was big at the beginning of release progress, and the increasing amplitude decreases gradually, and so is the release rate, which keeps steady about 0.01~0.06 mg/kg.d, until the release was over. The fluorine released from the bottom mud can be quickly mixed with water in the lake. The wuantity of water in upper part has great influence on the fluorine release from the bottom mud, the greater the quantity of water, the greater the fluorine release from bottom mud. The accumulative fluorine release matches the logarithm curve distribution law. The difference of fluorine concentration in extraction liquid from the bottom mud can influence the fluorine release, so the fluorine extracted by the distilled water is higher than that by tap water (fluorine is about 0.32 mg/L). The absorption dynamic release equation is in accordance with the distribution character of logarithm curve.
     The formation of the high fluorine Yansha lake is the result of long-term evolvement of the surface envioronment. The volcanic rocks of Daxing’an Mountain and unconsolidated deposits of Songnen low plain provides matter basis bearing abundant fluorine for Yangshapao reservoir, rivers and groundwater runoff provides dynamic conditions for fluorine movement, typical low lying topography provides geographical conditions for the formation of high fluorine, arid and semiarid climate promotes the formation of high fluorine environment. The main sources of fluorine in Yangsha Lake include water influx from upstream, rainfall taking, influx of runoff around and the release from the bottmom mud in the lake. The average annual fluorine quantity from upstream Erlongtao River makes up 94.68-98.85% of annual fluorine source, rainfall taking makes up 1.05-5.17%, and runoffs around makes up 0.15%. The strong evaporation and concentration action without sources outside entering increases the concentration of fluorine in water by 0.38-1.47mg/L.
     According to the theory of chemical dynamics, long-term experimental study on the law of fluorine release in high fluorine bottom mud is carried out importantly; meanwhile, the model to describe the long-term release characteristics and law of fluorine in high fluorine bottom mud is presented. The expanding equation of the model is logarithm curves. The fluorine release quantity from the bottomb mud increases with time, but the increase extent decreases until the end of the total release. The chemical reaction rate model has been presented by using the results of fluorine dynamic release experiment, and the model basically matches Elovich pattern.
     The release of fluorine from the high fluorine bottom mud is related closely with pH, total dissolved solids and the ratio of Na/Ca. Alkalinous environment is proportional to the release of fluorine; the content of fluorine increases with the increase of total dissolved solids, which indicates that with the increase of salinity or the evaporation and concentration of water, the fluorine increases or be concentrated as the same. The content of fluorine increases with the increase of the ratio of Na/Ca, which indicates that the increase of the ratio of Na/Ca is proportional to the release of fluorine. Freezing in winter has an effect of rapid concentration on the fluorine in water body, which makes the uniform distribution of fluorine in water body.
     The total fluorine content in bottom mud in Yangsha Lake is is 2.94-5.79 times more than the global one with an average of 200 mg/kg. The water-soluble fluorine is 26.77-112.39 mg/kg. The content of different types of fluorine in the bottom mud in Yangsha Lake shows that: residual fluorine >> water-soluble fluorine > organic fluorine > iron-manganese combined fluorine e >exchangeable fluorine. The reasons of the high concentration of water soluble fluorine in bottom mud are:①Yangsha Lake belongs to the high fluorine environment, and the content of fluorine in bottom mud is higher than that in the soil around;②Some parts of the fluorine in bottom mud in Yangsha Lake comes from the mother material of soils, while others comes from the influx of river runoff;③Yangsha Lake has become dried several times because of the strong evaporation and concentration, and the fluorine in water is deposited into the bottom mud, which makes the content of water-soluble fluorine is very high;④The bottom mud in Yangsha lake belongs to alkaline environment, and the pH is between 8.0-9.5, which is favourable to the release of fluorine.
