可生存性域间路由协议关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网逐渐成为通信基础设施,并承载了更多中断、延迟敏感的关键业务流量,这些关键业务通常都假设构建在无中断的网络基础之上。在重要的国防、金融等领域,网络瞬时中断都会造成不可估量的损失,致使网络生存性问题日益凸显。在给定网络拓扑和体系结构条件下,路由协议是影响数据平面性能、网络稳定性的最主要因素。然而,互联网实际测量的数据表明网络路由失效现象非常普遍,即使是多宿主的AS也无法避免路由失效的发生。理想上的路由协议应该保证,只要底层拓扑存在连接就能提供持续端到端通信。然而作为事实标准的域间路由协议BGP,网络拓扑的变化将触发BGP反应式收敛过程以达到新的全局一致性路由视图,其慢收敛时间甚至长达30分钟,收敛过程中的瞬时失效严重影响了数据平面的转发性能;并可能造成域间扰动,进而威胁到网络的稳定性。
     通过深入分析BGP面临的困境,可知eBGP、iBGP分别可能造成AS级、域内路由器级瞬时失效,且iBGP可能造成大量非必要的域间扰动。本文指出这些问题产生的根源在于BGP协议路径传播机制、过于敏感的失效处理机制以及忽略iBGP、eBGP之间的交互关系。为此,本文以路由快速恢复、降低域间扰动为总体研究目标,在总结分析了现有不同场景下各种路由快速恢复,以及降低扰动相关技术的核心机制、性能特点的基础上,对域间路由仍存在的问题进行了深入研究。
     针对AS级路径缺乏和瞬时失效的问题,从eBGP方面进行了研究,以解决当前预计算AS级备份路径方法不能完全保证获得多样性路径、AS间备份路径不一致易造成环路,以及带来信令和存储开销的问题。
     提出了通过构造结构化多转发树以容忍失效的域间路由协议MFT2-BGP。该协议在发起前缀通告时为每条路径分配标识符,以较低消息开销构造符合BGP策略的结构化多转发树,易于处理多失效及环路,并使得每个AS确定性的获得多样性路径;报文在多转发树间动态切换以实现无中断转发;路由更新消息中嵌入“失效根源信息”以降低多路径下的收敛时间;通过抑制瞬时失效以降低路由系统的扰动。分析和实验表明,在失效场景下,MFT2-BGP能有效改善收敛时间,降低瞬时失效的影响,改善路由系统稳定性。
     提出了轻量级基于备份AS通告的可靠域间路由协议BAR-BGP。BAR-BGP并不使用预计算路径的方法,而是采用将预获取与目标相关联的备份AS地址和反应式按需计算可行转发路径相结合的方法。当节点经历瞬时失效时,BAR-BGP采用封装转发模式将报文转发到预获取的备份AS地址;采用恢复转发模式根据本地以及报文头携带的失效信息按需计算新的可行转发路径。实验表明,BAR-BGP无需维护备份路径带来的开销,并有效降低瞬时失效引起的转发中断。
     针对当前研究忽略iBGP对网络性能造成影响的问题,通过分析指出标准iBGP结构并不能保证路由器级路径多样性,容易造成瞬时失效,并且反射器结构下可能造成iBGP路径探索、更新复制,并引起域间扰动。本文从iBGP协议中难以获得多下一跳路径、过于敏感的失效处理机制的角度进行研究,以实现快速恢复,并降低域间扰动。
     提出了基于RCP的多路径路由控制平台MP-RCP及协议。MP-RCP将路由选择与分发进行分离,对客户端路由器的路由表逻辑划分,MP-RCP利用获得的AS内全局可视路由为每台路由器分配多路径;MP-RCP通过将失效检测与处理分离,由MP-RCP则根据本AS的策略对失效进行响应处理。理论分析和实验表明,MP-RCP能有效降低瞬时失效以及域间扰动。
     提出了基于出口路径标识符EID-iBGP和Add-EID-iBGP协议。EID-iBGP利用出口路径标识符消除冗余反射器结构下iBGP路径探索。随后扩展提出了Add-EID-iBGP,允许节点传播多个出口路径标识符,通过利用出口路径标识符集合中的信息对失效进行隔离,以降低域间扰动;通过构建多出口的虚拟网络,允许报文在虚拟网络间切换以避免转发中断。此外,根据对iBGP收敛时间的分析,对WRATE参数设置进行了讨论。分析和实验表明,Add-EID-iBGP能有效避免路径探索、瞬时失效以及域间扰动。
Internet is increasingly becoming the communication infrastructure and starting to carry more loss and delay-sensitive mission-critical traffic, and those mission-critical services depend on the assumption that network being uninterrupted where even very short-lived disruption can result unacceptable losses in some important national defense, economic cases, which manifest the importance of network survivability. Routing protocols have the most significant impact on data plane performance and network stability for given the network topology and architecture. Whereas, extensive measurements on Internet have showed that routing failures are very widespread, even multi-homing AS does not always provide more fault tolerance than it should. Many prior studies have revealed that the Internet routing infrastructure is highly redundant; the ideal routing protocols should provide continuous end-to-end communications as long as the underlying topology remains connected. Nevertheless, the de facto inter-domain routing protocol BGP, the topology changes can trigger reactive convergence on a new globally consistent route views, the convergence time even lasted thirty minutes at the worst case, and transient failure during the routing convergence degraded the forwarding performance of significantly. Furthermore, BGP may lead to inter-domain churn, which compromises the stability of the network.
