河南郑州—洛阳地区黄土湿陷机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿陷性是黄土内部特征的综合体现,受成因、地质营力、水成作用以及人为因素的影响巨大,不同地区黄土湿陷特性都具有其独特的特征,黄土产生湿陷的受控因素及其湿陷机理存在着区域性差异,本文以湿陷性比较典型的河南黄土作为研究对象,分别从土的物理特性指标、土的颗粒组成、塑性状态、沉积年代、微观结构以及可溶性盐等几方面查明本地区黄土湿陷的影响因子,并在此基础上总结本地区黄土的湿陷机理。
     本文通过黄土湿陷性试验以及土常规实验,对黄土湿陷性的受控因素进行研究,发现研究区内黄土在共同满足含水量w<12%或饱和度Sr<40%、孔隙比e>0.95或低干密度ρd<1.39、粘粒含量<17%以及液限约为28%四个条件时才具有强烈湿陷性,否则黄土不具有强烈湿陷性。同时黄土湿陷特性与压力的关系受初始含水量、孔隙比的影响,低含水量(<10%)时湿陷系数随压力的增加而增大,高含水量(>20%)时,湿陷系数随压力的变化幅度逐渐降低直至趋于某一定值;高密实土体在低压力下不具有湿陷性,随着压力的增大其湿陷程度逐渐由非湿陷向轻微湿陷转化,低密实土体在较低压力下就具有一定的湿陷性,但在高压力下其湿陷系数的变化幅度相比高密实土体变幅较低。
     利用能谱分析测定的黄土中易溶盐离子含量,湿陷系数随易溶阴离子含量的增多而增大,CO32-(或HCO3-)是对湿陷程度贡献最大的阴离子;同时湿陷系数与部分易溶性阳离子(Na+、K+、Mg2+)存在着线性单调递减关系,且Ca2+是黄土中含量最大的易溶性阳离子,CaCO3是黄土胶结程度的主要成分。使用扫描电镜分析了天然状态下以及不同等级压力下黄土湿陷后的微结构,通过低倍镜下全貌分析以及高倍镜下的局部定点分析发现土体骨架体系与湿陷性有着明显的相关关系,颗粒排列疏松且大孔隙较多的黄土湿陷系数显著较高,否则相反,高倍镜下强烈湿陷性黄土与非湿陷性黄土的土颗粒排列方式及走向、颗粒与极小孔隙的分布特征基本相似,极小孔隙与颗粒排列方向对黄土产生湿陷没有贡献,利用分形几何原理确定强烈湿陷性黄土中大孔隙与“大团聚颗粒”的分维数分别为2、2.3。
     本文采用灰色关联以及层次分析相结合的方法来确定各种因了对湿陷性的贡献度,其中易溶盐胶结对湿陷性影响最大且贡献度达到45%,多孔性是次要主控因子,贡献度为30%,其次依次为压缩模量、粘粒含量以及含水量。同时在此基础上选取孔隙比、含水量以及易溶盐含量、粘粒含量两组指标利用MATLAB软件分别做出黄土湿陷等值线趋势图,明确了两种因子对湿陷特性的综合影响。
     本地区黄土胶结物以钙质胶结为最主要胶结,其中碳酸氢钙与部分碳酸盐胶结对黄土湿陷性影响最大,是影响本地区黄土湿陷的主控因素,多孔性是本地区黄土湿陷的次要主控因素,而其中的大孔隙骨架结构是强烈湿陷性黄土的主要结构;天然含水量及压力对黄土湿陷性也有一定的贡献,作为条件参数影响着黄土湿陷。从而可以对本地区黄土湿陷机理进行描述:黄土湿陷是钙质胶结、欠压密土体受水侵润,胶结易溶盐逐渐发生溶解,土体抗剪强度相应变弱,大孔隙骨架结构从而发生“塌陷”,团粒或集粒滑入孔隙之中,土体结构发生二次重组的过程。
Collapsibility of loess is the comprehensive embodiment of the internal characteristics, enormously impacted by the cause, geologic forces, water into effect and the influence of the artificial factor. Collapsibility of the collapsible loess in certain part has its unique characteristics, and the controlled factors and mechanism of collapsible loess have regional differences in different part. This paper chooses the Henan loess as the research object, where have less collapsible mechanism researches. We research fist control factors of loess collapsibility, on this basis to sum up the loess collapsible mechanism of the area.
