水稻假病斑负调节基因Spl11互作基因Spin6功能鉴定与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻假病斑突变体spl11(spotted leaf 11)来源于籼稻IR68 EMS处理后的突变体,受一对隐性基因控制。其突变体表现出组成型细胞坏死和对稻瘟病菌和白叶枯病菌的非小种特异性抗性,采用图位克隆,Spl11基因已被成功分离,其编码一个新的U-box/ARM重复蛋白,具有泛素蛋白连接酶E3活性,为植物细胞死亡和防御反应的负调控因子,表明SPL11很有可能是通过参与泛素蛋白降解途径来调节的植物细胞死亡和防御反应。最近的研究表明Spl11还作为一个水稻开花调节的正调节因子参与着水稻光周期介导的开花。为了进一步研究和分析SPL11介导的植物细胞程序化死亡,防御反应和开花调节信号机制。通过采用酵母双杂筛选,获得8个SPL11互作蛋白(SPL11 interacting proteins,SPINs),并分别命名为SPIN1-8,以期通过分析这些候选互作因子的功能来进一步认识SPL11的调控途径。其中,SPIN1编码一个RNA/DNA结合蛋白,功能分析表明SPIN1是一个水稻开花的负调节因子,SPL11通过负调节SPIN1来促进水稻开花。本研究将报道另一个SPL11互作基因Spin6的功能,主要研究结果如下:
     1.Spin6编码一个Rho GTPase激活蛋白,表明SPIN6很有可能是通过调节GDP和GTP交换循环来参与SPL11介导的信号调节。
     2.SPIN6亚细胞定位于整个水稻原生质体细胞,与SPL11具有同样的定位;
     3.GST-pull down离体(in-vitro)互作和水稻原生质体BiFC(in-vivo)互作分析结果表明,SPIN6和SPL11在离体和原位条件下都是互作的;
     4.对Spin6 RNAi转基因株系的表型分析,发现Spin6 RNAi导致了水稻细胞死亡的形成,同时,对Spin6 RNAi植株中Spl11表达水平分析表明,Spl11的表达受到了明显的抑制,这与Spl11突变导致了水稻细胞死亡的结果一致,表明SPIN6,与SPL11一样,是一个植物细胞死亡调节的负调控因子。
     5.Spin6 RNAi株系同时还表现出在短日照和长日照条件下的晚花表型,表明SPIN6是一个水稻光周期介导开花调节的正调节因子。
     6.Spin6 RNAi株系表现出矮化,结实率低等表型,这可能是Spin6 RNAi植株细胞死亡后导致的连锁反应的结果。
     7.Spin6 RNAi导致了SPL11表达的组成型的下调,而SPIN1却表现出与野生型相反的生物节律表达型,表明SPIN6很有可能正调节SPL11的表达进而抑制SPIN1的表达来调节下游信号的。
     8.对Spin6 RNAi株系中光周期开花调节相关基因表达分析表明,在短日照条件下,Spin6 RNAi抑制了Hd1/Hd3a介导的开花调节途径,而在长日照条件下,Hd1的表达则没有受到影响,但水稻开花调节的关键基因Hd3a的表达则受到明显地抑制,这表明长日照条件下SPIN6/SPL11介导的开花途径可能是通过调节另外一个未知因子进而调节Hd3a而实现的。
     综上所述,本研究表明Rho GTPase激活蛋白编码基因Spin6以物理互作的方式实现对Spl11的正调节,进而实现对水稻细胞死亡的负调控和对水稻光周期介导开花的正调节作用。
The rice lesion mimic mutant spl11(spotted leaf 11) is controlled by a pair of recessive gene orginated from EMS treated IR68 mutants,spl11 mutant displayed a phenotye with spontaneous cell death and also enhanced non-race specific resistance to both rice blast fungus Magnaporthe grisea and bacterial blight Xoo.To better understand the molecular mechanism of SPL11-mediated cell death and defense response,the Spl11 gene was cloned by map-base cloning strategy.Spl11 encodes an U-box/ARM repeat containing protein and is a novel ubiquitin E3 ligase,suggesting that spl11 possibly participates in ubiquination-mediated protein modification to negatively regulate plant PCD and defense.Recently,Spl11 was also found to be a positive regulator for rice photoperiodic flowering.One of eight SPINs(SPL11 interacting proteins),that we identified in a yeast two-hybrid screening,SPIN1 plays a negative role in SPL11-mediated rice photperiodic flowering controling through physically interacting with SPL11 and negatively regualted by SPL11.Here,we reported that SPIN6,encoding a Rho GTPase-activating protein and also interacting with SPL11,plays multiple roles in negatively regulating plant programmed cell death,plant architecture and positively controlling photoperiodic flowering time in rice.The main results are showed as below:
     SPIN6 encodes a Rho GTPase-activating protein,suggesting a possible role in small GTPase protein mediated exchange between GDP and GTP.The subcelluar localization experiment showed that SPIN6 is a whole cellualr localized protein in rice protoplast with the same localization as SPL11.We aslo confirmed the in-vitro and in-vivo interaction through GST-pull down and protoplast BiFC interaction assay.Our phenotype evaluation for Spin6 RNAi lines showed that(ⅰ) Knock-down of SPIN6 leaded cell death formation; (ⅱ) Knock-down of Spin6 RNAi also displayed delayed flowering time phenotype under both long day and short day conditions.(ⅲ) As a linkage consquence companied with Spin6 RNAi cell death phenotype,the Spin6 RNAi lines also showed that an obvious dwarf and low seed seeting rate phenotype.(ⅳ) Spin6 RNAi lines also enhanced resistance to two Xoo races J12 and J22,but did not show significant phenotype to rice blast fungus.
     To futher understand the mechanisms of SPIN6/SPL11-mediated cell death and flowering regulation.We found that knock-down of Spin6 down-regulated Spl11 expression at transcriptional level,that suggests that SPIN6 is a positive regulator of SPL11,the down-regulated Spl11 should be the main cause of the cell death phenotype of Spin6 RNAi lines.We aslo found that SPIN1 displayed reverse circadian clock expression pattern in Spin6 RNAi lines comparing with wild type,suggesting that SPIN6 assocaited with SPL11 negatively regulates SPIN1 to controll rice flowering time.In addition,our data also showed that in short day condition the Hd1-mediated pathways was suppressed, however,although Hd1 expression was not affected in long day condition,Hd3a was significantly inhibited that is consisted with the delayed flowering time phenotype and the results of over-expression SPIN1 in long day conditon.Therefore,we speculated that there is still an unknown factor involved in this pathway,which is need futher investigation. Taking together,our data suggests that SPIN6 associated with SPL11 negatively regulates rice cell death but positively controls rice photoperiodic flowering time.
引文
Abe M., Kobayashi Y., Yamamoto S., Daimon Y, Yamaguchi A., Ikeda Y, Ichinoki H.,Notaguchi M., Goto K., Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 2005, 309: 1052-1056.
    