     In soil-water environment of Yangsha Lake, fluorine is migrated and transformed through the processes of precipitation - solution, adsorption– desorption, iron exchange and replacement. The content of total fluorine in the bottom mud is relatively high, and this provides an enogh matter basisi for the migration and transform of fluorine in the water and soil environment. The content of soluble fluorine in the bottom mud is relatively high, it is easy for fluorine to be dissolved or desorbed under long-time hydro dynamic conditions; Biological fluorine and invertible abiological fluorine in the bottom mud of Yangsha Lake can be totally desorbed into water ultimately. The residual minerals in the bottom mud include biotite, phosphorite or apatite, cryolite and fluorite, in which the fluorine can gradually and continuously migrate into water in long-time water environment by iron exchange and replacement, and some residual fluorine in the bottom mud migrates into water. Besides, the alkaline water and soil environment of Yangsha Lake reduces the appetency and adsorption capacity of irons by solid phase surface, which accelerates the desorption of anions, and improves the exchange ability of fluorine, making F- in crystal lattice of clay minerals exchange out. The alkaline environment is favorable to separating and release of fluorine in the bottom mud of Yangsha Lake. Therefore, the fluorine migrating from soil (bottom mud) to water becomes the main direction in the water and soil environment of Yangsha Lake.
     On the basis of previous study results, the water quality of the lake influenced by the bottom mud and ice layer is analyzed and predicted by multiple technical methods. Using the coupling model of water budget equation and solute conservation law, and a month as a time step, considering following 8 programs for prediction: (1) hold raw water, and do not consider urban water supply; (2) consider urban water supply in some time-intervals; (3) discharge intensively, only hold dead storage, and do not consider urban water supply; (4) discharge intensively, only hold dead storage, consider urban water supply in some time-intervals; (5) empty out the storage, do not consider urban water supply; (6) empty out the storage, consider urban water supply in some time-intervals; (7) empty out the storage continuously in spring of 2 years, consider urban water supply; (8) empty out the storage continuously in 3 years, consider urban water supply in some time-intervals. The results show that emptying out all storage before diversion in spring, the water quality is relatively good during water diversion, and the conerntration of fluorine in water is relatively low and urban water supply can be considered, and the conerntration of fluorine in water can meet the drinking water standard in the fifith year. Therefore, it is suggested to use the program that empty out all storage before diversion in spring, then transmit water, and supply the city with water in different time-intervals.
     Under the conditions of not emptying out the current high-fluorine water and continuously water divertion, the conerntration of fluorine in water is relatively high in three years and can not fully meet the drinking water standard forecasted by using simulation experiment.
     In order to predict and forecast the spatio-temporal distribution characteristics of fluorine in the reservoir further more, the law of distribution and migration of fluorine in water is numerically simulated by using the software Delft 3D. Based on actual results of measurement and engineering design, hydro-dynamic numeric simulation model is established firstly, finite difference element approach is adopted to get solution; then the numeric simulation model of water quality trsportation is established, the calculating area is meshed with orthogonal system of curves, while the grid step is controlled between 60~65m and 8725 grid units in total. The prediction of 3 programs is carried out according to the design characteristics of fluxes at inlet and outlet, and the result is similar to the results from previous analytical and experimental simulation methods and shows that the water quality will be improved to different degrees under different water changing conditions. Based on above results of water quality prediction, available program of water quality improvement in Yangsha Lake is suggested.
     Against the situations that the study scale is small and the time is short during former experiments, the time is prolonged and study scale is amplified during this research. It is the first time to research the long-term fluorine release law in the bottom mud in high fluorine lake and reservoir experimentally by using combined methods of indoor experiments and filed sampling analysis, and the long-term slow fluorine release law and transportation mechanism in the high-fluorine lake and reservoir has benn revealed. The long-term slow fluorine release rate and the fluorine release quantity from the bottom mud are analyzed and calculated and this provides a basis for the reseaches on the long-term slow fluorine release law from the bottom mud in high-fluorine lakes and reservoirs in China. It is the fist time to cary out qualitative analysis and quatitative calculation about the effects of ice layer on the fluorine transportation in the water and soil environment, and the results expands the research on the influencing factors of fluorine transportation in water and soil environment. According to the theory of chemical dynamics, the experimental research of long-time fluorine release law in high fluorine bottom mud is importantly carried out, and the dynamic fluorine release model for describing the long-term slow fluorine release in the bottom mud of high fluorine lake or reservoir is established for the first time, and accumulated fluorine release equations under multiple conditions are fitted, the study results fill the blank of the study on the long-term fluorine release law of the bottom mud in high fluorine lakes and reservoir in China.
