多通道LFPs-Spikes时变频谱相干及其对工作记忆事件编码的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:大脑的工作记忆是由不同模态的神经信号,以及不同脑区同一模态的神经信号相互协同来编码的。本论文基于大鼠工作记忆过程中在体前额叶皮层上获得的两类不同模态的多通道神经信号:多通道局部场电位(local field potentials, LFPs)和离散点电位形式的多通道峰电位(Spikes)为实验数据,发展和应用LFPs-Spikes的时变频谱相干(time-varying spectrum coherence)编码方法,及其对工作记忆任务的协同编码模式,为研究工作记忆的神经编码机制提供神经计算支持。
     研究方法:
     1.实验数据:来自本实验室,应用清醒动物在体多通道采集技术,在大鼠工作记忆过程中记录的前额叶皮层16通道神经信号。
     2.多通道LFPs和Spikes的时变谱相干方法:
     (1)16通道LFPs的时变频谱相干分布
     对16通道原始记录数据进行低通滤波(0-300Hz),获得16通道LFPs。利用加权最小二乘的局部线性回归与拟合方法消除16通道LFPs信号中夹杂的基线漂移与工频干扰,获取零均值16通道LFPs。
     分别计算每个通道LFPs的功率谱密度(Power Spectral Density, PSD),选取PSD分布集中的θ频段作为LFPs的特征频段。
     选取功率最大、变化最明显的通道作为计算相干频谱分布的参考通道;选取计算窗口为50ms,移动步长为12.5ms,从初始点开始逐个计算每个窗口中每个通道LFP以及LFP的θ分量对参考通道的频谱相干分析,分别绘制多通道LFPs及其θ分量的时变频谱相干动态分布图。
     (2)25个神经元动作电位时空序列的获取及其时变频谱相干编码
     对16通道原始记录数据进行高通滤波(≥300Hz),获得16通道高通信号。选取超出阈值-65μV且信噪比大于3.0认定为每个通道的峰电位(Spikes),或称为multi-unit。本论文中可以有效获得Spikes序列的通道是14个。应用美国Plexon公司提供的Offline Sorter神经信号分类软件对14个通道的Spikes逐一进行单个神经元放电的分类(sorting),获得25个神经元发放的动作电位时空序列。
     分别计算每个神经元窗口放电率{r(r)}i的PSD分布,选取PSD分布集中的θ频段为神经元群体放电时空序列的特征频段。
     从25个神经元中选取PSD最大、变化最明显的神经元作为参考神经元。选取计算窗口为50ms,移动步长为12.5ms,从初始点开始逐个计算每个窗口中每个神经元的平均放电频率,及其对参考神经元的频谱相干分析,获取神经元群体的时变频谱相干动态分布。
     (3)14通道LFPs-Spikes之间的时变频谱相干分布
     将14通道LFPs和14通道Spikes进行配对,得到14通道LFPs-Spikes数据对。选取计算窗口为50ms,移动步长为12.5ms,从初始点开始逐个计算每个窗口中每个通道LFPs-Spikes的频谱相干值,获取14通道LFPs-Spikes的时变频谱相干动态分布。
     计算每个通道LFP的整体PSD分布,同时利用点电位平均发放率的方法计算Spikes的PSD分布,选取特征频段(θ频段),如上计算θ频段LFPs-Spikes的时变相干动态分布。
     结果:
     1.16通道LFPs时变频谱相干模式
     (1)PSD峰值频率为(8.45±2.46)Hz,特征θ频段(4-13 Hz)占整体频段(0-120 Hz)的(48.89±3.05)%;
     (2)37次重复实验中,大鼠工作记忆事件前后1 s的时变频谱相干平均值分别为:
     ①LFPs的θ分量:0.2404±0.0102与0.7825±0.0104,经t检验,事件点后1s的时变频域相干值比事件点前1 s显著增加(P<0.05);
     ②LFPs的全频段:0.3913±0.0189与0.4729±0.0178,经t检验,事件点前后相干值无显著增加(P>0.05)。
     ③LFPs的其它分量,如δ分量:0.2113±0.0140与0.2621±0.0121,经t检验,事件点前后相干值无显著增加(P>0.05)。
     2.25个神经元动作电位时空序列时变频谱相干编码模式
     (1)PSD峰值频率为(8.25±3.12)Hz,特征θ频段(4-13 Hz)占整体频段(0-120 Hz)的(60.03±6.98)%;
     (2)37次重复实验中,大鼠工作记忆事件前后1 s的时变频谱相干平均值分别为:
     ①时空序列的θ分量:0.1952±0.0064与0.7357±0.0083,经t检验,事件点后1 s的时变频域相干值比事件点前1 s显著增加(P<0.05);
     ②平均放电频率:0.2711±0.0046与0.3265±0.0038,经t检验,事件前后相干值无显著改变(P>0.05)。
     3.14通道LFPs-Spikes时变频谱相干模式
     (1) LFPs的PSD峰值频率为(7.86±2.74) Hz, Spikes的PSD峰值频率为(8.26±1.64)Hz,特征θ频段(4-13 Hz)占整体频段(0-120 Hz)的(46.21±4.07)%;
     (2)37次重复实验中,大鼠工作记忆事件前后1s的时变频谱相干平均值分别为:
     ①LFPs-Spikes的θ分量:0.2222±0.0108与0.7786±0.0129,经t检验,事件点后1s的时变频域相干值比事件点前1s显著增加(P<0.05);
     ②LFPs-Spikes的全频段:0.2987±0.0077与0.3332±0.0088,经t检验,事件点前后相干值无显著改变(P>0.05)。