     The analysis on the difficulties faced by BGP shows that both eBGP and iBGP would cause the AS-level and router-level transient failure. Specially, the iBGP may cause lots of unnecessary inter-domain churn. This thesis points out these problems stem from the BGP path propagation mechanism, sensitive failure handling mechanism and ignoring the interaction of eBGP/iBGP. Therefore, the main theme for this thesis has been to develop inter-domain routing protocols that offer fast recovery and churn reduction. After analyzing the fundamental mechanism, characteristics, performance of existing representative fast recovery routing protocols and churn reduction technologies. To address the shortcomings in current researches, this thesis makes an in-depth study on existing problems to be solved in BGP.
     Considering the lack of AS-level path diversity and transient failure caused by eBGP, the thesis first focuses on the eBGP for addressing the inefficiency of current pre-computed backup-path approaches, including its unable to ensure path diversity, the forwarding loop caused by inconsistent backup path decision, the complex signal and storage overhead.
     We propose a variant of BGP with robust failure tolerant by using Multiple Forwarding Tree, named MFT2-BGP. MFT2-BGP assigns path identifier for every path when announcing prefix, and constructs policy-compliant multiple forwarding trees with low message overhead. It can definitely guarantee every AS node learn multiple forwarding path, and keep all nodes on the forwarding tree corresponding to specific path identifier with consistent routing view so that it becomes easier to deal with multiple failure and deployment. Moreover, allowing packet to dynamically switch forwarding tree, MFT2-BGP can achieve disruption-free forwarding in the presence of transient failure. Besides that, MFT2-BGP also reduces the convergence time by carrying“root cause notification”in UPDATE message and reduces routing system churn by suppress transient failure. The extensive simulations demonstrate that MFT2-BGP can reduce convergence time, alleviate forwarding disruption caused by link failure, and strengthen the routing system stability.
     We propose a lightweight backup AS-Address Advertisement with Root Cause Notification-BGP (named BAR-BGP) inter-domain routing protocol for achieving fast recovery. Instead of pre-computing failover paths, it deals with transient failure by combining the method of backup AS advertisement and reactive re-computing feasible paths. When transient failure occurred at an AS node, BAR-BGP will encapsulate and forward packets to backup AS, and use recovery forwarding mode to re-compute new feasible forwarding path in light of local failure and failue-carrying packet for reducing loss of connectivity further. The detailed simulation demonstrates that BAR-BGP effectively reduces forwarding disruption caused by the transient failure without paying cost to maintain backup AS-Address.
     Considering the current research widely ignoring the iBGP impact on network performance, the thesis concludes that the iBGP is not able to ensure router-level path diversity, route reflection will bring several negative impacts on the overall routing system such as iBGP path exploration, UPDATE duplication, and BGP churn. The thesis proposed two approaches aiming at the lacks of next hop path diversity and too sensitive failure responding mechanism in iBGP to offer fast recovery and churn reduction.
     We propose Multipath Route Control Platform (named MP-RCP) architecture and protocol based on RCP. MP-RCP decouples the routing selection and dissemination, and it also logically separates the client router’s route table, MP-RCP takes advantage of global visible route to assign mutlipath for every router in the AS. MP-RCP also decouples the failure notification and recovery, and the MP-RCP is responsible for failure responsive in light of the local AS policy. The detailed theoretical analysis and simulation demonstrates that MP-RCP effectively reduces forwarding disruption and BGP churn.
     We propose a variant of iBGP based on egress path identifier (EID), named EID-iBGP. EID-iBGP eliminates iBGP path exploration with the adding EID in UPDATE in redundancy route reflection. Furthermore, we propose Add-EID-iBGP allowing propagate multiple EID without introducing of multipath storage overhead, Add-EID-iBGP explicitly makes use of EID tags to localize the failure information avoiding unnecessary BGP churn, and it reduces forwarding disruption by allowing traffic to switch different virtualization network corresponding to EID. The thesis also discuss the WRATE settings according to the iBGP convergence time analysis. The detailed theoretical analysis and simulation demonstrates that Add-EID-iBGP effectively reduces iBGP path exploration, forwarding disruption and BGP churn.
引文
[1]中国互联网络信息中心.中国互联网络发展状况统计报告[Z]. http://www.cnnic.net.cn, 2010.
    [2] Cisco Visual Networking Index: Forecast and Methodology, 2008-2013[Z]. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html, 2009.
    [3] Vasseur J P, Pickavet M, Demeester P. Network Recovery: Protection and Restoration of Optical, SONET-SDH, and MPLS[M]. San Mateo, CA: Morgan Kaufmann, 2004.
    [4] Cholda P, Mykkeltveit A, Helvik B E, et al. A survey of resilience differentiation frameworks in communication networks[J]. IEEE Communications Surveys & Tutorials. 2007, 9(4): 32-55.
    [5] Turner D, Levchenko K, Snoeren A C, et al. California Fault Lines: Understanding the Causes and Impact of Network Failures[C]. In: Proc. of SIGCOMM’10. New Delhi, India: ACM Press, 2010.
    [6] Gummadi K P, Madhyastha H V, Gribble S D, et al. Improving the Reliability of Internet Paths with One-hop Source Routing[C]. In: Proc. of OSDI'04.San Francisco, CA: USENIX Association, 2004. 183-198.
    [7] Jiang W, Schulzrinne H. Assessment of voip service availability in the current internet[C]. In: Proc. of PAM.ACM, 2003.
    [8] Andersen D G. Improving End-to-End Availability Using Overlay Networks[D]. Doctor of Philosophy, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2005.