    Abramovitch R.B., Janjusevic R., Stebbins C.E. and Martin G.B.. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity PNAS 2006, 103: 2851-2856.
    
    Adrain C, Martin S.J. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends in Biochemical Sciences 2001, 26: 390-397.
    
    Agrawal G.K., Iwahashi H., Rakwal R. Small GTPase 'Rop': molecular switch for plant defense responses. FEBS Lett 2003, 546:173-180.
    
    Aguilar R.C. and Wendland B..Ubiquitin: not just for proteasomes anymore. Current Opinion in Cell Biology 2003, 15:184-190.
    
    Ahmad M. & Cashmore A. R.. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993, 366: 162-166.
    
    An H., Roussot C, Suarez-Lopez P., Corbesier L., Vincent C, Pineiro M., Hepworth S.,Mouradov A., Justin S., Turnbull C, Coupland G. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis.Development 2004, 131: 3615-3626.
    
    Andres F., Galbraith D. W., Talon M. and Domingo C. Analysis of SE5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiology 2009:DOI:10.1104/pp.109.139097.
    
    Arase S., Zhao C.-M., Akimitsu K., Yamamoto M., and Ichill M. A recessive lesion mimic mutant of rice with elevated resistance to fungal pathogens. J. Gen. Plant Pathol 2000,66:109-116.
    
    Azevedo C., Sadanandom A., Kitagawa K., Freialdenhoven A., Shirasu K. and Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 2002, 295: 2073-2076.
    
    Babior, B.M. NADPH oxidase. Curr. Opin. Immunol. 2004,16: 42-47.
    
    Badigannavar A.M., Kale D.M., Eapen S., Murty G.S.S. Inheritance of disease lesion mimic leaf trait in groundnut. Journal of Heredity 2002, 93: 50-52.
    
    Balague C., Lin B., Alcon C., Flottes G., Malmstrom S., Kohler C, Neuhaus G., Pelletier
    G., Gaymard F., and Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 2003, 15: 365-379.
    
    Baxter-Burrell A., Yang Z., Springer P.S., and Bailey-Serres J. RopGAP4-Dependent Rop GTPase Rheostat control of Arabidopsis oxygen deprivation tolerance. Science 2002, 296,2026-2029.
    
    Baxter-Burrell A., Yang Z., Springer P.S., Bailey-Serres J. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 2002,296:2026-2028.
    
    Boyes D.C., Nam J. and Dangl J.L.The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc NatlAcadSci USA 1998, 95: 15849-15854.
    Bras M., Queenan B., Susin S.A. Programmed cell death via mitochondria:different modes of dying. Biochemistry (Moscow) 2005, 70: 231-239.
    
    Brembu T., Winge P., Bones A.M., Yang Z. A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases. Cell Research 2006,16: 435-445.
    Briggs W.R., &Christie J.M., Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 2002, 7: 204-210.
    
    Brodersen P., Petersen M., Pike H.M., Olszak B., Skov S., Odum N., Jorgensen L.B., Brown R.E., and Mundy, J. Knockout of Arabidopsis ACCELERATED- CELL-DEATH 11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 2002. 16: 490-502.
    