     结论:
     本论文研究16通道LFPs,25个神经元动作电位以及14通道LFPs-Spikes的时变频谱相干编码,结论如下:
     1.16通道LFPs及θ分量的时变相干谱分布模式
     (1) LFPs的θ频段是大鼠工作记忆编码的特征频段,16通道θ分量的时变频谱相干有效地编码了工作记忆事件:事件后1s的平均频谱相干值显著高于事件前(P<0.05);
     (2)16通道LFPs编码大鼠工作记忆事件效果在P>0.05水平上不显著;其它分量(如δ分量)编码低于LFPs整体编码效果。
     2.25个神经元动作电位时空序列及其θ分量时变频谱相干编码模式
     (1)点电位表示的动作电位序列放电频率的θ分量有效地编码了工作记忆事件:事件后1s的平均频谱相干值显著高于事件前(P<0.05);
     (2)平均放电频率编码大鼠工作记忆事件效果在P>0.05水平上不显著。
     3.14通道LFPs-Spikes时变相干谱协同模式
     (1) LFPs-Spikes的θ分量时变频谱相干有效地编码了工作记忆事件:事件后1s的平均频谱相干值显著高于事件前(P<0.05);
     (2) LFPs-Spikes全频段编码大鼠工作记忆事件效果在P>0.05水平上不显著。
Objective
     Working memory in brain is coded by different modal neural signals and same modal neural signals in different brain areas collaboratively. The study developed and applied time-varying spectrum coherence of LFPs-Spikes based on two types of multi-channel neural singals:local field potentials and discrete spikes, which acquired on prefrontal cortex of rats during working memory task in vivo. The collaborative coding pattern provides neural computation support for analyzing the neural coding mechanisms of working memory.
     Methods
     1. Experimental data, which come from our laboratory, were 16-channel neural signals on prefrontal cortex of rats during working memory task based on multi channel recording technology on awake animals in vivo.
     2. Methods on multi-channel time-varying spectrum coherence:
     (1) Time-varying spectrum coherence distribution of 16-channel LFPs
     16-channel LFPs were acquired through lowpass filtering the original data (0-300Hz). Local linear regression based on the weighted least square method was used to remove the baseline drift and power-line interference on LFPs.
     Power spectral density (PSD) on each channel LFP was performed respectively for characteristic theta band of LFPs. After choosing the reference channel LFP which had the largest PSD value, time-varying spectrum coherence dynamic distribution was available between each channel LFP and reference channel LFP with 50-ms multi-taper window sliding and 25% overlap, and the theta band of LFPs as well.
     (2) Time varying spectrum coherence of 25-neuron action potential time-space series.
     16-channel highpass signals were acquired through highpass filtering the original data (≥300Hz). Spikes, or multi-unit, were recognized above -65μV thresholds and 3.0 SNR.25-neuron action potential time-space series were got through sorting the 14-channel valid spikes by Offline Sorter software (Plexon, USA).