引文
1 吕新之.氟的环境化学[J].枣庄师专学报,1995,2:72-73.
    2 陈国阶,余大富.环境中的氟[M].北京:科学出版社,1990:1-83
    3 谢正苗,吴卫红,徐建民.环境中氟化物的迁移和转化及其生态效应[J]. 环境科学进展,1999,7(2):40-53
    4 网上 http://www.med8th.com/ medinfo/0604/ 20060426elllnz_47.htm 检索
    5 郑宝山.地方性氟中毒及工业氟污染研究.北京:中国环境科学出版社,1992,第 1版:35-50
    6 William.H. Bowen, B.D.S., Ph.D..Fluorosis Is it really a problem? [J]. JADA, 2002Vol. 133:1405-1410
    7 Al-Alousi W, Jackson D, Crompton G, Jenkins O. Enamel mottling in a fluoridated and a non fluoridated community[J]. Br Dent J 1975;138:9-15.
    8 Dental effects of water fluoridation. Seventh report on the Brantford fluoridation caries study[J]. Med Serv J Canada 1960;16:590-607.
    9 Adriasola G. First evaluation of the program of fluoridation of drinking water in Curico-San Fernando , Chile , 1956[J]. Bol Ofic Sanit Panamer 1959;47:412-420.
    10 Angelillo IF, Torre I, Nobile CG, Villari P. Caries and fluorosis prevalence in communities with different concentrations of fluoride in the water[J]. Caries Res1999;33(2):114-122.
    11 Arnala I, Alhava E, Kivivouri R. Hip fracture incidence not affected by fluoridation , Ostreofluorosis studied in Finland[J]. Acta Orthop Scand 1986;57:344-351
    12 Bernstein D, Sadowsky N, Hegsted D. Prevalence of osteoporosis in high- and low-fluoride areas of North Dakota[J]. JAMA 1966;198:499-504.
    13 Chilvers C. Cancer mortality by site and fluoridated water supplies[J]. J Epidemiol Community Health 1982;36:237-242.
    14 Dissanayake C. Geochemical provinces and the incidence of dental disease in Sri Lanka[J]. Science of the Total Environment 1979;13(1):47-53.
    15 Driscoll WS, Horowitz HS, Meyers RJ, Heifetz SB, Kingman A, Zimmerman ER. Prevalence of dental caries and dental fluorosis in areas with optimal and above-optimal water fluoride concentrations[J]. J Am Dent Assoc 1983;107(1):42-49.
    16 Forbes WF. Geochemical risk factors for mental functioning, based on the Ontario Longitudinal Study of Aging (LSA) .6. The effects of iron on the associations of aluminum and fluoride water concentrations and of pH with mental functioning, based on results obtained from the LSA and from death certificates mentioning dementia. Canadian Journal On Aging-Revue Canadienne Du Vieillissement 1997;16(1):142-159.
    17 WHO.Fluride and Human Health[J].Geneva,1970:
    18 WHO.Environnnental Health Criteria36,Fluorine and Fluoride[J].Geneva,1984:
    19 WHO.Appropriate of Fluoride for Human[J].Geneva,1986:
    20 WHO.Dreosti IE[J].Austral Preseriber,1989,12(2):39-44.
    21 Yamauehi,M.et al.Fluoride inhibition of Phtosynthesis in certain crop plants [J].Soil Sci Plant Nutr,1983,29(4):549-553.
    22 E J Ncube* and CF Schutte. The occurrence of fluoride in South African groundwater:A water quality and health problem[J]. Water SA 2005,31 (1 ):35-40
    23 M. Teresa Alarcón-Herrera,a Ignacio R Martín-Domínguez. Well water fluoride, dental fluorosis, and bone fractures in the guadiana valley of mexico[J]. Research Report 139, Fluoride, 2001 , Vol. 34 No. 2: 139-149
    24 K.krrishnamohan and S.herart , Industrial ecology and sustainable development-a viewpoint [J].International Environment Studies, 2000,57: 387-400.
    25 第 20 届国际氟研究协会学术讨论会论文集[P].北京:卫生部出版社,1994,第 1 版.
    26 中华人民共和国卫生部,中国国家标准化委员会发布。中华人民共和国国家标准生活饮用水卫生标准.北京:中国标准出版社,2007 年.