    Buschges R., Hollricher K., Panstruga R., Simons G.., Wolter M., Frijters A., Van Daelen R., Van der Lee T., Dergaarde P., Vos P., Salamini F., and Schulze-Lefert P. The barley Mlo gene: A novel control element of plant pathogen resistance. Cell 1997, 88:695-705.
    Campbell M.A., Ronald P.C. Characterization of four rice mutants with alterations in the defence response pathway. Molecular Plant Pathology , 2005, 6: 11-21.
    Capron A., Okresz L. & Genschik P. First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci. 2003, 8: 83-89.
    
    Cashmore A.R., Janillo J. A., Wu Y. J. & Liu D. Cryptochromes: blue light receptors for plants and animals. Science 1999, 284: 760-765.
    
    Chandler J., Wilson A., Dean C. Arabidopsis mutants showing an altered response to vernalization. Plant J. 1996, 10: 637-644.
    Chen S., Tao L., Zeng L., Vega-Sanchez M. E., Umemura K. and Wang G.L. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Molecular Plant Pathology 2006, 7: 417 - 427.
    
    Clough S.J., Fengler K.A., Yu I.C., Lippok B., Smith R.K., Jr., and Bent A.F. The Arabidopsis dndl "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 2000, 97: 9323-9328.
    
    Corbesier L., Vincent C., Jang S., Fornara F., Fan, Q. Searle I., Giakountis A., Farrona S.,Gissot L., Turnbull C., Coupland G. FT protein movement contributes to long-distance signaling in floral induction of arabidopsis. Science 2007, 316: 1030-1033.
    
    Daisuke Miki, Rika Itoh and Ko Shimamoto. RNA silencing of single and multiple members in a gene family of rice. Plant Physiology 2005,138:1903-1913.
    
    Dietrich R.A., Delaney T.P., Uknes S.J., Ward E.R., Ryals J.A., Dangl J.L. Arabidopsis mutants simulating disease resistance response. Cell 1994, 77: 565-577.
    
    Dietrich R.A., Richberg M.H., Schmidt R., Dean C., and Dangl J.L. A novel zinc finger protein is encoded by the Arabidopsis LSDl gene and functions as a negative regulator of plant cell death. Cell 1997, 88: 685-694.
    
    Doi K., Izawa T., Fuse T., Yamanouchi U., Kubo T., Shimatani Z., Yano M.and Yoshimura A. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1.Genes & Development 2004,18: 926-936.
    
    Dreher K. and Callis J.. Ubiquitin, Hormones and Biotic Stress in Plants. Annals of Botany 2007,1: 1-36.
    
    Durrant W.E. and Dong X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004,42: 185-209.
    
    Ellis C.M., Nagpal P., Young J.C., Hagen G., Guilfoyle T.J. and Reed J.W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 2005, 132: 4563-4574.
    
    Epple P., Mack A.A., Morris V.R., and Dangl J.L. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins.Proc. Natl. Acad. Sci. USA 2003, 100: 6831-6836.
    
    Frye C.A., Tang D., and Innes R.W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 2001, 98: 373-378.
    
    Fu Y., Wu G., and Yang Z. Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J. Cell Biol. 2001,152: 1019-1032.
    
    Gan S. and Amasino R.M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 1995, 270: 1986-1988.
    
    Garner W. W. and Allard H. A. EVect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 1920,18:553-606.
    
    Garner W.W., and Allard H.A. Further studies in photoperiodism, the response of the plant to relative length of day and night. J. Agric. Res. 1923, 23: 871-920.
    
    Gepstein S. and Thimann K.V. Changes in the abscisic acid content of oat leaves during senescence. Proc. NatlAcad Sci. USA 1980, 77: 2050- 2053.
    
    Gonz(?)lez-Lamothe R., Tsitsigiannis D. I., Ludwig A. A., Panicot M., Shirasu K. and Jones J.D.G. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 2006,18: 1067-1083.
    
    Gray J., Close P. S., Briggs S. P., and Johal G. S. A novel suppressor of cell death in plants encoded by the Llsl gene of maize. Cell 1997, 89: 25-31.
    
    Greenberg J. T. and Yao N.. The role and regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology 2004, 6: 201-211.
    
    Greenberg J.T. and Ausubel F.M.. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant Journal, 1993,4: 327-342.
    
    Greenberg J.T. and Yao N. The role and regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology 2004, 6: 201-211.
    
    Gu Y., Wang Z. and Yang Z.. ROP/RAC GTPase: an old new master regulator for plant signaling. Current Opinion in Plant Biology 2004, 7: 527-536;
    
    Gu Y., Fu Y., Dowd P., Li S., Vernoud V., Gilroy S., and Yang Z. A rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J. Cell Biol. 2005, 169: 127-138.
    
    Gu Y., Vernoud V., Fu Y., and Yang Z. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J. Exp. Bot. 2003, 54: 93-101.
    
    Guo H.W., Yang W. Y, Mockler T. C. & Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science 1998, 279: 1360-1363.
    
    Guo Y. and Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006, 46: 601-612.
    
    Han L., Mason M., Risseeuw E.P., Crosby W.L., Somers D.E. Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing. Plant J. 2004, 40: 291-301;
    Hardtke C.S., Okamoto H., Stoop-Myer C, Deng X.W.. Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J.2002, 30: 385-394.
    