     PSD on each neuron firing rate was performed for characteristic theta band respectively. After choosing the reference neuron which had the largest PSD, time-varying spectrum coherence dynamic distribution was available with 50 ms multi-taper window sliding and 25% overlap.
     (3) Time-varying spectrum coherence distribution of 14-channel LFPs-Spikes
     14-channel LFPs-Spikes were matched between 14-channel LFPs and 14-channel spikes. Time-varying spectrum coherence dynamic distribution was available with 50 ms multi-taper window sliding and 25% overlap.
     PSD on each channel LFP and spike can be obtained through calculating firing rate for charactisric theta band, whose time-varying coherence distribution was computed as above methods.
     Results
     1.16-channel LFPs time-varying coherence pattern
     (1) PSD peak frequency:(8.45±2.46) Hz, occupied for (48.89±3.05) percents among all frequency band (0-120Hz);
     (2) Average coherence at the onset of working memory event±1s in repeated tests:
     ①Theta band of LFPs:0.2404±0.0102 and 0.7825±0.0104, P<0.05;
     ②All frequency band of LFPs:0.3913±0.0189 and 0.4729±0.0178, P>0.05;
     ③Other band such as delta of LFPs:0.2113±0.0140 and 0.2621±0.0121,P>0.05.
     2.25-neuron action potential time-space series time-varying coherence pattern
     (1) PSD peak frequency:(8.25±3.12) Hz, occupied for (60.03±6.98) percents among all frequency band (0-120Hz);
     (2) Average coherence at the onset of working memory event±1s in repeated tests:
     ①Theta band of series:0.1952±0.0064 and 0.7357±0.0083, P<0.05;
     ②Average firing rate:0.2711±0.0046 and0.3265±0.0038,P>0.05.
     3.14-channel LFPs-Spikes time-varying coherence pattern
     (1) PSD peak frequency:(7.86±2.74) Hz for LFPs, (8.26±1.64) Hz for spikes, occupied for (46.21±4.07) percents among all frequency band (0-120Hz);
     (2) Average coherence at the onset of working memory event±1s in repeated tests:
     ①Theta band of series:0.2222±0.0108 and 0.7786±0.0129, P<0.05;
     ②All frequency band of LFPs-Spikes:0.2987±0.0077 and 0.3332±0.0088,P>0.05.
     Conclusions
     This paper aimed at time-varying spectrum coherence encoding among 16-channel LFPs,25-neuron action potentials time-space series and 14-channel LFPs-Spikes, and the conclusions as follows:
     1.16-channel LFPs and its theta band component
     (1) Theta band of LFPs is the characteristic band during working memory of rats, whose time-varying spectrum coherence encodes the working memory event effectively:the coherence value after event is better to the one before event significantly.
     (2) All frequency band of LFPs coherence doesn't encode the working memory event, and other band such as delta of LFPs is lower than the former.
     2.25-neuron action potential time-space series and its theta band component
     (1) Time-varying spectrum coherence on theta band of action potential time-space series firing rate encodes the working memory event effectively:the coherence value after event is better to the one before event significantly.
     (2) Average firing rate of series coherence doesn't encode the working memory event.
     3.14-channel LFPs-Spikes and its theta band component
     (1) Time-varying spectrum coherence on theta band of LFPs-Spikes encodes the working memory event effectively:the coherence value after event is better to the one before event significantly.
     (2) All frequency band of LFPs-Spikes coherence doesn't encode the working memory event.
引文
[1]Tudusciuc O, Nieder A. Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex [J]. PNAS,2007, 104(36):14513-14518.
    [2]Faisal AA, Laughlin, SB. Stochastic simulations on the reliability of action potential propagation in thin axons [J]. PLoS Comput Biol,2007,3(5):783-795.
    [3]Borst A, Theunissen PE. Information theory and neural coding [J]. Nat Neurosci, 1999,2(11):947-957.
    [4]Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal [J]. J Neurosci,2003,23(10):3963-3971.
    [5]Bland BH, Oddie SD. Theta band oscillation and synchrony in the hippocampal formation and associated structures:the case for its role in sensorimotor integration [J]. Behav Brain Res,2001,127(1-2):119-136.
