基于微液滴介质的微型静电式振动发电机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将环境中的振动能转换为电能的MEMS微型振动发电机是近年来国内外研究的热点。本论文在国家自然科学基金资助下,针对微型振动发电机抗冲击能力差、易疲劳等问题,开展基于微液滴介质的微型静电式振动发电机的关键技术研究,具有重要的科学意义和应用价值。
     论文在分析微型振动发电机研究现状和发展趋势的基础上,提出基于微液滴介质的微型静电式振动发电机新结构,分析该微型静电式振动发电机的工作原理,建立相应的理论模型并进行模拟仿真;研制出基于微液滴介质的微型静电式振动发电机宏尺寸原理样机;开展该微型静电式振动发电机的MEMS加工工艺的初步探索研究。论文主要研究内容:
     ①研究分析了微型振动发电机的研究现状与趋势,提出了基于微液滴介质的微型静电式振动发电机新结构,分析了该结构静电式振动发电机的工作原理,建立了相应的理论模型;
     ②采用COMSOL Multiphysics软件对基于微液滴介质的微型静电式振动发电机的Teflon驻极体电场分布和微液滴在微腔体中的运动过程进行模拟仿真,在此基础上开展了该微型静电式振动发电机的系统级仿真;
     ③研制出了基于微液滴介质的微型静电式振动发电机的宏尺寸原理样机,对原理样机进行了测试:在加速度为2g,负载为1M?情况下,工作频率为3Hz,输出电压峰-峰值为1.21V,输出功率为0.73μW;
     ④开展了基于微液滴介质的微型静电式振动发电机的MEMS加工工艺探索研究,完成了版图设计。
The MEMS micro-generator which converts the mechanical vibration energy of environment into electrical energy is a research hotspot in recent years at home and abroad.In the support of National Natural Science Foundation, for the current spring or cantilever-based micro-vibration generator’s problems, such as poor impact resistance ability, easy fatigue and so on, to carry out the key technology research of micro-droplet dielectric based micro-vibration generator, with important scientific and application value.
     The new structure of electrostatic vibration generator based on micro-droplet dielectric was proposed in the analysis of micro-vibration generator status and development trend. We analyses the working principle of this micro electrostatic vibration generator, established the theoretical model and have carried out some simulations; Developed the micro-droplet dielectric based micro electrostatic vibration generators’macro size prototype; To carry out the preliminary exploration of MEMS processing on this micro-electrostatic vibration generator.
     The main contents of this paper are:
     ①We analyzed the micro-vibration Generator Status and Trends. The new structure of electrostatic vibration generator based on micro-droplet dielectric was proposed. Analyzed the working principle of this micro electrostatic vibration generator, established the theoretical model;
     ②We carried out simulations of teflon electret electric field distribution in micro-cavity and the movement process of micro-droplet in micro-cavity. After all carried out the system-level simulation of electrostatic vibration generator based on micro-droplet dielectric;
     ③We developed and tested the micro-droplet dielectric based micro electrostatic vibration generators’macro size prototype: when the acceleration is 2g, load is 1M?, the working frequency is 3Hz, the output voltage (peak-peak)is 1.21V, the output electricity is 0.73μW;
     ④We carried out the preliminary exploration of MEMS processing on micro-droplet dielectric based micro electrostatic vibration generator, finished the layout design.
引文
[1]王淑华,王玲.微系统研究现状[J].微纳电子技术, 2009, 6: 383-384.
    [2] Dafei Yin; Yu Fang. From sensor net to sensor grid: A survey and taxonomy on Sensor Web[C]. IEEE International Geoscience and Remote Sensing Symposium, 2008, 6: 2935-2938.
    [3]祁长璞,曹小华,刘有源,张金丰,俞坤师.无线传感器网络在钢结构监测中的应用[J]. c传感器与仪器仪表, 2009, 4: 137-139.
    [4] Sugahara, Satoshi. Micro power converter[M]. A1-Patent Application Publication, 2009, 6: 323-355.
    [5] YU Hong-yun; LI Yan-qiu; SHANG Yong-hong; SU Bo. Design of a micro photovoltaic system for wireless sensor network[J]. Journal of Functional Materials and Devices, 2008, 14(2): 476-480.
    [6] Li De-Tao, Pan Jian-Feng, Xue Hong, Yang Wen-Ming. Development and prospect on micro-power systems[J]. Journal of Jiangsu University (Natural Science Edition), 2006, 27(6): 489-492.
    [7]陈岩,宋楠楠,乔继红,郭宏.微能源技术在无线传感器网络中的应用[J].微计算机信息, 2008, 31: 159-165.