    27 Grobler SR and Dreyer AG (1988) Variations in the fluoride levels of drinking water in South Africa[J]. S. Afr. Med. J. 73 217-219.
    28 Apambire W B,Boyle O R,Michel F A. Geo-chemistry,genesis,and health implications of fluoriferous groundwaters in the upper regions of Ghana [J]. Environmetal Geoiogy, 1997,33(1): 13-18.
    29 McCAFFREY LP and WILLIS JP (1993) Distribution of fluoride-rich groundwater in the eastern parts of Bophuthatswana, relationship to bedrock and soils and constraints on drinking water supplies: a preliminary report. Africa Needs Ground Water[J]. An International Ground Water Convention. 11-8.
    30 O.A. Limantseva,B.N. Ryzhenko and E.V. Cherkasova. Fluorine-Bearing groundwater of Carbon aquifer in Moscow region [P]. Proceedings of the 12th International Symposium on Water-Rock Interaction (WIR-12, Kunming, China, 31-July-5 August, 2007), Talor & Francis Group, Landon, UK,2007:345-348,
    31 Philip G. Conrad, Daniel L. Carey, James S. Webb, James S. Dinger, R. Stephen, Matthew J. McCourt. Ground-water quality in Kentucky: fluoride. Information Circular 1 Series XII,1999:1-3
    32 Y. Abu Rukaha, Khaled Alsokhnyb. Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration , North Jordan[J]. Chemie der Erde,2004(64) :171–181
    33 Tesfaye chernet1y , Yves Travi1 and Vincent Valles. Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian rift valley[J] .wat. res. 2001,vol. 35, no. 12, pp. 2819–2832.
    34 Gi-Tak Chae, Seong-Taek Yun, Bernhard Mayer, Kyoung-Ho Kim,Seong-Yong Kim , Jang-Soon Kwon , Kangjoo Kim , Yong-Kwon Koh .Fluorine geochemistry in bedrock groundwater of South Korea[J]. Science of the Total Environment ,2007,(385) : 272–283
    35 Grobler SR and Dreyer AG (1988) Variations in the fluoride levels of drinking water in South Africa[J]. S. Afr. Med. J. 73 217-219.
    36 PerrottK.W.,B.F.L.Smith and R.H.E.Inkson,,The reaction of fluoride with soil and minerals[J],SoilSci. 1976(27):58-67.
    37 Daniel C.Peek and V.V.Volck.Fluoride sorption and desorption in soils[J].SoilSci.Soc,1985(49):538-586.
    38 Bower C.A. and J.T.Hatcher.Adsorption of Fluoride by soils and minerals[J]. SoilSci,1967,103:151-154.
    39 Barrow N.J .and T.C.Shaw .Effect of ionic strength and nature of the cation on the desorption of fluoride from soi[J].SoilSci.,1982,33:219-231.
    40 A.K.M. Amesen , G. Abrahamsen , G. Sandvik , T. Krogstad. Aluminium-smelters and fluoride pollution of soil and soil solution in Norway[J]. The Science of the Total Environment , 1995(163): 39-53
    41 M. Egli , A. Mirabella, P. Fitze.Clay mineral transformations in soils affected by fluorine and depletion of organic matter within a time span of 24years[J] .Geoderma 103?2001.307–334
    42 Galina A. Evdokimova. Fluorine in the soils of the White Sea Basin and bioindication of Pollution[J]. Chemosphere ,2001(42 ):35-43
    43 D. B. Levya,1999 D. B. Levya, J. A. Schramkea, K. J. Espositoa, T. A. Ericksona,J. C. Mooreb The shallow ground water chemistry of arsenic, fluorine,and major elements: Eastern Owens Lake, California[J] .Applied Geochemistry ,1999(14) :53-65
    44 朱法华,张景荣,姚素平.徐州地氟病区植物中氟的分布及其环境意义[J].高校地质学报,2001,7(2):158-163
    45 魏赞道.中国氟研究文选[M],贵阳:贵州科技出版社,1996,第 1 版 1-200.