    Harmer S.L., Panda S., and Kay S.A.. Molecular bases of circadian rhythms. Annu.Rev. Cell Dev. Biol. 2001. 17: 215-253.
    
    Harmer S.L.. The Circadian System in Higher Plants. Annu. Rev. Plant Biol. 2009, 60:357-377.
    
    Haslam R.J., Koide H.B., Hemmings B.A. Pleckstrin domain homology. Nature 1993,363:309-310.
    
    Hayama R., Yokoi S., Tamaki S., Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 2003, 422: 719-722.
    
    He X., Anderson J.C., del Pozo O., Gu Y.Q., Tang X., and Martin G.B. Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. Plant J. 2004, 38: 563-577.
    
    Heath M. C. Hypersensitive response-related death. Plant Molecular Biology 2000,44:321-334.
    
    Hu G., Yalpani N., Briggs S. P., and Johal G. S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 1998,10:1095-1106.
    
    Hwang J.-U., Vernoud V., Szumlanski A., Nielsen E., and Yang Z. A Tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Current Biology 2008,18: 1907-1916.
    
    Imaizumi T., Schultz T.F., Harmon F.G., Ho L.A., Kay S.A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 2005, 309:293-297.
    
    Ishikawa A., Okamoto H., Iwasaki Y., and Asahi T. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J. 2001, 27: 89-99.
    
    Ishikawa A., Tanaka H., Nakai M., Asahi T. Deletion of a chaperonin 60 gene leads to cell death in the Arabidopsis lesion initiation 1 mutant. Plant and Cell Physiology 2003, 44:255-261.
    
    Izawa T., Oikawa T., Tokutomi S., Okuno K., Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 2000, 22: 391-399.
    
    Izawal T. Photoperiodic flowering in rice. Rice Biology in the Genomics Era (H.-Y.Hirano et al. (eds.), Springer-Verlag Berlin Heidelberg 2008: PP163-173.
    Jang S., Marchal V., Panigrahi K. C. S., Wenkel S., Soppe W., Deng X.W., Valverde F. and Coupland G. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO Journal 2008, 27: 1277-1288;
    
    Johnson E., Bradley M., Harberd N. P. & Whitelam G. C. Photorespones of light-grown phyA mutants of Arabidopsis. Phytochrome A is required for the perception o daylength extensions. Plant Physiol. 1994, 105:141-149.
    
    Jones M. A., Shen J.-J., Fu Y., Li H., Yang Z. and Grierson C.S.. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant cell 2002,14: 763-776.
    
    Jung Y.H., Lee J.H., Agrawal G. K., Rakwal R., Kim J., Shim J.K., Lee S.K., Jeon J.S.,Koh H.J., Lee Y.H., Iwahashi H. and Jwa S.. The rice (Oryza sativa) Slast lesion Mmic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry 2005,43:397-406
    
    Jurkowski G.I., Smith R.K., Jr., Yu I.C., Ham J.H., Sharma S.B., Klessig D.F., Fengler K.A., and Bent A.F. Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the "defense, no death" phenotype. Mol. Plant Microbe Interact. 2004, 17:511-520.
    
    Kachroo P., Shanklin J., Shah J., Whittle E.J., and Klessig D.F. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci.USA 2001, 98: 9448-9453.
    
    Kamlofski C. A., Antonelli E., Bender C, Jaskelioff M., Danna C. H., Ugalde R., Acevedo A.. A lesion-mimic mutant of wheat with enhanced resistance to leaf rust. Plant Pathology 2007, 56 :46-54.
    
    Kardailsky I., Shukla V. K., Ahn J. H., Dagenais N., Christensen S. K., Nguyen J. T.,Chory J., Harrison M. J., Weigel D. Activation tagging of the floral inducer FT. Science 1999,286:1962-1965.
    
    Kawasaki T., Henmi K., Ono E., Hatakeyama S., Iwano M., Satoh H. and Shimamoto K. The small GTP-binding protein rac is a regulator of cell death in plants. Proc. Natl. Acad.Sci. USA 1999, 96: 10922-10926.
    
    Kawasaki T., Koita H., Nakatsubo T., Hasegawa K., Wakabayashi K., Takahashi H.,Umemura K., Umezawa T., and Shimamoto K. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice.Proc. Natl. Acad. Sci. USA 2006, 103: 230-235.
    Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 1972, 26: 239-257.
    
    Kim H.J., Ryu H., Hong S.H., Woo H.R., Lim P.O., Lee I.C., Sheen J., Nam H.G. and Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl Acad. Sci. USA 2006,103: 814-819.
    
    Kim H.S., Delaney T.P.. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense independent of both salicylic acquired resistance. Plant Cell 2002, 14:1469-1482.
    
    Klahre U., Becker C, Schmitt A.C. and Kost B. Interaction with NtRhoGDI2 is essential for normal NtRAC5 localization and activity in tobacco pollen tubes. Plant J. 2006, 46:1018-1031.
    
    Kliebenstein D.J., Dietrich R.A., Martin A.C, Last R.L., and Dangl J.L. LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Mol.Plant Microbe Interact. 1999, 12: 1022-1026.
    