     Through researching the influence factors of collapsibility by the collapsible test and conventional test, we found that physical indicators of strong collapsible loess must meet water content<12%or saturation<40%, void ratio>0.95or low dry density<1.39, clay content<17%and liquid limit about28%, otherwise the loess don't have strong collapsibility; The relationship between pressure and collapsibility coefficient is affected by void ratio and water content, under low water content(<10%) collapsibility coefficient increase with the increase in pressure, under high water content(>20%) collapsibility coefficient changes gradually until tends to a certain value, the soil in different load pressures only has a collapsible degree; high compacting soil has no collapsibility under low pressure, but which will have a slight collapsibility with the increase of the pressure, under low pressure low compacting soil has certain collapsible, but there only have slight variations with the pressure increasing; Through spectrum analysis, coefficient of collapsibility increases along with the increase of soluble anion content, and CO32-(or HCO3-) has the largest contribution to the degree of collapsibility; There is a monotone decreasing linear relationship between collapsibility coefficient and some soluble cationic(Na+, K+, Mg2+), and Ca2+accounts for the largest component of soluble cationic of loess; Through the analysis of the natural conditions and pressured conditions under different level of loess soil using scanning electron microscopy, it found that microstructure has a very obvious correlation with collapsible coefficient, if the particles conglomerate looser and the big pore is more, loess collapsible coefficient is significantly higher, or on the contrary, particle pattern and trend, particles and tiny pore distribution are similar between strong collapsible loess with the non-collapsible loess at high magnification, so soil tiny pore and the particle conglomerate's direction have basically no contribution to the collapsibility, and the fractal dimension of strongly collapsible loess are2,2.3by fractal geometry principle.
     Based on the grey correlation and hierarchical analysis method this article determine contribution to collapsibility of various factors, we found that contribution of soluble salt content is the biggest and achieves45%above, and porosity is secondary master control factor, the contribution of30%,followed by modulus of compression, clay content and water content. At the same time on the basis of porosity ratio and moisture content, soluble salt content and clay content, we make the contour trend surface of collapsibility of loess by using MATLAB software, and there has been clear about the relationship between collapsible characteristics with the two kinds of index.
     The main cementation of loess in Henan region is calcareous cementation, in which calcium bicarbonate and part calcareous cementation influence on the collapsibility of loess largest, and that is the main control factor affecting the collapsibility. Porosity is secondary main control factor of loess collapsibility in this region, and the big pore skeleton structure is the main structure of strong collapsible loess; Natural water content and pressure also have certain contribution, affecting the loess collapsibility as condition parameters. According to the above conclusion, the author summarizes the collapsible loess mechanism of Henan region:under-compacted loess with low moisture content occur that cementing soluble salt is gradually dissolved after inundation, corresponding the soil shear strength weaken, then big pore skeleton structure lead to the "collapse" and crumb or set grain slip into pore of soil, structure occur secondary restructuring process.