    [8] He Yong-Tai, Liu Li-Hui, Li Yan-Qiu, Lei Wang. A high-efficiency energy storage scheme of solar micro-power systems[C]. Micro and Nano Technology, 2009, 60-61: 74-78.
    [9] F. Chamran, H. S. Min, B. Dunn. Zinc-air microbattery with electrode array of zinc microposts [C], MEMS 2007, 2007: 871-874.
    [10] J. N. Harb, R. M. LaFollette, R. H. Selfridge. Microbatteries for self-sustained hybrid micropower supplies[J], Journal of Power Sources, 2002, 104(1): 46-51.
    [11]索春光,刘晓为,张宇峰,张博等.直接甲醇燃料电池膜电极的研究与进展[J].化学进展, 2009, 08(21): 1662-1671.
    [12] S.Wagner, S. Krumbholz, R. Hahn, H. Reichl. Influence of Structure Dimensions on Self-breathing Micro Fuel Cells[J]. Power Sources, 2009, 190: 76–82.
    [13]赵群,张翔,李辉.基于燃料电池技术的新能源发展论述[J].机械, 2007, 34(7): 36.
    [14] A. Patil, J. W. Choi, S. J. Yoon. Review of issue and challenges facing rechargeable nanostructured lithium batteries[J]. Nanotechnology Materials and Devices Conference, 2006, 1: 196-197.
    [15] C. Alippi, C. Galperti. An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes[J], Circuits and Systems I, 2008, 55(6): 1742-1750.
    [16] B. A. Warneke, M. D. Scott, B. S. Leibowitz. An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks [J]. Proceedings of IEEE Sensors, 2002(2): 1510-1515.
    [17] He Shan, Wang Weiqing, Zhang Xinyan, Zhao Xiang, Li Yongwei. Study of stator thermal field for large permanent magnet synchronous wind power generator[J]. Taiyangneng Xuebao, 2009, 30(6): 799-803.
    [18]刘路,解晶莹.微能源[J].电源技术, 2002, 26(6): 470-473.
    [19] S. Tin, R. Duggirala, R. Polcawich. Self-powered discharge-based wireless transmitter[C], Micro Electro Mechanical Systems, 2008: 988-991.
    [20] C. D. Cress, B. J. Landi, R. P. Raffaelle. Modeling Laterally-contacted nipi-Diode Radioisotope Batteries [J]. Nuclear Science, 2008, 55(3): 1736-1743.
    [21] Stephen P Beeby, Terence O’Donnell. Electromagnetic Energy Harvesting[M]. Springer US, 2009: 129-161.
    [22] R.N. Torah, P. Glynne-Jones, M.J. Tudor, S.P. Beeby. Energy aware wireless microsystem powered by vibration energy harvesting[C]. PowerMEMS Freiburg Germany, 2007: 323-326.
    [23] Ibrahim Sari, Tuna Balkan, Haluk Kulah. An electromagnetic micro energy harvester based on an array of parylene cantilevers[J]. Journal of Micromechanics and Microengineering, 2009, 19(10): 41.
    [24] Mack B., Kratt K., Sturmer M., Wallrabe U.. Electromagnetic micro generator array consisting of 3D micro coils opposing a magnetic PDMS membrane[J]. Solid-State Sensors, Actuators and Microsystems Conference, 2009, 21-25: 1397-1400.
    [25] Dibin Zhua, Stephen Robertsb, Michael J. Tudora, Stephen P. Beebya. Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator[J]. Sensors and Actuators A: Physical, 2010(158): 284–293.
    [26] Marcin Marzencki, Yasser Ammar, Skandar Basrour. Integrated power harvesting system including a MEMS generator and a power management circuit[C]. Solid-State Sensors, Actuators and Microsystems Conference, 2007, International 10-14: 887–890.
    [27] Marios Stamos, Charlene Nicoleau, Russel Torah, John Tudor. Screen-Printed piezoelectric generator for helicopter health and usage monitoring systems[J]. Proceedings Power MEMS, 2008: 201-204.
    [28] Shad Roundy, Paul K. Wright. MICRO-ELECTROSTATIC VIBRATION-TO-ELECTRICITY CONVERTERS[J]. ASME International Mechanical Engineering Congress & Exposition, 2002: 1-10.
    [29] Takashi Genda, Shuji Tanaka, Masayoshi Esashi. High Power Electrostatic Motor and Generator Using Electrets [C]. The 12th International Conference on Solid State Sensors,Actuators and Microaystems, Boston, 2003: 492-496.
    [30] Takumi Tsutsumino, Yuji Suzuki, Nobuhide Kasagi, Yukinori Tsurumi. High-Performance Polymer Electret for Micro Seismic Generator[C]. PowerMEMS2005, 2005(11): 28-30.