    Klionsky D.J.: The molecular machinery of autophagy: unanswered questions. J Cell Sci 2005,118:7-18.
    
    Kobayashi Y., Kaya H., Goto K., Iwabuchi M., Araki T.. A pair of related genes with antagonistic roles in mediating flowering signals. Science 1999, 286: 1960-1962.
    
    Kojima S., Takahashi Y., Kobayashi Y, Monna L., Sasaki T., Araki T., and Yano M. Hd3a,a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology 2002, 43: 1096-1105.
    
    Kojo K., Yaeno T., Kusumi K. , Matsumura H., Fujisawa S., Terauchi R.and Iba K.. Regulatory mechanisms of ROI generation are affected by rice spl mutations. Plant Cell Physiol. 2006,47: 1035-1044.
    
    Komeda Y. Genetic regulation of time to flower in Arabidopsis Thaliana. Annu. Rev.Plant Biol. 2004, 55:521-535;
    
    Koornneef M., Hanhart C.J., Veen J.H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular and General Genetics 1991, 229:57-66.
    
    Kumar S., Tamura K. & Nei M. MEGA3: Integrated Software for Molecular Evolutionary Analysis and Sequence Alignment Briefings in Bioinformatics 2004, 5: 150-163.
    
    Lam E., Kato N. and Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 2001,411: 848-853.
    
    Larkin M.A., Blackshields G, Brown N.P., Chenna R., McGettigan P.A., McWilliam H.,
    Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G.Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23: 2947-2948.
    
    Lee H., Xiong L., Gong Z., Ishitani M., Stevenson B., Zhu J.K. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 2001, 15: 912-24.
    
    Lemichez E., Wu Y., Sanchez J.-P., Mettouchi A., Mathur J., and Chua N.-H. Inactivation of AtRacl by abscisic acid is essential for stomatal closure. Genes Dev. 2001,15:1808-1816.
    
    Lemmon M.A., Ferguson K.M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 2000, 350, Pt 1:1-18.
    
    Lennon S.V., Martin S.J., Cotter T.G. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Proliferation 1991, 24: 203-214.
    
    Leung H., Wu C, Baraoidan M., Bordeos A., Ramos M., Madamba S., Cabauatan P.,Vera Cruz C. Deletion mutants for functional genomics: Progress in phenotyping,sequence assignment, and database development. In Rice Genetics IV, G.S. Khush, D.S. Brar, and B. Hardy, eds (New Delhi, India: Science Publishers), 2001, pp. 239-251.
    
    Levy Y.Y. and Dean C. The transition to flowering. Plant Cell 1998,10:1973-1089.
    
    Li H., Shen J.-J., Zheng Z., Lin Y., and Yang Z. The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol. 2001,126: 670-684.
    
    Liang H., Yao N., Song J.T., Luo S., Lu H. and Greenberg J.T. Ceramides modulate programmed cell death in plants. Genes Dev. 2003, 17: 2636-2641.
    
    Lieberherr D., Thao N.P., Nakashima A., Umemura K., Kawasaki T., and Shimamoto K.A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRacl and heterotrimeric G-protein in rice. Plant Physiol. 2005, 138:1644-1652.
    
    Lim P.O., Kim H.J. and Nam H.G. Leaf senescence. Annu. Rev. Plant Biol. 2007, 58:115-136.
    
    Lin C., Yang H., Guo H., Mockler T., Chen J., Cashmore A.R. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl.Acad. Sci. USA 1998, 95: 2686-2690.
    
    Lin J.F. and Wu S.H. Molecular events in senescing Arabidopsis leaves. Plant J. 2004, 39:612-628.
    
    Liu Y., Schiff M., Serino G., Deng X.W., and Dinesh-Kumar S.P. Role of SCF ubiquitin ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco Mosaic Virus. Plant Cell 2002, 14: 1483-1496.
    
    Locke J. C W, Kozma-Bognar L., Gould P. D., Feher B., Kevei E.. Nagy F., Turner M. S,Hall A., and Millar A.J. 2006. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol. Syst. Biol. 2006, 2: 59.
    
    Locke 3.C., Southern M.M., Kozma-Bognar L., Hibberd V., Brown P.E., Turner M.S.,Millar A.J. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol. Syst. Biol. 1:2005.0013;
    
    Lockshin R.A., Zakeri Z. Apoptosis, autophagy, and more. The International Journal of Biochemistry and Cell Biology 2004, 36: 2405-2419.
    
    Lorrain S., Vailleau F., Balague C, and Roby D. Lesion mimic mutants: Keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 2003, 8:263-271.
    
    Love A.J., Milner J. J. and Sadanandom A.. Timing is everything: regulatory overlap in plant cell death. Trends in Plant Science 2008:doi:10.1016/j.tplants.2008.08.006.
    
    Luo Y., Katherine S. Caldwell, Tadeusz Wroblewski, Michael E. Wright, and Richard W.Michelmore. Proteolysis of a negative regulator of innate immunity is dependent on resistance genes in tomato and nicotiana benthamiana and induced by multiple bacterial effectors. Plant cell 2009 : doi/10.1105/tpc. 107.056044.
    