    [9] Bharat C, Mike D, Gao L, et al. End-to-end WAN Service Availability[J]. IEEE/ACM Transactions on Networking. 2003, 11(2): 300-313.
    [10] Paxson V. End-to-end routing behavior in the internet[J]. IEEE/ACM Transactions on Networking. 1997, 5(5): 601-615.
    [11] Telemark. Telemark survey[Z]. Http://www Telemarkservices Com/, 2006.
    [12] Schilling W W, Alam M. Measuring the reliability of exsiting Web service[C]. In: Proc. of the 2007 IEEE Intelector/Information Technology Conf.Los Alamitos, CA: IEEE Computer Society, 2007. 356-361.
    [13] News W. The backhoe: A real cyberthreat, Jan. 2006[Z]. http://www.wired.com/news/technology/1,70040-0.html, 2006.
    [14] LinkRank Visualization[Z]. http://linkrank.cs.ucla.edu/activity/LinkRank Visualization Recent Activity.htm, 2009.
    [15] Labovitz C M G R. Internet routing instability[J]. IEEE/ACM Transactions on Networking. 1998, 6(5): 515-528.
    [16] Labovitz C, Ahuja A, Bose A, et al. Delayed Internet Routing Convergence[J]. IEEE/ACM Transactions on Networking. 2001, 9(3): 293-306.
    [17] Iannaccone G B S C C. Analysis of Link Failures in an IP Backbone[C]. In: Pro of ACM Sigcomm Internet Measurement Workshop IMW.Marseille,France: 2002.
    [18] Markopoulou A, Iannaccone G, Bhattacharyya S, et al. Characterization of Failures in an Operational IP Backbone Network[J]. IEEE/ACM TRANSACTIONS ON NETWORKING. 2008, 16(4): 749-762.
    [19] Wang F, Mao Z M, Wang J, et al. A measurement study on the impact of routing events on end-to-end internet path performance[C]. In: Proc. of ACM SIGCOMM'06.Pisa, Italy: ACM Press, 2006. 375-386.
    [20] Wang F, Qiu J, Gao L, et al. On Understanding Transient Interdomain Routing Failures[J]. IEEE/ACM TRANSACTIONS ON NETWORKING. 2009, 17(3): 740-751.
    [21] Zhang Y, Mao Z M, Wang J. A Framework for Measuring and Predicting the Impact of Routing Changes[C]. In: Proc. of INFOCOM'07.Anchorage,Alaska: IEEE Computer Society, 2007. 339-347.
    [22] Wu J, Zhang Y, Mao Z M, et al. Internet Routing Resilience to Failures: Analysis and Implications[C]. In: ACM CoNEXT’07.New York, NY, U.S.A: 2007.
    [23] Katz-Bassett E, Madhyastha H V, John J P, et al. Studying Black Holes in the Internet with Hubble[C]. In: NSDI’08.San Francisco, CA: USENIX Association, 2008. 247-262.
    [24] Kushman N, Kandula S, Katabi D. Can you hear me now?! it must be bgp[J]. ACM SIGCOMM Computer Communication Review. 2007, 37(2): 75-84.
    [25] Bonaventure O, Filsfils C, Francois P. Achieving Sub-50 Milliseconds Recovery Upon BGP Peering Link Failures[J]. IEEE/ACM Transactions on Networking. 2007, 15(5): 1123-1135.
    [26] Westmark V R. A Definition for Information System Survivability[C]. In: Proceedings of the 37th International Conference on System Sciences.Hawaii ,USA: IEEE, 2004. 303-312.
    [27] Sterbenz J P G, Hutchison D, ?etinkaya E K, et al. Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines[J]. Computer Networks. 2010(54): 1245-1265.
    [28] Knight J C, Strunk E A, Sullivan K J. Towards a rigorous definition of information system survivability[C]. In: Proc. of the DARPA Information Survivability Conference and Exposition DISCEX III.Washington DC: 2003. 78-89.
    [29]苏金树,胡乔林,赵宝康,等.容延容断网络路由技术[J].软件学报. 2010,21(1): 119-132.
    [30] Andersen D, Balakrishnan H, Kaashoek F, et al. Resilient Overlay Networks[C]. In: ACM Symp. on Operating Systems Principles (SOSP).2001. 131-145.
    [31] Ho K S, Cheung K W. Generalized Survivable Network[J]. IEEE/ACM Transaction on Networking. 2007, 15(4): 750-760.
    [32] Haider A, Harris R. Recovery Techniques in Next Generation Networks[J]. IEEE Communications Surveys & Tutorials. 2007, 9(3): 2-17.
    [33] Saradhi C V, Gurusarny M, Zhou L. Differentiated QoS for survivable WDM optical networks[J]. IEEE Communications Magazine. 2004, 42(5): S8-S14.
    [34] Iannaccone G, Chuah C, Bhattacharyya S, et al. Feasibility of IP Restoration in a Tier-1 Backbone[J]. IEEE Network Magazine. 2004, 18(2): 13-19.
    [35] A F, L. V. IP restoration vs. WDM protection: is there an optimal choice?[J]. IEEE Network. 2000, 14(6): 34-41.
    [36] Clark D D, Shenker S, Falk A. GENI Research Plan[R]. Technical GENI Planning Group, Apr, 2007.
    [37] Assurable Global Networks[Z]. http://www.darpa.mil/STO/solicitations/AGN, 2007.
    [38] Future Internet Research and Experimentation[Z]. http://cordis.europa.eu/fp7/ict/fire/, 2007.