    [6]Miltner WHR, Braun C, Arnold M, Witte H, Taub E. Coherence of gamma-band EEG activity as a basis for associative learning [J]. Nature,1999,397:434-436.
    [7]Romcy-Pereira RN, de-Araujo DB, Leite JP, Garcia-Cairasco N. A semi-automated algorithm for studying neuronal oscillatory patterns:A wavelet-based time frequency and coherence analysis [J]. J Neurosci Methods, 2008,167(2):384-392.
    [8]Klein A, Sauer T, Jedynak A, Skrandies W. Conventional and wavelet coherence applied to sensory-evoked electrical brain activity [J]. IEEE Trans Biomed Eng, 2006,53(2):266-272.
    [9]Zhao H, Lu S, Zou R, Ju K, Chon KH. Estimation of time-varying coherence function using time-varying transfer functions [J]. Ann Biomed Eng,2005, 33(11):1582-1594.
    [10]DeCoteau WE, Thorn C, Gibson DJ, Courtemanche R, Mitra P, Kubota Y, Graybiel AM. Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task [J]. PNAS,2007, 104(13):5644-5649.
    [11]吴捷,张宁,杨卓,张涛.小波相干分析及其在听觉与震动刺激事件相关诱 发脑电处理中的应用[J].生物物理学报,2007,23(6):482-487.
    [12]Weiss S, Rappelsberger P. EEG coherence within the 13-18Hz band as a correlate of adistinct lexical organization of concrete and abstract nouns inhumans [J]. Neurosci Lett,1996,209(1):17-20.
    [13]Shen M, Ting KH, Beadle PJ, Chan FHY. Analysis of time-varying synchronization of EEG during sentences identification [A]. In:First International IEEE EMBS Conference. Neural Engineering [C]. Capri Island, Italy:IEEE-EMBS,2003:87-90.
    [14]Tao HY, Tian Y. Coherence characteristics of gamma-band EEG during rest and cognitive task in MCI and AD [J]. Conf Proc IEEE Eng Med Biol Soc,2005, 3:2747-2750.
    [15]Omlor W, Patino L, Hepp-Reymond MC, Kristeva R. Gamma-range corticomuscular coherence during dynamic force output [J]. Neuroimage,2007, 34(3):1191-1198.
    [16]Gersch W. Non-stationary multichannel time series analysis [A]. In:Methods of Analysis of Brain Electrical and Magnetic Signal [C]. Oxford, England:Elsevier, 1987:261-296.
    [17]Schack B, Grieszbach G, Arnold M, Bolten J. Dynamic cross-spectral analysis of biological signals by means of bivariate ARMA processes with time-dependent coefficients [J]. Med Biol Eng Comput,1995,33(4):605-610.
    [18]Weiss S, Mueller HM. The contribution of EEG coherence to the investigation of language [J]. Brain Lang,2003,85(2):325-343.
    [19]Andrew C, Pfurtscheller G. Event-related coherence as a tool for studying dynamic interaction of brain regions [J]. Electroencephalogr Clin Neurophysiol, 1996,98(2):144-148.
    [20]Florian G, Andrew C, Pfurtscheller G. Do changes in coherence always reflect changes in functional coupling? [J]. Electroencephalogr Clin Neurophysiol,1998, 106(1):87-91.
    [21]Arnold M, Miltner WHR, Witte H, Bauer R, Braun C. Adaptive AR modeling of nonstationary time series by means of Kalman filtering [J]. IEEE Trans Biomed Eng,1998,45(5):553-562.
    [22]Schack B, Grieszbach G, Nowak H, Krause W. The sensitivity of instantaneous coherence for considering elementary comparison processing. Part Ⅱ: Similarities and differences between EEG and MEG coherence [J]. Int J Psychophysiol,1999,31(3):241-259.
    [23]Ding MZ, Bressler SL, Yang WM, Liang HL. Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment [J]. Biol Cybern, 2000,83(1):35-45.
    [24]魏金河,赵仑,任维,严拱东,李大琛,杨明浩.脑电同步指数谱:计算方法及视觉选择反应中的关联性变化[J].航天医学与医学工程,2000,13(2):95-100.