    Mach J.M., Castillo A.R., Hoogstraten R., and Greenberg J.T. The Arabidopsis-accoierated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc. Natl. Acad. Sci. U.S.A.2001, 98: 771-776.
    
    Mas P., Kim W.Y., Somers D.E., Kay S.A. Targeted degradation of TOCl by ZTL modulates circadian function in Arabidopsis thaliana. Nature 2003, 426: 567-70
    
    Matsubara K., Yamanouchi U., Wang Z., Minobe Y., Izawa T., and Yano M.. Ehd2, a rice ortholog of the maize INDETERMINATE 1 gene, promotes flowering by up-regulating Ehd1. Plant Physiology 2008, 148: 1425-1435.
    
    Matsushika A., Makino S., Kojima M., Yamashino T. and Mizuno T. Reciprocal regulation between TOCl and LHY/CCAl within the Arabidopsis circaian clock. Science 2001, 293:880-883;
    
    McCabe M.S., Garratt L.C., Schepers F., Jordi W.J., Stoopen G.M., Davelaar E., van Rhijn J.H., Power J.B. and Davey M.R. Effects of P(SAG12)-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol. 2001,127: 505-516.
    
    McDowell J.M. and Dangl J.L. Signal transduction in the plant immune response. Trends Biochem. Sci. 2000, 25: 79-82.
    
    Miao Y., Laun T., Zimmermann P. and Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol. Biol. 2004, 55:853-867.
    
    Michaels S.D., Amasino R.M. FLOWERINGLOCUSCencodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 1999,11: 949-956.
    
    Mizobuchi R., Hirabayashi H., Kaji R., Nishizawa Y., Yoshimura A., Satoh H., Ogawa T.,Okamoto M. Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Science 2002, 163: 345-53.
    
    Mockler T., Yang H., Yu X., Parikh D., Cheng Y., Dolan S., and Lin C. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Pro. Natl Acad. Sci. USA 2003,100:2140-2145.
    
    Molendijk A.J., Bischoff F., Rajendrakumar C.S., FrimI J., Braun M., Gilroy S. and Palme K. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 2001, 20: 2779-2788.
    
    Morel J.-B. and Dangl J. L.. The hypersensitive response and the induction of cell death in plants. Cell Death and Differentiation 1997, 4: 671-683.
    
    Mori M., Tomita C, Sugimoto K., Hasegawa M., Hayashi N., Dubouzet J.G., Ochiai H.,Sekimoto H., Hirochika H., Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol. 2007, 63:847-860.
    
    Mourdov A., Cremer F. and Coupland G. Control of flowering time: Interacting pathwaysas a basis for diversity. Plant Cell 2002,14: SI 11-S130.
    
    Nandi A., Krothapalli K., Buseman C, Li M., Welti R., Enyedi A., and Shah J.Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell 2003, 15: 2383-2398.
    
    Nandi D., Tahiliani P., Kumar A. and Chandu D.. The ubiquitin-proteasome system J.Biosci. 2006, 31:137-155.
    
    Nicholas K.B., Nicholas H.B. Jr. and Deerfield D.W. II. GeneDoc: Analysis and Visualization of Genetic Variation. EMBNEW.NEWS 1997, 4:14;
    
    Nishimura M.T., Stein M., Hou B.H., Vogel J.P., Edwards H., and Somerville S.C. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 2003,301:969-972.
    Noutoshi Y., Kuromori T., Wada T., Hirayama T., Kamiya A., Imura Y., Yasuda M., Nakashita H., Shirasu K. and Shinozaki K.. Loss of NECROTIC SPOTTED LESIONS 1 associates with cell death and defense responses in Arabidopsis thaliana.Plant Molecular Biology 2006, 62: 29-42.
    
    Ono E., Wong H.L., Kawasaki T., Hasegawa M., Kodama O. and Shimamoto K. Essential role of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 2001,98:759-764.
    
    Onouchi H., Igeno M.I., Perilleux C., Graves K., Coupland G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among arabidopsis flowering-time genes. The Plant Cell 2000,12: 885-900.
    
    Para A., Farre E.M., Imaizumi T., Pruneda-Paz J.L., Harmon F.G., Kay S.A. PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 2007,19: 3462-3473.
    
    Park J., Choi H.J., Lee S., Lee T., Yang Z., Lee Y. Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol 2000, 124:725-732.
    
    Park J., Gu Y., Lee Y., Yang Z. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 2004, 134:129-136.
    
    Park J.H., Oh S.A., Kim Y.H., Woo H.R. and Nam H.G. Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol. Biol. 1998, 37: 445-454.
    Pilloff R.K., Devadas S.K., Enyedi A. and Raina R. The Arabidopsis gain-of-function mutant dlll spontaneously develops lesions mimicking cell death associated with disease.Plant J. 2002, 30:61-70.
    
    Putterill J., Robson F., Lee K., Simon R., Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995, 80: 847-857.
    
    Quail P. H. Phytochrome photosensory signaling networks. Nature Review. Mol. Cell Biol.2002,3:85-93.
    