    [39] Feldmann A. Internet Clean-Slate Design: What and Why?[J]. ACM SIGCOMM Computer Communication Review. 2007, 37(3): 59-64.
    [40] Mckeown N, Girod B. Clean slate design for the internet[Z]. 2006.
    [41] ResumeNet: Resilience and Survivability for Future Networking– Framework, Mechanisms, and Experimental Evaluation[Z]. http://www.resumenet.eu, 2010.
    [42] ResiliNets: Resilient and Survivable Networks[Z]. https://wiki.ittc.ku.edu/resilinets_wiki/index.php/Main_Page, 2010.
    [43] C A, V J A, H. Y. Towards MilliSecond IGP Convergence[Z]. draft-alaettinoglu-ISIS-convergence-00, 2000.
    [44] Francois P, Clarence F, John E, et al. Achieving sub-second IGP convergence in large IP networks[J]. ACM SIGCOMM Computer Communication Review. 2005, 35(2): 35-44.
    [45] Rai S, Mukherjee B, Deshpande O. IP resilience within an autonomous system: current approaches, challenges, and future directions[J]. IEEE Communications Magazine. 2005, 43(10): 142-149.
    [46]苏金树,胡乔林,赵宝康.互联网无中断转发的生存性路由协议[J].软件学报. 2010, 21(7): 1589-1604.
    [47]于涛. IP网络生存性技术研究[D].北京,北京邮电大学, 2008.
    [48] Atlas A, Zinin A. Basic Specification for IP Fast Reroute: Loop-Free Alternates[Z].IETF RFC 5286, 2008.
    [49] Gjoka M, Ram V, Yang X. Evaluation of IP Fast Reroute Proposals[C]. In: Proc. of International Conference on Communication Systems Software and Middleware (COMSWARE).2007.
    [50] Yannuzzi M, Masip-Bruin X, Bonaventure O. Open issues in interdomain routing: a survey[J]. IEEE Network. 2005, 19(6): 49-56.
    [51] Rekhter Y, T. Li A S H. A border gateway protocol 4 (BGP-4)[Z]. RFC 4271, 2006.
    [52] Griffin T G, Shepherd F B, Wilfong G. The Stable Paths Problem and Interdomain Routing[J]. IEEE/ACM Transactions on Networking. 2002, 10(2): 232-243.
    [53] Gao L, Rexford J. Stable Internet routing without global coordination[J]. IEEE/ACM Transactions on Networking. 2001, 9(6): 681-692.
    [54] Gao L. On inferring Autonomous System relationships in the Internet[J]. IEEE/ACM Transactions on Networking. 2001, 9(6): 733-745.
    [55] Mühlbauer W, Uhlig S, Fu B, et al. In Search for an Appropriate Granularity to Model Routing Policies[C]. In: Proc. of SIGCOMM’07.Kyoto, Japan: ACM Press, 2007. 1-12.
    [56] Bates T, Chen E, Chandra R. BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP)[Z]. IETF RFC 4456, 2006.
    [57] Afek Y, Bremler-Barr A, Schwarz S. Improved BGP Convergence via Ghost Flushing[J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. 2004, 22(10): 1933-1948.
    [58] Pei D, Azuma M, Massey D, et al. BGP-RCN: improving BGP convergence through root cause notification[J]. Computer Networks. 2005, 48(2): 175-194.
    [59] Chandrashekar J, Duan Z, Zhang Z, et al. Limiting Path Exploration in BGP[C]. In: Proc. of IEEE INFOCOM'05.Miami Florida,USA: IEEE Computer Society, 2005. 2337-2348.
    [60] Lambert A, Buob M, Uhlig S. Improving Internet-wide Routing Protocols Convergence with MRPC Timers[C]. In: Proc. of CoNEXT’09.Rome, Italy: ACM Press, 2009.
    [61] Sahoo A, Kant K, Mohapatra P. Improving Packet Delivery Performance of BGP During Large-Scale Failures[C]. In: Proc. of GLOBECOM'08.IEEE Computer Society, 2008.
    [62] Choudhury G. Prioritized Treatment of Specific OSPF Version 2 Packets and Congestion Avoidance[Z]. RFC 4222, 2005.
    [63] Mao Z, Govindan R, Varghese G, et al. Route flap Damping exacerbates Internet Routing Convergence[C]. In: Proc. of ACM SIGCOMM.ACM Press, 2002.
    [64] Zhang B, Massey D, Zhang L. Destination Reachability and BGP ConvergenceTime[C]. In: Globocom'04.IEEE Computer Society, 2004.
    [65] Akella A, Pang J, Shaikh A, et al. A Comparison of Overlay Routing and Multihoming Route Control[C]. In: Proc. of SIGCOMM'04.Portland, Oregon, USA: ACM Press, 2004. 1-14.
    [66] Mühlbauer W, Maennel O, Uhlig S. Building an as-topology model that captures route diversity[C]. In: Proc. of ACM Sigcomm‘06.Pisa, Italy: ACM Press, 2006. 195-206.
    [67] Han J, D W, Jahanian F. An Experimental Study of Internet Path Diversity[J]. IEEE Transactions on Dependable and Secure Computing. 2007, 3(4): 273-288.
    [68] Xu W, Rexford J. MIRO: multi-path interdomain routing[C]. In: SIGCOMM '06.New York, NY, USA: ACM, 2006. 171-182.
    [69] Teixeira R, Marzullo K, Savage S, et al. Characterizing and measuring path diversity of internet topologies[J]. SIGMETRICS Perform. Eval. Rev. 2003, 31(1): 304-305.