    [25]洪波,杨福生,岳小敏,陈天祥.基于多变量AR模型的脑电相干性分析及其在脑区协作机制研究中的应用[J].生物物理学报,2001,17(1):106-113.
    [26]Cranstoun SD, Ombao HC, von Sachs R, Guo WS, Litt B. Time-frequency spectral estimation of multichannel EEG using the Auto-SLEX method [J]. IEEE Trans Biomed Eng,2002,49(9):988-996.
    [27]Ombao H, von Sachs R, Guo WS. SLEX analysis of multivariate nonstationary time series [J]. J Amer Statist Assoc,2005,100(470):519-531.
    [28]Klein A, Sauer T, Jedynak A, Skrandies W. Conventional and wavelet coherence applied to sensory-evoked electrical brain activity [J]. IEEE Trans Biomed Eng, 2006,53(2):266-272.
    [29]赵捷,华玫.滤除ECG中肌电和宽频率范围工频干扰的小波算法[J].航天医学与医学工程,2004,17(3):224-228.
    [30]David TM, Homer N, Karen JR. Removal of line interference from EMG [A]. Proceeding of IEEE-EMBS Asia-Pacific Conference on Biomedical Engineering [C]. Hangzhou, China:IEEE-EMBS,2000:141-142.
    [31]Chai XJ, Shan SG, Chen XL, Gao W. Local linear regression (LLR) for pose invariant face recognition [J]. IEEE Trans Image Process,2007,16:631-636.
    [32]Magill PJ, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P. Changes in functional connectivity within the rat striatopallidal axis during global brain activation in vivo [J]. J Neurosci,2006,26(23):6318-6329.
    [33]Klein A, Sauer T, Jedynak A, Skrandies W. Conventional and wavelet coherence applied to sensory-evoked electrical brain activity [J]. IEEE Trans Biomed Eng, 2006,53(2):266-272.
    [34]Thomas PB. On the performance advantage of multitaper spectral analysis [J]. IEEE Trans Signal Process,1992,40:2941-2946.
    [35]George H. Extended-time multi-taper frequency domain cross-correlation receiver function estimation [J]. Bull Seismol Soc Amer,2006,96(1):344-347.
    [36]许慰玲.基于小波变换的时变相干分析及其应用[D].汕头:汕头大学,2005:
    [37]Lachaux JP, Antoine L, David R, Diego C, Michel LVQ, Jacques M, Francisco V. Estimating the time-course of coherence between single-trial brain signals:an introduction to wavelet coherence [J]. J Clin Neurophysiol,2002,32:157-174.
    [38]Toshiyuki H, Yasushi M. Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object [J]. J Neurosci,2005,25(44):10299-10307.
    [39]马梅方.在体多通道神经信号同步记录技术[D].上海:复旦大学,2009:
    [40]Zhou Y, Bejamin SB, Shi WX. Differential effects of cocaine on firing rate and pattern of dopamine neurons:Role of α1 receptors and comparison with 1-dopa and apomorphine [J]. J Pharmacol Exp Ther,2006,317(1):196-201.
    [41]Fujii N, Graybiel AM. Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks [J]. PNAS,2005,102(25):9032-9037.
    [42]Alain D, Diego C, Mircea S. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states [J]. J Neurosci,1999,19(11):4595-4608.
    [43]Womelsdorf T, Fries P. Neuronal coherence during selective attentional processing and sensory-motor integration [J]. J Physiol Paris,2006, 100(4):182-193.
    [44]Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, Malach R. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations [J]. Curr Biol,2007,17(15):1275-1285.
    [45]Scherberger H, Jarvis MR, Andersen RA. Cortical local field potential encodes movement intentions in the posterior parietal cortex [J]. Neuron,2005, 46(2):347-351.
    [46]de Solages C, Szapiro G, Brunel N, Hakim V, Isope P, Buisseret P, Rousseau C, Barbour B, Lena C. High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum [J]. Neuron,2008,58(5):775-788.
    [47]Mao Y, Ma MF, Tian X. Phase synchronization analysis of theta-band of local field potentials [A]. Second International Symposium on Intelligent Information Technology Application [C]. Shanghai, China:IEEE Computer Society, 2008:737-741.