引文
[1]刘东生.中国的黄土堆积[M].北京:科学出版社,1986
    [2]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990
    [3]C.D.F.Rogers,T.A.Dijkstra,I.J.Smalley.Hydroconsolidation and subsidence of loess:Studies from China,Russia,North America and Europe:in memory of Jan Sajgalik[J].Engineering Geology,1994,37(2):83-113
    [4]刘东生,张宗祜.中国的黄土[J].地质学报,1962,42(1):1-18
    [5]GB50025-2004,湿陷性黄土地区建筑规范[S].北京:中国建筑工业出版社,2004
    [6]Edward Derbyshire.Geological hazards in loess terrain,with particular reference to the loess regions of China[J].Earth-Science Reviews,2001,54(1-3):231-260
    [7]Khaled E.Gaaver.Geotechnical properties of Egyptian collapsible soilsfJ].Aleandria Engineering Journal,2012
    [8]邢义川.黄土力学性质研究的发展和展望[J].水力发电学报,2000,1(4):54-65
    [9]Z.X.Yuan,L.M.Wang.Collapsibility and seismic settlement of loess [J]. Engineering Geology,2009,105(1-2):119-123
    [10]张炜,张苏民.我国黄土工程性质研究的发展[J].岩土工程学报,1995,17
    [11]A.A穆斯塔伐耶夫.湿陷性黄土地基与基础的计算[M].北京,水利水电出版社,1984
    [12]宋众勋,王兴刚.陇东地区黄土湿陷性研究[J].土工基础,2004,18(4):37-40
    [13]刘鹏鸣,徐青海.试论西宁地区湿陷性黄土的天然孔隙比及含水量对湿陷性的影响[J].青海地质,1994(2):41-47
    [14]高国瑞.兰州黄土显微结构和湿陷机理的探讨[J].兰州大学学报,1979(2):12
    [15]张宗祜.黄土湿陷变形过程中微结构变化特征及湿陷性评价[C].//国际交流地质学术论文集(6).北京:地质出版社,1985:67-78
    [16]郭玉文,张玉龙,党秀丽,加藤诚.由灌溉引起的黄土湿陷过程中碳酸钙行为研究[J].土壤学报,2008,45(6):1034-1039
    [17]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报,1990(4)
    [18]胡瑞林.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社
    [19]Jaroslav Feda,Jan Bohac,Ivo Herle.Compression of collapsed loess:Studies on bonded and unbonded soils[J].Engineering Geology,1993,34(1-2):95-103
    [20]赵景波,陈云.黄土的孔隙与湿陷性研究[J].工程地质学报,1994,2(2):76-82
    [21]A.M.Assallay,C.D.F.Rogers,I.J.Smalley.Formation and collapse of metastable particle packings and open structures in loess deposits[J].Engineering Geology,1997,48(1-2):101-115
    [22]高国端.我国黄土湿陷性质的形成研究[J].南京建筑工程学院学报,1994,29
    [23]Tan Tjong Kie.Fundamental properties of loess from northwestern China[J].Engineering Geology,1988,25(2-4):103-122
    [24]刘宁.关中地区某场地自重湿陷性黄土的试验研究.[硕士学位论文][D].西安:长安大学地质工程
    [25]陈开圣,彭小平.关中地区黄土的湿陷特性研究[J].水文地质工程地质,2005
    [26]雷祥义.黄土显微结构类型与物理力学性质指标之间的关系[J].地质学报,1989(2):182-191
    [27]刘祖典.黄土力学与工程[M].陕西:陕西科学技术出版社,1997
    [28]李晓军.黄士的工程特性分析及黄土湿陷性的预测.[硕士学位论文][D].西安:西安科技大学,1996
    [29]米海珍,周凤玺,杨文侠.黄土湿陷系数的偏最小二乘回归分析与模型[J].兰州理工大学学报,
    [30]邢姣秀.影响黄土湿陷性因素分析研究.[硕士学位论文][D].西安:长安大学,2004
    [31]GB/T 50123-1999,土工试验方法标准[S].北京:中国计划出版社,1999
    [32]符二东.黄土双线法湿陷性试验的结果修正及误差分析[J].山西建筑,2009,35(27):147-148
    [33]刘银秀.关于湿陷性黄土湿陷方法的初步探讨[J].太原科技,2004(4):82-85
    [34]T.A.Dijkstra,I.J.Smalley,C.D.F.Rogers.Particle packing in loess deposits and the problem of structure collapse and hydroconsolidation[J].Engineering Geology,1995,40(1-2):49-64