    [70] Savage S, Collins A, Hoffman E, et al. The end-to-end effects of Internet path selection[J]. SIGCOMM Comput. Commun. Rev. 1999, 29(4): 289-299.
    [71] Mérindol P, van Den V, Schrieck B D, et al. Quantifying ASes Multiconnectivity using Multicast Information[C]. In: Proc. ACM USENIX Internet Measurement Conference (IMC).Usenix Association, 2009.
    [72] Feamster N, Mao Z M, Rexford J. BorderGuard: Detecting Cold Potatoes from Peers[C]. In: Proc. of IMC.Taormina,Italy: ACM Press, 2004. 1-6.
    [73] Augustin B, Krishnamurthy B, Willinger W. Ixps: mapped?[C]. In: Proc. of the 9th ACM SIGCOMM conference on Internet measurement conference(IMC).New York, NY, USA: ACM Press, 2009. 336-349.
    [74] Uhlig S, Tandel S. Quantifying the BGP routes diversity inside a tier-1 network[C]. In: Proc. of Networking.Coimbra, Portugal: Springer, Heidelberg, 2006. 1002-1013.
    [75] He J, Rexford J. Towards Internet-wide Multipath Routing[J]. IEEE Network. 2008, 22(2): 16-21.
    [76] John J P, Bassett E K, Krishnamurthy A, et al. Consensus Routing: The Internet as a Distributed System[C]. In: Proc. of NSDI'08.Berkeley, CA, USA: USENIX Association, 2008. 351-364.
    [77] Dimitropoulos X, Krioukov D, Vahdat A, et al. Graph Annotations in Modeling Complex Network Topologies[J]. ACM Transactions on Modeling and Computer Simulation (TOMACS). 2009, 19(4): 1-29.
    [78] Francois P, Bonaventure O. Avoiding Transient Loops During the Convergence of Link-State Routing Protocols[J]. IEEE/ACM TRANSACTIONS ON NETWORKING. 2007, 15(6): 1280-1292.
    [79] Feldmann A, Maennel O, Mao Z M. Locating Internet Routing Instabilities[C]. In: Proc. of SIGCOMM’04.Portland, Oregon, USA: ACM Press, 2004. 205-218.
    [80] Elmokashfo A, Kvalbein A, Dovrolis C. BGP churn evolution: A perspective from the core[C]. In: Proc. of Infocom'10.IEEE Communications Society, 2010.
    [81] Subramanian L, Caesar M, Ee C T, et al. HLP: A next generation interdomain routing protocol[C]. In: Proc. of SIGCOMM2005.Philadelphia,PA, USA: ACM Press, 2005. 13-24.
    [82] Elmokash A, Kvalbein A, Dovrolis C. On the scalability of BGP: the roles of topology growth and update rate-limiting[C]. In: Proc. of CoNEXT'2008.Madrid, SPAIN: ACM Press, 2008. 1-12.
    [83] van den Schrieck V, Francois P, Pelsser C, et al. Preventing the Unnecessary Propagation of BGP Withdraws[C]. In: NETWORKING (IIFIP International Federation for Information Processing 2009). LNCS, 2009. 495-508.
    [84] Yiyi Huang N F A L. Diagnosing Network Disruptions with Network-Wide Analysis[C]. In: SIGMETRICS’07.San Diego, California, USA.: ACM Press, 2007.
    [85] Feamster N, Balakrishnan H. Correctness Properties for Internet Routing[C]. In: 20.Forty-third Annual Allerton Conference on Communication, Control, and Computing, 2005.
    [86] Griffin T, Wilfong G. On the Correctness of IBGP Configuration[C]. In: Proc. of SIGCOMM'02.Pittsburgh, Pennsylvania, USA: ACM Press, 2002.
    [87] Wang Y, Avramopoulos I, Rexford J. Design for Configurability: Rethinking Interdomain Routing Policies from the Ground Up[J]. IEEE Journal on Selected Areas in Communications (JSAC). 2009, 27(3): 336-348.
    [88] Goldberg S, Schapira M, Hummon P, et al. How Secure are Secure Interdomain Routing Protocols?[C]. In: Proc. of SIGCOMM’10.New Delhi, India: ACM Press, 2010. 87-98.
    [89]赵锋.大规模自治系统的路由优化技术研究[D].长沙,国防科学技术大学, 2007.
    [90] Wang N, Ho K H, Pavlou G, et al. An Overview of Routing Optimization for internet traffic engineering[J]. IEEE Communications Surveys & Tutorials. 2008, 10(1): 36-56.
    [91] Katz D, Ward D. Bidirectional Forwarding Detection[Z]. IETF draft-ietf-bfd-base-09.txt, 2009.
    [92] Wang L, Saranu M, Gottlieb J M, et al. Understanding BGP Session Failures in a Large ISP[C]. In: Proc. of e IEEE INFOCOM.IEEE Communications Society, 2007.
    [93] Meyer D, Zhang L, Fall K. Report from the IAB Workshop on Routing andAddressing[Z]. RFC 4984, 2007.
    [94] Fall K, Iannaccone G, Ratnasamy S, et al. Routing Tables: Is Smaller Really Much Better?[C]. In: Proc. of Sigcomm HotNets-VIII.New York City, NY: ACM Press, 2009.
    [95] Andersen D G, Balakrishnan H, Feamster N, et al. Accountable internet protocol (AIP)[C]. In: Proc. of SIGCOMM'08.ACM Press, 2008.