    [48]Raghavachari S, Lisman JE, Tully M, Madsen JR, Bromfield EB, Kahana MJ. Theta oscillations in human cortex during a working memory task:evidence for local generators [J]. J Neurophysiol,2006,95:1630-1638.
    [49]Averbeck BB, Lee D. Coding and transmission of information by neural ensembles [J]. Trends Neurosci,2004,27(4):225-230.
    [50]Roesch MR, Taylor AR, Schoenbaum G. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation [J]. Neuron,2006, 51(4):509-520.
    [51]Fries P, Womelsdorf T, Oostenveld R, Desimone R. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4 [J]. J Neurosci,2008,28(18):4823-4835.
    [52]Womelsdorf T, Fries P, Mitra PP, Desimone R. Gamma-band synchronization in visual cortex predicts speed of change detection [J]. Nature,2006,439:733-736.
    [53]王国华,俞能海.基于快速折叠算法和时频分析的LPI跳频信号截获[J].电子与信息学报,2007,29(7):1569-1572.
    [54]Jarvis MR, Mitra PP. Sampling properties of the spectrum and coherency of sequences of action potentials [J]. Neural Comput,2001,13(4):717-749.
    [55]段建红.受损背根节神经元放电峰峰间期的慢波振荡[D].西安:第四军医大学,2002:
    [56]Quirk MC, Wilson MA. Interaction between spike waveform classification and temporal sequence detection [J]. J Neurosci Methods,1999,94(1):41-52.
    [57]Schmitzer-Torbert N, Jackson J, Henze D, Harris K, Redish AD. Quantitative measures of cluster quality for use in extracellular recordings [J]. Neuroscience, 2005,131(1):1-11.
    [58]Norena A, Eggermont JJ. Comparison between local field potentials and unit cluster activity in primary auditory cortex and anterior auditory field in the cat [J]. Hear Res,2002,166(1):202-213.
    [59]Mattia M, Ferraina S, Del Giudice P. Dissociated multi-unit activity and local field potentials:A theory inspired analysis of a motor decision task [J]. Neuroimage,2010, Article in Press
    [60]Buzsaki G. Rhythms of the Brain [M]. Oxford:Oxford University Press, 2006:464.
    [61]Buzsaki G, Buhl DL, Harris KD, Csicsvari J, Czeh B, Morozov A. Hippocampal network patterns of activity in the mouse [J]. Neuroscience,2003, 116(1):201-211.
    [62]Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G.Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat [J]. J Neurosci,1995, 15(1):47-60.
    [63]Hentschke H, Perkins MG, Pearce RA, Banks MI. Muscarinic blockade weakens interaction of gamma with theta rhythms in mouse hippocampus [J]. Eur J Neurosci,2007,26(6):1642-1656.
    [64]Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR. Human theta oscillations exhibit task dependence during virtual maze navigation [J]. Nature, 1999,399:781-784.
    [65]O'Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm [J]. Hippocampus,1993,3(3):317-330.
    [66]Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. Temporal structure in neuronal activity during working memory in macaque parietal cortex [J]. Nat Neurosci,2002,5(8):805-811.
    [67]Hasselmo ME, Bodelon C, Wyble BP. A proposed function for hippocampal theta rhythm:Separate phases of encoding and retrieval enhance reversal of prior learning [J]. Neural Comput,2002,14(4):793-817.
    [68]Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep [J]. Neuron,2001, 29(1):145-156.
    [69]王功伍,蔡景霞.海马-前额叶神经回路与工作记忆[J].动物学研究,2010,2(1):50-56.
    [70]Axmacher N, Mormann F, Fernandez G, Elger CE, Fell J. Memory formation by neuronal synchronization [J]. Brain Res Rev,2006,52(1):170-182.
    [71]Kahana MJ. The cognitive correlates of human brain oscillations [J]. J Neurosci, 2006,26(6):1669-1672.
    [72]Trujillo L, Peterson M, Kaszniak A, Allen J. EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods [J]. Clin Neurophysio,2005,116(1):172-189.
    [73]Basar E, Basar-Eroglu C, Karakas S, Schumann M. Gamma, alpha, delta and theta oscillations govern cognitive processes [J]. Int J Psychophysiol,2001, 39(2-3):241-248.