    [31] Y. Naruse, N. Matsubara, K Mabuchi. Electrostatic micro power generation from low-frequency vibration such as human motion[J]. Journal of Micromechanics and Microengineering, 2009, 19(9): 1-5.
    [32]温中泉,温志渝,陈光焱等.微型振动式发电机振子系统的理论计算及仿真[J].光学精密工程, 2003, 11(1): 50-55.
    [33] Hiroshi Okamoto, Takafumi Suzuki, Kazuhiro Mori, Ziping Cao, Teppei Onuki, Hiroki Kuwano. The advantages and potential of electret-based vibration-driven micro energy harvesters[J]. International Journal of Energy Research, 2009, 33(13): 1180-1190.
    [34] N. S. Shenck, J. A. Paradiso. Energy Scavenging with Shoe-Mounted Piezoelectrics[C]. IEEE Micro, 21 (2001): 30-41.
    [35] [EB/OL] http://zhangzc.jahee.com. 2009, 12.
    [36]常建忠,刘谋斌,刘汉涛.微液滴动力学特性的耗散粒子动力学模拟[J].物理学报, 2008, 7(57): 3954-3960.
    [37]陈硕,赵钧,王丹,刘明安,范西俊.微通道中液滴的耗散粒子动力学模拟[J].上海交通大学学报, 2005, 11(39): 1833-1837.
    [38] Fan XJ, Phan-Thien N, Yong NT, et al Molecular dynamics simulation of a liquid in a complex nano channel flow[J]. Physics of Fluids, 2002, 14(3): 1146- 1153.
    [39] Espanzol P, Serrano M, Zuniga I. Coarse graining of a fluids and its relation with dissipative particle dynamics and smoothed particle dynamics[J]. International Journal of Modern Physics, 1997, 8(4): 899-908.
    [40] Groot R D, Warren P B. Dissipative particle dynamics: Bridging the gap between atomistic and macroscopic simulation[J]. Journal of Chemical Physics, 1997, 107(11): 4423-4435.
    [41] TAYLOR G I. The shape and acceleration of a drop in a high speed air stream[D]. Bachelor Cambridge University Press, 1963.
    [42]覃群,张群生.单液滴碰壁理论模型.武汉理工大学学报,信息与管理工程, 2007, 10(29): 73-75.
    [43]朱元海,匡洞庭,王签.关于“毛细现象的能量来源”的表面热力学讨论[J].大学物理, 1998 ,17(9): 19~22.
    [44]严子浚.关于“毛细现象的能量来源”的讨论[J].大学物理, 1996, 15(10): 31.
    [45]钟育乔.毛细现象辩析[J].大学物理, 1993, 12(7): 11-13.
    [46]任学藻.柱形管的毛细现象[J].大学物理, 2005, 7(24): 10-11.
    [47]田辉,杨泰生,陈玉清.疏水理论研究进展[J].山东陶瓷, 2008.06, 31(3): 8-13.
    [48]王雷,舒东,朱光明,贾芳.一种耐高温憎水聚芳醚的合成与性能初步研究[J].高分子学报, 2009, 11: 1162-1164.
    [49]冯军宗,冯坚,高庆福,武纬.六甲基二硅胺烷对SiO2气凝胶的表面改性[J].硅酸盐学报, 2008, 3(36): 89-94.
    [50]张世文,廉育英.憎水性与接触角的测量[J].现代计量测试, 1994(3): 36-41.
    [51]何渝,温中泉,温志渝,唐彬.微型化Teflon驻极体的研究[J].传感技术学报, 2008, 06: 985-988.
    [52] Y.Arakawa, Y.Suzuki, N.Kasagi. Micro Seismic Power Generator Using Electret Polymer Film[C]. Power MEMS, 2004, 11(28-30): 187-190.
    [53]朱红,马铁华.水银与固体电介质表面的接触角测量方法研究[J].科技情报开发与经济, 2005, 15(9): 159-160.
    [54]唐彬.基于驻极体的振动式静电微型发电机研究[D].重庆大学, 2008: 19-53.
    [55]庞克俭. HMDS预处理系统[J].电子工业专用设备, 2006(10): 70-72.
    [56]张明明,廖聪湘.烘箱HMDS预处理程序优化[J].电子与封装, 2009, 4(9): 37-39.
    [57] Kazuaki Suzuki, Bruce W. Smith. Microlithography Science and Technology[M]. CRC, 2007: 592-593.
    [58]余本海.飞秒激光对透明电介质材料的烧蚀与微加工研究[D].华中科技大学, 2008: 2-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700