    Raab S., Drechsel G., Zarepour M., Hartung W., Koshiba T., Bittner F.and Hoth S.Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant Journal 2009, 59:39-51.
    Reape T.J., Molony E.M. and McCabe P.F. Programmed cell death in plants: distinguishing between different modes. Journal of Experimental Botany, 2008, 59:435-444.
    
    Robatzek S. and Somssich I.E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 2002,16: 1139-1149.
    
    Robson F., Costa M.M., Hepworth S.R., Vizir I., Pineiro M.., Reeves P.H., Putterill J.,Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal 2001,28: 619-631.
    
    Rosebrock T.R., Zeng L., Brady1 J. J., Abramovitch R.B., Xiao F. and Martin G.B.. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity.Nature 2007,448: 370-375.
    
    Rusterucci C, Aviv D.H., Holt III B.F., Dangl J.L., and Parker J.E. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 2001, 13: 2211-2224.
    
    Sawa M., Nusinow D.A., Kay S.A., Imaizumi T.. FKF1 and GIGANTE a complex formation is required for day-length measurement in arabidopsis. Science 2007, 318:261-265.
    
    Schultheiss H., Dechert C, Kogel K.H., Huckelhoven R. A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley.Plant Physiol 2002, 128:1447-1454.
    
    Schultheiss H., Dechert C, Kogel K.H., Huckelhoven R. Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus.Plant J 2003, 36: 589-601.
    
    Schwiechel J.U., Merker H.J. The morphology of various types of cell death in prenatal tissues. Teratology 1973, 7: 253-266.
    
    Simmons C., Hantke S., Grant S., Johal G. S., and Briggs S. P. The maize lethal leaf spot 1 mutant has elevated resistance to fungal infection at the leaf epidermis. Mol.Plant-Microbe Interact. 1998, 11:1110-1118.
    
    Simpson G. G., and Dean C. Arabidopsis, the rosetta stone of flowering time? Science 2002, 296: 285-289.
    
    Singh K., Multani D.S., and Khush G.S. A new spotted leaf mutant in rice. Rice Genet.Newsl. 1995, 12 : 192-193.
    
    Strasser A., O'Connor L., and Dixit V.M. Apoptosis signaling. Annu. Rev. Biochem. 2000,69:217-245.
    Strayer C., Oyama T., Schultz T. F., Raman R., Somers D.E., Mas P., Panda S., Kreps J.A.,Kay S. A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 2000, 289: 768-771;
    
    Suarez-Lopez P., Wheatley K., Robson F., Onouchi H., Valverde F., Coupland G.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001,410: 1116-1120.
    
    Suharsono U., Fujisawa Y., Kawasaki T., Iwasaki Y., Satoh H. and Shimamoto K. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad Sci. USA 2002, 99: 13307-13312.
    
    Takahashi A., Agrawal G. K., Yamazaki M., Onosato K., Miyao A., Kawasaki T.,Shimamoto K. and Hirochika H. Rice Ptil a negatively regulates RAR1- dependent defense responses. Plant Cell 2007,19:2940-2951.
    
    Takahashi A., Kawasaki T., Henmi K., Shi I. K., Kodama O., Satoh H., and Shimamoto K.Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J.1999,17:535-545.
    
    Takahashi A., Kawasaki T., Wong H., Suharsono U., Hirano H., and Shimamoto K.Hyperphosphorylation of a mitochondrial protein, prohibitin, is induced by calyculin A in a rice lesion-mimic mutant cdrl. Plant Physiol. 2003, 132:1861-1869.
    
    Takahashi Y., Teshima K.M., Yokoi S., Innan H., and Shimamoto K.. Variations in Hdl proteins, Hd3a promoters, and Ehdl expression levels contribute to diversity of flowering time in cultivated rice. PNAS, 2009: doi_10.1073_pnas.0812092106
    
    Takano M., Kanegae H., Shinomura T., Miyao A., Hirochika H. and Furuya M. Isolation and characterization of rice phytochrome A mutants. Plant Cell 2001, 13: 521-534.
    
    Tamaki S., Matsuo S., Wong H.L., Yokoi S., Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science 2007, 316: 1033-1036.
    
    Tang D., Christiansen K.M. and Innes R.W. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase.Plant Physiol. 2005,138: 1018-1026.
    
    Tao, L.Z., Cheung, A.Y., and Wu, H.M. Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 2002,14: 2745-2760.
    
    Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins. Biol. Cell. 2007, 99: 67-86.
    
    Thao N.P., Chen L., Nakashima A., Hara S., Umemura K., Takahashi A., Shirasu K.,Kawasaki T., and Shimamotoa K. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell 2007:doi/10.1105/tpc.107.055517
    
    Trujillo M., Ichimura K., Casais C. & Shirasu K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr. Biol. 2008, 18:1396-1401.
    
    Valverde F., Mouradov A., Soppe W., Ravenscroft D., Samach A., Coupland G.Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 2004,303: 1003-1006.
    