    46 姜凌,刘艳萍.关于人工土壤层吸附氟离子的研究[J].化学工业与工程技术,2005,26(5):37-38
    47 徐静,刘国华,郦逸根,李琰. 氟的生物环境地球化学与含氟水处理技术[J]. 西部探矿工程 2004,10:209-211
    48 李春旺,张恩祥,梁丹.我国高氟水处理技术现状及进展[J].现代制造工程,2003,8 增:78-80
    49 张先起等. 乾安县西南部浅层地下水中氟的分布聚积条件研究,1963
    50 林学钰,陈梦熊等.松嫩盆地地下水资源与可持续发展研究[M],北京:地震出版社,2000.第 1 版:68-90。
    51 廖资生,林学钰.松嫩盆地的地下水化学特征及水质变化规律[J].地球科学———中国地质大学学报 2004,29(1):97-102
    52 王根绪,程国栋.对西北干旱区水中氟的分布规律及环境特征[J].地理科学,2000,20(2):153-159
    53 李志刚,蒋金柱.淮北平原浅层高氟水成因与改水[J].安徽地质,1997,7(4):121-123
    54 张存虎,董晓娟. 运城涑水盆地地下水氟含量回升对策探讨.山西水利 2002,增刊:63-64
    55 尹国勋,付新峰,赵群华,张威.永城矿区高氟地下水的氟源及其地质构造因素—永城矿区高氟污染地下水成因探讨之一[J].焦作工学院学报(自然科学版), 2002,21(2):110-113
    56 尹国勋,李春生,黄萍,郑继东,许建国.兖州岳庄水源地地下水中氟的来源研究[J].焦作工学院学报 1997, 16(3) :58-63
    57 沈大勇,巴月,银恭举.信阳市降氟改水工程水氟含量影响因素分析[J].郑州大学学报(医学版) 2004,39(5):862-863
    58 郭立秋,杜向全. 通辽市科尔沁区高氟地下水的成因及降氟改水的措施[J].哲里木畜牧学院学报, 2000,10(4):37-39
    59 刘桂建,杨萍月,吴恩江. 梁宝寺区浅层高氟地下水形成机理及防治[J]. 中国煤田地质,1998,10(增刊):23-24
    60 许晓路,申秀英.金华地区氟污染成因危害及对策(Ⅰ)—氟地球化学环境特征[J].农业环境保护,1998,17(1):11-14
    61 王尚彦,刘家仁. 贵州西部氟中毒地区氟来源地质背景研究[J].沉积与特提斯地质,2006,26(3):72-76
    62 金琼,王元定. 甘肃河西走廊地区水中氟的分布规律及环境特征[J].甘肃农业大学学报,2001,36(3): 310-315
    63 吉林环境地质总站,吉林省第一地方病防治所,吉林地质矿产局.吉林省西部低平原区地下水含氟状况及防氟改水研究[R], 长春:吉林地质矿产局,1985:12-35
    64 廖资生,林学钰.松嫩盆地地下水有害组分的形成及分布规律[J]. 勘察科学技术,2002 年第 4 期:3-9
    65 刘春国.吉林省西部乾安浅层高氟水成因研究[D].长春地质学院,1994:38-43
    66 王文军,张学林. 松嫩平原西部地区水环境中氟的研究[J].环境科学学报,1999,19(6):662-666
    67 朱琳,苏小四.吉林西部地区第四系潜水水质影响因素的 R 型因子分析[J].地球科学与环境学报,2006,28(1):51-56
    68 曾昭华. 地下水中氟形成的控制因素及其分布规律[J].吉林地质,1997,16(4):26-31
    69 尹国勋,朱利霞,赵群华,张威. 控制永城高氟地下水的地理、气象和人类活动因素———永城矿区高氟污染地下水成因探讨之三[J].焦作工学院学报(自然科学版), 2002,21(4):248-250