    [1]Buzsaki G. Large-scale recording of neuronal ensembles [J]. Nat Neurosci,2004, 7(5):446-451.
    [2]Obeid I, Nicolelis MAL, Wolf PD. A multichannel telemetry system for single unit neural recordings [J]. J Neurosci Methods,2004,133:33-38.
    [3]Carmena JM, Lebedev MA, Crist RE, O'Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MA. Learning to control a brain-machine interface forreaching and grasping by primates [J]. PLoS Biol,2003,1(2):E42.
    [4]Dazbrowski W, Fiutowski T. Design for good matching in multichannel low-noise amplifier for recording neuronal signals in modern neuroscience experiments [J]. Microelectronics Reliability,2004,44:351-361.
    [5]Nicolelis MA, Ribeiro S. Multielectrode recordings:the next steps [J]. Curr Opin Neurobiol,2002,12(5):602-606.
    [6]Olsson A, Phelps EA. Social learning of fear [J]. Nat Neurosci,2007, 10(9):1095-1103.
    [7]Zhao MG, Zhuo M. Roles of NMDA NR2B subtype receptor in prefrontal: long-term potentiation and contextual fear memory [J]. Neuron,2005, 47:859-872.
    [8]Dalgleish T. The emotional brain [J]. Nat Rev Neurosci,2004,5:582-589.
    [9]Pankaj S, Westbrook RF. The circuit of fear [J]. Nature,2008,454(31):589-590.
    [10]郑旭媛.社经元集群的时空编码研究现状[J].国际生物医学工程杂志,2007,30(3):186-188.
    [11]Nieder A, Miller EK. Coding of cognitive magnitude:compressed scaling of numerical information in the primate prefrontal cortex [J]. Neuron,2003, 37:149-157.
    [12]Kang K, Shapley RM, Sompolinsky H. Information tuning of populations of neurons in primary visual cortex [J]. Neuroscience,2004,24 (15):3726-3735.
    [13]Schnitzer MJ, Meister M. Multi neuronal firing patterns in the signal from eye to brain [J]. Neuron,2003,37:499-511.
    [14]Covey E. Neural population coding and auditory temporal pattern analysis [J]. Physiol Behav,2000,69:211-220.
    [15]Averbeck BB, Lee D. Coding and transmission of information by neural ensembles [J]. Trends Neurosci,2004,27(4):225-230.
    [16]Averbeck BB, Lee D. Neural noise and movement-related codes in the macaque supplementary motor area [J]. Neuroscience,2003,23:7630-7641.
    [17]Lexandre P, Peter D, Richard Z. Information with population codes [J]. Neuroscience,2002,11(1):125-132.
    [18]Mazurek ME, Shadlen MN. Limits to the temporal fidelity of cortical spike rate signals [J]. Nat Neurosci,2002,5(5):463-471.
    [19]Nirenberg S, Latham PE. Decoding neuronal spike trains:how important are correlations? [J]. Proc Natl Acad Sci U S A,2003,100(12):7348-7353.
    [20]Series P, Latham PE, Pouget A. Tuning curve sharpening for orientation selectivity:coding efficiency and the impact of correlations [J]. Nat Neurosci, 2004,7(10):1129-1135.
    [21]Grunwald M, Busse F, Hensel A. Corelation between cortical theta activity and hippocampal volumes in health, mild cognitive impairment, and mild dementia [J]. J Clin Neurophysiol,2001,8(2):178-188.
    [22]Krahe R, Metzner W. Stimulus encoding and feature extraction by multiple sensory neurons [J]. J Neurosci,2002,22(6):2374-2382.
    [23]Csicsvari J, Buzsaki G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat [J]. Neuron,2003,37:311-322.
    [24]Baker SN, Gerstein GL. Improvements to the sensitivity of the gravitational clustering for multiple neuron recordings [J]. Neural Comput,2000,12:2597-2620.
    [25]Stuart L, Walter M, Borisyuk R. Visualization of synchronous firing in multi-dimensional spike trains [J]. BioSystem,2002,67:265-279.
    [26]Walter MA, Stuart LJ, Borisyuk R. Spike train correlation visualization [A]. Proceedings of the Seventh International Conference on Information Visualization [C],2003
    [27]Harris KD, Buzsaki G. Organization of cell assemblies in the hippocampus [J]. Nature,2003,24(31):552-557.