    [96] De Carli L, Pan Y, Kumar A, et al. PLUG: Flexible Lookup Modules for Rapid Deployment of New Protocols in High-speed Routers[C]. In: Proc. of ACM SIGCOMM 2009.BARCELONA, SPAIN: ACM Press, 2009. 207-218.
    [97] Kwong K, Gao L, Gu Erin R, et al. On the Feasibility and Efficacy of Protection Routing in IP Networks[C]. In: Proc. of INFOCOM 2010.IEEE Communications Society, 2010.
    [98] Francois P, Shand M, Bonaventure O. Disruption free topology reconfiguration in OSPF networks[C]. In: Proc. of INFOCOM‘07.Anchorage,Alsaka: IEEE Computer Society, 2007. 89-97.
    [99] P F, Bonaventure O. An Evaluation of IP-based Fast Reroute Techniques[C]. In: Proc. of ACM CoNEXT’05.Toulouse,France: ACM Press, 2005. 244-245.
    [100]A A. U-turn alternates for IP/LDP Local Protection[Z]. IETF draft, draft-atlas-ip-local-protect-uturn-03.txt, work in progress, February, 2006.
    [101]Bryant S, Filsfils C, Previdi S, et al. IP Fast Reroute using tunnels[Z]. Internet draft, draft-bryant-ipfrr-tunnels-03.txt, work in progress, November 16, 2007, 2007.
    [102]Shand M, Bryant S, Previdi S. IP Fast Reroute Using Not-via Addresses[Z]. draft-ietf-rtgwg-ipfrr-notvia-addresses-03, 2008.
    [103]Xiaowei Y, David W. Source selectable path diversity via routing deflections[C]. In: Proc. of ACM SIGCOMM’06.Pisa, Italy: ACM Press, 2006. 159-170.
    [104]S N, Sanghwan L, Yinzhe Y, et al. Fast Local Rerouting for Handling Transient Link Failures[J]. IEEE/ACM Transactions on Networking. 2007, 15(2): 359-372.
    [105]Li A, Yang X, Wetheral D. SafeGuard: Responsive Routing with Consistent Forwarding[C]. In: Proc. of ACM CoNext'09.Rome, Italy: ACM Press, 2009. 301-312.
    [106]Li A, Francois P, Yang X. On Improving the Efficiency and Manageability of NotVia[C]. In: Proc. of ACM CoNext’07.New York, NY, USA: ACM Press, 2007. 1-12.
    [107]Zifei Z, S N, Yinzhe Y, et al. Failure Inferencing based Fast Rerouting for Handling Transient Link and Node Failures[C]. In: Proc. of INFOCOM‘06.Barcelona, Spain: IEEE Computer Society, 2006. 1-5.
    [108]Kushman N, Kandula S, Katabi D, et al. R-BGP: Staying Connected in aConnected World[C]. In: Proc. of NSDI'07.Cambridge, MA: USENIX Association, 2007. 341-354.
    [109]Wang F, Gao L. A Backup Route Aware Routing Protocol-Fast Recovery from Transient Routing Failures[C]. In: Proc. of IEEE INFOCOM'08.Phoenix, Arizona: IEEE Computer Society, 2008. 2333-2341.
    [110]Wang F, Gao L. Path Diversity Aware Interdomain Routing[C]. In: Proc. of IEEE Infocom'09.Rio de janeiro,Brazil: IEEE Computer Society, 2009. 307-315.
    [111]Ganichev I A, Bin D, Godfrey P B, et al. YAMR: Yet Another Multipath Routing Protocol[R]. Technical Report, UCB/EECS-2009-150, EECS Department, University of California, Berkeley, 2009.
    [112]F H A, A K, Cicic T. Resilient Routing Layers for Recovery in Packet Networks[C]. In: Proc. of Dependable Systems and Networks(DSN).Yokohama, Japan: IEEE computer Society, 2005. 238-247.
    [113]A K, F H A, O L, et al. Fast IP network recovery using multiple routing configurations[C]. In: Proc. of INFOCOM'06.Barcelona, Spain: IEEE Computer Society, 2006. 1-11.
    [114]Psenak P, Mirtorabi S, Roy A, et al. Multi-Topology (MT) Routing in OSPF[Z]. RFC 4915, 2007.
    [115]Apostolopoulos G. Using multiple topologies for ip-only protection against network failures: A routing performance perspective[R]. Technical Report 377, ICS-FORTH, 2006.
    [116]Cicic T, Hansen A F, Apeland O K. Redundant Trees for Fast IP Recovery[C]. In: Proc. of BROADNETS.Raleigh, NC, USA: IEEE Computer Society, 2007. 152-159.
    [117]Ohara Y, Imahori S, Van Meter R. MARA: Maximum Alternative Routing Algorithm[C]. In: Proc. of Infocom'09.Rio de Janeiro,Brazil: IEEE Computer Society, 2009. 298-306.
    [118]Hansen A F, Lysne O, Icˇic T C, et al. Fast Proactive Recovery from Concurrent Failures[C]. In: Proc. of ICC'07.Glasgow, Scotland: IEEE Computer Society, 2007. 115-122.
    [119]Kini S, Ramasubramanian S, Kvalbein A, et al. Fast Recovery from Dual Link Failures in IP Networks[C]. In: Proc. of Infocom'09.Rio de Janeiro,Brazil: IEEE Computer Society, 2009. 1368-1376.
    [120]Motiwala M, Elmore M, Feamster N, et al. Path Splicing[C]. In: Proc. of SIGCOMM'08.Seattle, Washington, USA.: ACM Press, 2008. 27-38.