    [35]陈存礼,高鹏,胡再强.黄土的增湿变形特性及其与结构性的关系[J].岩土力学与工程学报,2006,25(7):1352-1360
    [36]Yakov M.Reznik.Influence of physical properties on deformation characteristics of collapsible soils[J].Engineering Geology,2007,92(1-2):27-37
    [37]杨晶.影响黄土湿陷性因素的试验及微观研究[D].太原:太原理工大学,2007
    [38]Peter Smart,N.Keith Tovey. Electron Microscopy of SoilS and Sediments:Techniques[M].Clarendon Press,1982
    [39]Bashar M Alsmadi,Peter Fox.Semi-quantitative analysi of changes in soil coatings by scanning electron microscope and energe dispersive X-ray mapping[J].Colloids and Surfaces A.Physicochemical and Engineering Aspects,2001,194(1-3):249-261
    [40]X射线光电子能谱分析方法通则(GB/T 19500-2004).北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2004
    [41]薛武海,王贵生,陈志新.黄土微结构区域变化规律及与湿陷性相关性研究[J].地下水,2005,27(4):310-312
    [42]宋章,程谦恭,张炜,孟凡超.原状黄土显微结构特征与湿陷性状分析[J].工程地质学报,2007,15(5):646-653
    [43]胡瑞林,李向全,官国琳.土体微结构力学[J].地球学报,1999,20(2):150-156
    [44]高国瑞:黄土显微结构分类与湿陷性[J].中国科学,1980,(12):1203-1208
    [45]王永焱,藤志宏.中国黄土的微结构及其在时代和区域上的变化[J].科学通报,1982,27(2):102-105
    [46]宋菲.扫描电子显微镜及能谱分析技术在黄土微结构研究上的应用[J].沈阳农业大学学报,2004,35(3):216-219
    [47]王梅,白晓红,杨晶,湿陷性黄土微观结构分析的试样制备[J].太原理工大学学报,2010,41(3):282-286
    [48]袁中夏,王兰民.黄土微观结构图像处理的方法[J].西北地震学报,2004,26(3):246-249
    [49]Scott W.Tyler,Stephen W.Whcatcraft.Application of fractal mathematics to soil water retention estimation[J].Soil Science Society of America Journal,1989,53(4):987-996
    [50]胡瑞林,官国琳,李向全,张礼中.黄土湿陷性的微结构效应[J].工程地质学报,1999,7(2):161-167
    [51]William L.Power,Terry E.Tullis.Euclidean and fractal models for the description of rock surface roughness[J]. Journal of Geophysical Research,1991,96(B1):415-424
    [52]SUN Yanfei,WEl Limin.The collapsible diseases of Masonry Sturcture in the loess regions[J].Proccdia Earth and Planetary Scicnce,2012,5:164-169
    [53]Jaroslav Feda.Structural stability of subsident loess soil from Praha-Dcjvice[J].Engineering Geology,1966, 1(3):201-219
    [54]郑荣华.郑州市区工程地质特征区划研究.[硕士学位论文][D].河北河北工程大学,2007
    [55]朱茵,孟志勇,阚叔愚.用层次分析法计算权重[J].北京交通大学学报,1999,23(5):119-122
    [56]Whceler S J,Sivakumar V.An elasto-plasticity critical state framework for unsaturated silt soil[J].Geotechnique,1995,45(1):35-53
    [57]胡再强,沈珠江,谢定义.结构性黄土的本构模型[J].岩石力学与工程学报,2005,24(4):565-569
    [58]Opipov V I,Sokolov V N.Factors and mechanism of loess collapsibility[A].Genesis and Properties of Collapsible Soils[C].Netherlands:Kluwcr Academic Publisher,1995
    [59]Alonso E E,Gens A,Josa A.A constitutive model for partially saturated soils[J].Geotechnique,1990,40(3):405-430
    [60]邵生俊,李彦兴,周飞飞.湿陷性黄士结构损伤演化特性[J].岩石力学与工程学报,2004,23(24):4161-4165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700