    Van Breusegem F. and Dat J.F. Reactive oxygen species in plant cell death. Plant Physiology 2006, 141:384-390.
    
    van Doom W.G. and Woltering E.J. Many ways to exit? Cell death categories in plants. Trends Plant Sci. 2005, 10: 117-122;
    
    Vega-Sanchez M., Zeng L., Chen S., Leung H. and Wang G.L. SPIN1, a K homology homain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell 2008, 20: 1456-1469;
    
    Vierstra R. D.. The ubiquitin-26s proteasome system at the nexus of plant biology. Nature Review Molecular Cell Biology 2009,10: 385-397.
    
    Wang W., Yang X., Tangchaiburana S., Ndeh R., Markham J.E., Tsegaye Y., Dunn T.M.,Wang G., Bellizzi M, Parsons J. F., Morrissey D., Bravo J. E., Lynch D. V. and Xiao S..An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 2008, 20: 3163-3179.
    
    Wigge P.A., Kim M.C., Jaeger K.E., Busch W., Schmid M., Lohmann J.U., Weigel D.Integration of spatial and temporal information during floral induction in arabidopsis.Science 2005, 309: 1056-1059.
    
    Williams B. and D Marty. Plant programmed cell death: can't live with it; can't live without it. Molecular Plant Pahtology 2008, 9: 531-544.
    
    Wilson R.N., Heckman J.W., Somerville C.R.. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 1992, 100: 403-408.
    
    Wolter M.H.K., Salamini F., Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype.Mol. Gen. Genet. 1993, 239:122-128.
    
    Wong H., Pinontoan R., Hayashi K., Tabata R., Yaeno T., Hasegawa K., Kojima C.,Yoshioka H., Iba K., Kawasaki T. and Shimamotoa K.. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 2007: doi/10.1105/tpc.l07.055624
    
    Woo H.R., Chung K.M., Park J.H., Oh S.A., Ahn T., Hong S.H., Jang S.K. and Nam H.G.ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 2001, 13:1779-1790.
    
    Wu C., You C., Li C., Long T., Chen G., Byrne M.E. , and Zhang Q.. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice.PNAS 2009: 12915-12920;
    
    Wu G., Li H. and Yang Z. Arabidopsis RopGAPs are a novel family of Rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for Rop-specific GTPase stimulation. Plant Physiology, 2000, 124:1625-1636;
    
    Xue W., Xing Y, Weng X., Zhao Y, Tang W., Wang L., Zhou H., Yu S., Xu C., Li X. & Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics 2008, 40: 761-767.
    
    Yamanouchi U., Yano M., Lin H., Ashikari M., and Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. U.S.A. 2002,99:7530-7535.
    
    Yamanouchi U., Yano M., Lin H., Ashikari M., and Yamada K. A rice spotted leaf gene,Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. USA 2002,99: 7530-7535.
    
    Yanagawa Y., Sullivan J.A., Komatsu S., Gusmarolil G., Suzuki G., Yin J., Ishibashi T.,Saijo Y., Rubio V., Kimura S., Wang J. and Deng X.W.. Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Gene & Development 2004,18: 2172-2181.
    
    Yang, Z. Cell polarity signaling in Arabidopsis. Annu. Rev. Cell Dev. Biol. 2008,24:551-575.
    
    Yano M., Katayose Y, Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T.,Yamamoto K., Umehara Y, Nagamura Y. and Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. The Plant Cell 2000, 12: 2473-2484.
    
    Yanovsky M. J. and Kay S. A. Living by the calendar: how plants know when to flower.Nature Review in Molecular Cell Biology 2003, 4: 265-275.
    
    Yin Z., Chen J., Zeng L., Goh M., Leung H., Khush G. S., and Wang G.-L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol. Plant-Microbe Interact. 2000,13: 869-876.
    Yoshida S., Ito M., Callis J., Nishida I. and Watanabe A. A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase a component of the N-end rule pathway in Arabidopsis. Plant J. 2002, 32: 129-137.
    
    Yoshida, S. Molecular regulation of leaf senescence. Curr. Opin. Plant Biol. 2003, 6:79-84.
    
    Zago E., Morsa S., Dat J. F., Alard P., Ferrarini A., Inze D., Delledonne M. and Breusegem F.V.. Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiology 2006, 141:404—411.
    
    Zeilinger M.N., Farre E.M., Taylor S.R., Kay S.A., Doyle F.J. A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol. Syst.Biol. 3rd. 2006,2: 58;
    
    Zeng L., Vega-Sanchez M. E., Zhu T., Wang G.L.. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Research 2006,16:413-426.
    
    Zeng L.R., Qu S., Bordeos A., Yang C, Baraoidan M., Yan H., Xie Q., Nahm B.H., Leung H., Wang G.L. Spotted leaf 11, a Negative Regulator of Plant Cell Death and Defense, Encodes a U-Box/Armadillo Repeat Protein Endowed with E3 Ubiquitin Ligase Activity.Plant Cell 2004, 16: 2795-2808,
    
    Zheng J., Cahill S.M., Lemmon M.A., Fushman D., Schlessinger J. and Cowburn D..Identification of the binding site for acidic phospholipids on the PH domain of dynamin: Implications for stimulation of GTPase activity. J Mol Biol 1996, 255:14-21.
    
    Zheng Z-L, Nafisi M., Tam A., Li H., Crowell D.N., Chary S.N., Schroeder J.I., Shen J.,Yang Z. Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 2002, 14:2787-2797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700