    70 王德耀. 陕西秦岭以北地区高氟地下水的成因与防治研究[J].陕西师范大学学报(自然科学版), 2004,32(3):112-115
    71 曹玉清,刘春国,宋乃忠.吉林省西部高氟水的蒸发模型及其验证[J].工程勘察,1997,5:38-41,28
    72 汤鸣皋,沈照理,钟佐燊.河北平原第四系水土中氟的地球化学研究[J].地球科学——中国地质大学学报,1995,20(4):450-454
    73 陈履安.贵州高氟地下水的分类特征及其形成机理[J].贵州地质,2001,18(4):244-246
    74 张威,傅新锋,张甫. 地下水中氟含量与温度、pH 值、(Na++K+)/Ca2+的关系——以河南省永城矿区为例[J]. 地质与资源,2004,13(2):109-112
    75 张宗祜,沈照理,薛禹群,施德鸿,殷正宙,钟佐燊.华北平原地下水环境演化[M].北京:地质出版社,2000,第 1 版:149-190
    76 曾溅辉,刘文生,彭玉荣.浅层地下水氟的质量平衡反应模型及其化学演变[J].水文地质工程地质,1995,5:12-17
    77 曾溅辉,刘文生. 浅层地下水氟的溶解/沉淀作用的定量研究[J]. 地球科学—中国地质大学学报.1996,21(3):337-340
    78 李广生.地方性氟中毒激发病机制[M].北京:科学出版社,2004,第 1 版
    79 吴卫红,谢正苗,徐建明,洪紫萍,刘超.不同土壤中氟赋存形态特征及其影响因素[J].环境科学,2002,23(2):104-108
    80 艾尼瓦尔·买买提,地里拜尔·苏力坦. 污灌土壤中氟及硫的形态分布特征[J].水土保持研究,2006,16(6):238-240
    81 张永航,周旋,王昌琴,石永勇. 氟污染区土壤中水溶氟与总氟土壤性质的相关性[J]. 环境科学与技术,2006,29(5):9-10
    82 何振立.污染及有益元素的土壤化学平衡〔M〕.北京:中国环境科学出版社,1998. 第 1 版:1-34,304-340
    83 姜凌,刘艳萍.人工土壤层对氟离子的吸附试验研究[J].水利科技与经济,2005,11(9):553-555
    84 贾陈忠,李克华,秦巧燕,樊生才,徐岩.热电厂附近土壤中氟形态的研究[J].资源环境与工程,2005,19(2):120-122
    85 江霜英,高廷耀.黏土对水中氟离子吸附去除机理的研究[J].化工环保,2003,23(4):204-05
    86 张永航,周旋,王昌琴,石永勇.氟污染区土壤中水溶氟与总氟土壤性质的相关性[J].环境科学与技术, 2006,29(5): 9-10
    87 周玳,杨云. 水环境中氟化物的吸附和释放试验[J]. 环境污染与控制, 1995.12, 17(6): 13-14
    88 张红梅.氟在土中运移规律的动态试验研究[J].岩土工程学报,2006,28(9) :1159-1162
    89 魏志远,黎成厚,漆智平. 几种土壤氟吸附动力学研究[J].土壤通报,2006,37(4): 721-723
    90 曹李靖. 土壤对氟离子的吸附和释放实验研究[J]. 地质勘探安全,2000,1:46-47
    91 邵丰收,师伟,杨曙光.土壤中水溶氟与总氟和土壤 pH 值的相关分析[J].重庆环境科学,1999,21(1):49-50
    92 万红友,黎成厚.几种土壤的氟吸附性研究[J].农业环境科学学报,2003,22(3):
    93 许中坚,刘广深,等.氟污染对土壤胶体稳定性影响的研究[J].中国环境科学,2002,22(3). 218-221.