    [28]O'Neill J, Csicsvari J. Reactivation of experience-dependent cell assembly patterns in the hippocampus [J]. Nat Neurosci,2008,11(2):209-216.
    [29]Luczak A, Buzsaki G, Harris KD. Sequential structure of neocortical spontaneous activity in vivo [J]. Proc Nati Acad Sci U S A,2007,104(1):347-352.
    [30]Holcman D, Tsodyks M. The emergence of up and down states in cortical networks [J]. PLoS Comput Biol,2006,2(3):e23.
    [31]Battaglia FP, Sutherland GR, McNaughton BL. Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions [J]. Learn Mem,2004, 11:697-704.
    [32]Kasanetz F, Murer MG. Turning off cortical ensembles stops striatal up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo [J]. J Physiol,2006,577(1):97-113.
    [33]Pennartz CMA, Lee E, Verheul J. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples [J]. J Neurosci,2004,24(29):6446-6456.
    [34]Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies:effects of behavioral state, experience, and EEG dynamics [J]. J Neurosci,1999,19(10):4090-4101.
    [35]Kohn A, Smith MA. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque [J]. J Neurosci,2005,25:3661-3673.
    [36]Bair W, Zohary E, Newsome WT. Correlated firing in macaque visual area MT: Time scales and relationship to behavior [J]. J Neurosci,2001,21:1676-1697.
    [37]de la Rocha J, Doiron B. Correlation between neural spike trains increases with firing rate [J]. Nature,2007,448:802-808.
    [38]Heldman DA. Local field potential spectral tuning in motor cortex during reaching [J]. IEEE Trans Neural Syst Rehabil Eng,2006,14(2):180-183.
    [39]丁宝玺,陈志华,赵力.脑电图数据的相关性分析[J].现代生物医学进展,2008,18(1):62-67.
    [40]冯慧琳,洪波,高小榕.海马区神经电信号相位同步化的初步研究[J].北京生物医学工程,2007,26(6):566-570.
    [41]Rodrigo N, Romcy-Pereira. A semi-automated algorithm for studying neuronal oscillatory patterns:A wavelet-based time frequency and coherence analysis [J]. J Neurosci Methods,2008,167:384-392.
    [42]Guevara MA. POTENCOR:a program to calculate power and correlation spectra of EEG signals [J]. Comput Methods Programs Biomed,2003, 72:241-250.
    [43]洪波,杨福生.基于多变量AR模型的脑电相干性分析及其在脑区协作机制研究中的应用[J].生物物理学报,2001,17(1):105-114.
    [44]Hurtado JM, Sigvardt KA. Statistical method for detection of phase-locking episodes in neural oscillations [J]. J neurophysiology,2004,91:1883-1898.
    [45]Siapas AG, Wilson MA. Prefrontal phase locking to hippocampal theta oscillations [J]. Neuron,2005,46:141-151.
    [46]Penny WD, Ojemann JG. Testing for nested oscillation [J]. J Neurosci Methods, 2008,174:50-61.
    [47]le van Quyen M, Foucher J. Comparison of hilbert transform and wavelet methods for the analysis of neuronal synchrony [J]. J Neurosci Methods,2001, 111:83-98.
    [48]Hurtado JM, Rubchinsky LL, Sigvardt KA. Statistical method for detection of phase-locking episodes in neural oscillations [J]. J Neurophysiol,2004, 91:1883-1898.
    [49]Jerbi K, Baillet S. Coherent neural representation of hand speed in humans revealed by MEG imaging [J]. PNAS,2007,104(18):7676-7681.
    [50]Belitski A, Panzeri S. Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information [J]. J Neurosci,2008, 28(22):5696-5709.
    [51]Destexhe A, Contreras D, Steriade M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states [J]. Neuroscience,1999,19:4595-4608.
    [52]Heldman DA. Local field potential spectral tuning in motor cortex during reaching [J]. IEEE Trans Neural Syst Rehabil Eng,2006,14(2):180-183.
    [53]Ji D, AWilson M. Coordinated memory replay in the visual cortex and hippocampus during sleep [J]. Nat Neuroscience,2007,10(1):100-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700