    [121]Lakshminarayanan K, Caesar M, Rangan M, et al. Achieving convergence-free routing using failure-carrying packets[C]. In: New York, NY, USA: ACM, 2007. 241-252.
    [122]Caesar M, Caldwell D, Feamster N, et al. Design and Implementation of a Routing Control Platform[C]. In: Proc. of NSDI’05.Boston,MA Berkeley,CA, USA: USENIX Association, 2005. 15-28.
    [123]Wang J, Zhong Z, Nelakuditi S. Handling multiple network failures through interface specific forwarding[C]. In: Proc. of GLOBECOM'06.San Francusco, California,USA: IEEE Computer Society, 2006. 1-6.
    [124]Ermolinskiy A, Shenker S. Reducing Transient Disconnectivity using Anomaly-Cognizant Forwarding[C]. In: Proc. of ACM SIGCOMM Hotnet VII.Calgary, Alberta, Canada: ACM Press, 2008. 91-96.
    [125]Behrens J, Garcia-Lunes-Aceves J J. Distributed,scalable routing based on link-state vectors[C]. In: SIGCOMM Conference.ACM Press, 1994. 136-147.
    [126]Fayet V, Khotimsky D A, Przygienda T. Hop-by-hop routing with node-dependent topology information[C]. In: INFOCOM'99.IEEE, 1999. 79-87.
    [127]Levchenko K, Voelke G M, Paturi R, et al. XL: An Efficient Network Routing Algorithm[C]. In: SIGCOMM.Seattle, Washington, USA: ACM, 2008.
    [128]Oliveira R, Zhang B, Pei D, et al. Quantifying path exploration in the Internet[J]. IEEE/ACM Transaction on Networking. 2009, 17(2): 445-458.
    [129]Edard M M, Finn S G, Barry R A, et al. Redundant Trees for Preplanned Recovery in Arbitrary Vertex-Redundant or Edge-Redundant Graphs[J]. IEEE/ACM TRANSACTIONS ON NETWORKING. 1999, 7(5): 641-652.
    [130]Feamster N, Johari R, Balakrishnan H. Implications of Autonomy for the Expressiveness of Policy Routing[C]. In: Proc. of the SIGCOMM’05.New York, NY, USA: ACM, 2005.
    [131]Mahajan R, Wetherall D, Anderson T. Understanding BGP Misconfiguration[C]. In: Proc. of SIGCOMM’02.Pittsburgh, Pennsylvania, USA: ACM Press, 2002.
    [132]Qiu J. simBGP:a lightweight event-driven BGP simulator[Z]. http://www.bgpvista.com/simbgp.php, 2009.
    [133]Caida. The CAIDA AS relationships dataset, as-rel.20090429.a0.01000.txt[Z]. http://www.caida.org/data/active/as-relationships, 2009.
    [134]Godfrey P B, Ganichev I, Shenkerz S, et al. Pathlet Routing[C]. In: Proc. of ACM SIGCOMM’09.Barcelona, Spain: ACM Press, 2009. 111-122.
    [135]Pei D, Zhang B, Massey D, et al. An analysis of convergence delay in path vector routing protocols[J]. Computer Networks. 2006, 50(3): 398-421.
    [136]Lakshminarayanan K K, Caesar M C, Rangan M, et al. Achieving Convergence-Free Routing using Failure-Carrying Packets[C]. In: Proc. of ACM SIGCOMM’07.Kyoto, Japan: ACM Press, 2007. 241-252.
    [137]Sahoo A, Kant K, Mohapatra P. BGP convergence delay after multiple simultaneous router failures:Characterization and solutions[J]. ComputerCommunications. 2009(32): 1207-1218.
    [138]Leskovec J, Kleinberg J, Faloutsos C. Graphs over time: Densification laws, shrinking diameters and possible explanations[C]. In: Proc. of 11th ACM SIGKDD.Chicago, IL: ACM Press, 2005. 1-11.
    [139]Bush R, Maennel O, Roughan M, et al. Internet Optometry: Assessing the Broken Glasses in Internet Reachability[C]. In: Proc. of IMC’09.Chicago, Illinois, USA: ACM, 2009. 242-253.
    [140]Basu A, Ong C L, Rasala A, et al. Route Oscillations in I-BGP with Route Reflection[C]. In: ACM SIGCOMM'02. Pittsburgh, Pennsylvania, USA: ACM Press, 2002. 235-247.
    [141]Filsfils C. BGP Convergence in much less than a second[R]. Technical Presentation at Nanog 40, June 2007. Available: http://www.nanog.org/ meetings/nanog40/presentations/ClarenceFilsfils-BGP.pdf, 2007.
    [142]Park J H, Jen D, Lad M, et al. Investigating occurrence of duplicate updates in BGP announcements[C]. In: Proc. of Passive and Active Measurement Conference (PAM).ACM Press, 2010. 1-10.
    [143]Flavel A, Roughan M. Stable and Flexible iBGP[C]. In: Proc. of SIGCOMM’09.Barcelona, Spain: ACM Press, 2009. 183-194.
    [144]Rexford J, Wilfong G, Zhang-Shen R. Routers of the AS, Unite! Guaranteeing a Network Realizes Its Routing Policy[R]. Technical Princeton University, 2009.
    [145]Buob M, Uhlig S, Meulle M. Designing Optimal iBGP Route-Re?ection Topologies[C]. In: NETWORKING 2008, LNCS 4982.Springer Press, 2008. 542-553.