    94 余大富.土壤氟污染及其危害[J].环境科学,1980,3(6):70-74
    95 杨军耀. 水-土系统氟迁移影响因素分析[J].工程勘察,1998,3:42-44
    96 杨军耀.高氟水灌溉区水-土-植物系统氟迁移转化环境效应分析-以河北沧县为例[J].地学前缘(中国地质大学,北京)1995,5(1-2): 241-244
    97 张艳红,邓伟,翟金良. 松嫩平原西部湖泡水环境问题、成因与对策[J].干旱区资源与环境,2001,15(1):31-35
    98 李静,谢正苗,徐建明,吴卫红. 我国氟的土壤健康质量指标及评价方法的初步探讨[J].浙江大学学报(农业与生命科学版) ,2005, 31(5):593-597
    99 吉林省水利水电勘测设计研究院.引嫩入白供水工程可行性研究设计报告[R].长春:吉林省水利水电勘测设计研究院,2007:1-200
    100 白城市地方志编纂委员会.白城市地方志(1986-1995) 长春:吉林人民出版社,1998,第 1 版:55-150
    101 镇赉县志编纂委员会.镇赉县志(1995) 长春:吉林人民出版社,1998,第 1版:101-103,407-429,773-774
    102 松辽水利管理委员会水环境研究所.环境影响评价报告. [R].长春: 松辽水利管理委员会水环境研究所,2007:1-300
    103 曹剑峰,迟宝明,王文科等.专门水文地质[M],科学出版社,北京:2006:73-91
    104 梁秀娟,刘耀莹,张文静,盛洪勋,肖长来,王德成,杜艳荣,兰盈盈,杨天行. 室内模拟试验确定横向扩散系数的研究—以吉林市第二松花江某江段为例[J]. 吉林大学学报(地球科学版),2004,34(4): 560~565.
    105 梁秀娟,肖长来,梁煦枫,盛洪勋,刘耀莹,张文静. 室内模拟试验确定河流纵向扩散系数研究 [J]. 水资源保护. 2006, 22(5): 32~35
    106 刘耀莹,梁煦枫,梁秀娟,盛洪勋,杜艳荣,王德成. 利用室内模拟试验确定河流扩散系数 [J]. 东北水利水电. 2006, 7:56-59
    107 彭泽州,杨天行,梁秀娟,谷照生.水环境数学模型及其应用[M],北京:化学工业出版社,2007:19-52
    108 李雅琦,吴普特,刘普灵,琚彤军.REE 示踪法研究土壤侵蚀的室内模拟实验[J].水土保持研究,1997 年 6 月第 4 卷第 2 期:28-33
    109 雷廷武,袁普金,黄兴法, Issac Shainberg,詹卫华,于 健. 沟灌土壤侵蚀控制效应的室内模拟试验研究[J]. 农业工程学报, 2002 年 5 月第 18 卷第 3 期:26-30
    110 Aase J K,Bjorneberg DL,SojkaRE. Sprinkler irrigation runoff and erosioncontrol with polyacrylam ide——laboratory tests [J].Soil Sci Soc Am J1998,62.
    111 夏海江,杜尧东,孟维忠. 聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验[J]. 水土保持学报,2000 年 9 月第 14 卷第 3 期:14-17
    112 姚春梅,雷廷武,张晴雯, Mark Nearing,邵明安. 细沟侵蚀动态过程模拟室内试验和模型验证研究[J]. 农业工程学报 2004 年 9 月第 20 卷第 5 期:55-62
    113 林凤翔,冯志权,李洪,于占国,张映,贺杰.海洋丝状真菌降解原油研究 II.砂砾中油污去除室内模拟实验研究[J].海洋学报,1999 年 11 月第 21 卷第 6 期:116-123
    114 白冰,陈效民,王恒祥.莱州湾滨海盐渍土中铵态氮水平运移室内模拟试验[J]. 农村生态环境,2004,20(4):41-43,55.
    115 赵晓华,孙艳秋,吴诗中.深井水溶开采天然碱矿室内模拟试验[J].江西地质,1999年 9 月第 13 卷第 3 期:228-231.
    116 郝火凡.污水土地处理系统中干湿周期的室内模拟试验研究[J].甘肃环境研究与监测, 2001 年 6 月第 14 卷 第 2 期:72-73
    117 邹焱,陈洪松,苏以荣,邵明安. 红壤积水入渗及土壤水分再分布规律室内模拟试验研究[J].水土保持学报,2005 年 6 月第 19 卷第 3 期:174-177
    118 徐向舟,刘大庆,张红武,董占地,朱明东.室内人工模拟降雨试验研究[J] 北京林业大学学报,2006 年 9 月第 28 卷第 5 期:52-58
    119 张书农.环境水力学[M].南京:河海大学出版社,1988: 1-190.
    120 郭建青,张勇.确定河流横向扩散系数的直线图解法[J].水利学报,1997(1):62-67
    121 郭建青,郑鹏海.确定河流横向扩散系数的改进矩法[J].水电能源科学,1998,4(12):32-35
    122 郑鹏海,郭建青.确定河流横向扩散系数的线性回归法[J].水电能源科学,1999,17(3):17-19
    123 金保明,杨晓华,金菊良,丁晶.确定河流横向扩散系数的实码遗传算法[J].水电能源科学,2002,18(1):9-12
    124 张文静,梁秀娟.确定河流纵向弥散系数的正态分布图解法[J].吉林大学学报(地球科学版),2004,34(增刊):83-86
    125 李家星,赵振兴.水力学[M].南京:河海大学出版社,2001:上册 127-239,下册304-325
    126 宁齐生,唐克东,曹从洲,张梦岩.大兴安岭区域地层.大兴安岭及其邻区区域地质与成矿规律[P],北京:地质出版社 1959:1-41
    127 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M],北京:地质出版社,1993,第 1 版:122-349
    128 黑龙江省地质矿产局.黑龙江省区域地质志[M],北京:地质出版社,1993,第 1版:192-439
    129 吉林省地质矿产局.吉林省区域地质志[M],北京:地质出版社,1988,第 1 版:30-504
    130 唐克东. 大兴安岭中北部的花岗岩侵入岩.大兴安岭及其邻区区域地质与成矿规律[P],北京:地质出版社 1959:42-59
    131 唐克东.大兴安岭中北部的花岗岩喷出岩.大兴安岭及其邻区区域地质与成矿规律[P],北京:地质出版社 1959:60-70
    132 费.普.柯尔沙可夫.大兴安岭成矿规律概论.大兴安岭及其邻区区域地质与成矿规律[P],北京:地质出版社 1959:83-95
    133 中国科学院黑龙江流域综合考察队。黑龙江流域及其比邻地区地质[M]。科学出版社,北京:1963:1-50
    134 李明琴,陈笑媛.水城茨冲地方性氟病与氟环境地球化学关系[J].贵州工业大学学报,1997,26(2):92-95
    135 郑宝山.土壤的苏打盐渍化与地方性氟病[J].环境科学学报,1983, 3 (2): 113-122
    136 韩清.阿拉善荒漠天然水中氟的化学地理[A].中国地理学会化学地理专业委员会,化学地理研究文集[C].北京:科学出版社,1985:9-19
    137 庞俊华.乾安县浅层高氟地下水的分布规律及成因初步探讨[J].吉林地质, 1991,10(1):71-74
    138 王占兴,宿青山,林绍志,张庆云,曹玉清.吉林省白城地区地下水及第四纪地质研究[M].北京:地质出版社,1985,第 1 版:21-33
    139 周天骧,刘志辉.塔里木河干流流域地下水氟的分布及形成高氟地下水的环境因素.新疆地理学会编,塔里木河流域水资源、环境与管理文集[R],1997:154-158
    140 陶振德.新疆石河子地区地下水氟分布规律与氟中毒[A].地矿部水文地质与工程地质研究所编,环境水文地质理论及方法研究[C],北京:地质出版社,1987:180-181
    141 张锦波.包头市及近郊潜水氟成因类型的初步探讨[A].地矿部水文地质与工程地质研究所编, 环境水文地质理论及方法研究[C].北京:地质出版社,1987. 21~31
    142 张崇伦,韩行瑞.氟的水文地球化学特征初探[A].地矿部水文地质与工程地质研究所编,环境水文地质理论及方法研究[C].北京:地质出版社,1987:171~172
    143 武汉地质学院地球化学教研室.地球化学[M].北京:地质出版社,1979:305.
    144 韩洪伟,吴国学,王永祥,吕志刚.高氟地下水在内蒙古赤峰地区的分布与形成初探[J].世界地质,2004,23(4):376-381
    145 中国环境总站.现代土壤化学分析[M].北京:中国环境出版社,1993:70-73
    146 靖迎春,李玉洁,董健,米长虹.土壤中水溶性氟化物及分析方法的研究[J].农业环境保护,1998,17(5):219-221
    147 李日邦.土壤吸附氟的能力及其生态学意义[J],环境科学学报,1991,11(3):263-268
    148 李韵珠,李保国.土壤溶质运移[M],科学出版社,1998 年 9 月第 1 版:50-120
    149 Delft3D 软件用户手册

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700