    [146]Pelsser C, Uhlig S, Takeda T, et al. Providing scalable NH-diverse iBGP route re-distribution to achieve sub-second switch-over time[J]. Comput. Netw. doi:10.1016/j.comnet.2010.04.007(to appear). 2010.
    [147]Marques P, Fernando R, Chen E, et al. Advertisement of the best external route in BGP[Z]. draft-marques-idr-best-external-01.txt, 2009.
    [148]Walton D, Retana A, Chen E, et al. Advertisement of Multiple Paths in BGP[Z]. draft-walton-bgp-add-paths-06.txt, 2009.
    [149]Van den Schrieck V, Bonaventure O. Routing oscillations using BGP multiple paths advertisement[Z]. draft-vandenschrieck-bgp-add-paths-oscillations-00.txt, 2007.
    [150]Fu J, Sj?din P, Karlsson G. Intra-domain routing convergence with centralized control[J]. Computer Networks. 2009, 53: 2985-2996, 10-1016.
    [151]Verkaik P, Pei D, Scholl T, et al. Wresting control from BGP: Scalable fine-grained route control[C]. In: Proc. USENIX Annual TechnicalConference.USENIX Association, 2007. 295-308.
    [152]Internet2 Network Observatory[Z]. http://noc.net.internet2.edu/grnoc.html, 2010.
    [153]http://archive.routeviews.org/bgpdata/2010.03/RIBS/oix-full-snapshot-2010-03-01-1200.bz2[Z]. 2010.
    [154]Quoitin B, van den Schrieck V, Fran?ois P, et al. IGen: Generation of Router-level Internet Topologies through Network Design Heuristics[C]. In: Proc. of the 21st International Teletraffic Congress.ACM Press, 2009. 1-8.
    [155]Topologies used for simulations. [Online]. Available: http://inl.info.ucl.ac.be/softwares/simbgp-addpaths-support[Z]. 2010.
    [156]Zhang R, Bratell M. BGP Design and Implementation[M]. Cisco Press, 2004.
    [157]Park J H, Oliveira R, Amante S, et al. Towards a Systematic Understanding of Route Re?ection[R]. Technical Los Angeles: University of California, Computer Science Department ,Technical Report, 2010.
    [158]Pei D, Van der Merwe J. BGP Convergence in Virtual Private Networks[C]. In: IMC’06.Rio de Janeiro, Brazil: ACM Press, 2006. 1-6.
    [159]Feamster N, Borkenhagen J, Rexford J. Guidelines for Interdomain Traffic Engineering[J]. ACM SIGCOMM Computer Communications Review. 2003, 33(5): 19-30.
    [160]Francois P, Decraene B, Pelsser C, et al. Graceful BGP session shutdown[Z]. IETF draft-francois-bgp-gshut-01, 2009.
    [161]Balon S, Leduc G. BGP-aware IGP Link Weight Optimization in Presence of Route Re?ectors[C]. In: Proc. of IEEE Infocom'09.IEEE Communications Society, 2009.
    [162]Teixeira R, Shaikh A, Griffin T G, et al. Impact of Hot-Potato Routing Changes in IP Networks[J]. IEEE/ACM TRANSACTIONS ON NETWORKING. 2008, 16(6): 1295-1307.
    [163]Griffin T G, Premore B J. An experimental analysis of BGP convergence time[C]. In: in Proc. of International Conference on Network Protocols(ICNP'01).IEEE Computer Society, 2001. 53-61.
    [164]Mahajan N S R, Anderson T. Quantifying the causes of path inflation[C]. In: Sigcomm'03.ACM, 2003.
    [165]Watari M, Hei Y, Ano S, et al. OSPF-based Fast Reroute for BGP Link Failures[C]. In: Proc. of GLOBECOM 2009.IEEE Communications Society, 2009.
    [166]Meyer D. BGP Communities for Data Collection[Z]. RFC 4384, 2006.
    [167]Teixeira R, Shaikh A, Griffin T, et al. Network Sensitivity to Hot-Potato Disruptions[C]. In: SIGCOMM’04.Portland, Oregon, USA.: ACM Press, 2004.
    [168]Chowdhury N M M K, Boutaba A. A Survey of Network Virtualization[R].Technical David R. Cheriton School of Computer Science University of Waterloo, 2008.
    [169]Anderson T, Peterson L, Shenker S, et al. Overcoming the Internet impasse through virtualization[C]. In: Hot Nets III.ACM Press, 2005. 34-41.
    [170]Moreno V, Reddy K, World N. Network Virtualization[M]. Cisco Press, 2007.
    [171]Spring N, Mahajan R, Wetherall D, et al. Measuring ISP Topologies With Rocketfuel[J]. IEEE/ACM TRANSACTIONS ON NETWORKING. 2004, 12(1): 2-16.
    [172]Sherwood R, Bender A, Spring N. DisCarte: A Disjunctive Internet Cartographer[C]. In: Proc. of SIGCOMM’08.Seattle, Washington, USA: ACM Press, 2008.
    [173]Delaunois C. Ghitle : Generator of Hierarchical Internet Topologies using LEvels[Z]. Online. Available: http://ghitle.info.ucl.ac.be/.
    [174]Van den Schrieck V, Francois P, Bonaventure O. BGP Add-Paths : The Scaling/Performance Tradeoffs[J]. IEEE Journal on Selected Areas in Communications. 2010: to appear.
    [175]Clark D D, Wroclawski J, Sollins K R, et al. Tussle in Cyberspace: Defining Tomorrow’s Internet[J]. IEEE/ACM TRANSACTIONS ON NETWORKING. 2005, 13(3): 462-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700