能量变换器小值振荡与稳定性的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能量变换器是一种新型高压发电机,采用高压交联聚乙烯(XLPE)电缆作为定子绕组,这种革新结构使其能够输出高电压,从而可以直接并网。因此,对能量变换器的运行进行系统地研究是极为必要的。本文针对能量变换器小值振荡和稳定性进行了深入地研究。
     本文首先介绍了能量变换器的发展背景和国内外的研究现状,详尽分析了研究大型同步发电机和能量变换器稳定性的意义。
     然后,本文对能量变换器静态稳定运行进行了分析,建立了能量变换器静态稳定运行时的数学模型,推导出了能量变换器静态稳定功率特性和静态稳定功率极限的表达式。并分析了励磁调节对能量变换器静态功率特性的影响,应用对比研究的方法,证明了能量变换器的静态稳定储备系数和静态稳定功率极限都比传统同步发电机高。
     本文同时结合能量变换器样机参数,系统分析了其稳态小值振荡的物理过程,推导了能量变换器小值振荡时的整步转矩系数、阻尼转矩系数和电流、转矩、电磁功率各微变量的表达式,并通过仿真分析,归纳出了不计定子电阻和线路阻抗时能量变换器相应微变量的变化规律。此外,本文对考虑励磁调节作用时小值振荡各微变量的变化进行了仿真研究,给出了此状态下相应微变量的变化规律。
     最后,本文对能量变换器系统在线路发生单相短路、相间短路和两相接地短路故障时的物理过程进行了分析,绘制了能量变换器正常运行和故障运行时的电气图与等值电路,结合等值电路推导了能量变换器相应故障状态下的功率表达式,并通过仿真分析与对比研究,给出了能量变换器系统在线路发生单相短路、相间短路和两相接地短路故障时的极限切除时间,得到了能量变换器的动态稳定极限。
     本文所得结论对能量变换器合理可靠的设计及运行提供了依据,具有一定的理论意义和实用价值。
Powerformer, using XLPE (cross-linked polyethylene) as the stator windings, is a new kind of high voltage generator, this innovational structure enable it to generate high voltage and connect to the power grid directly. So, it is very necessary to study the operation of Powerformer systematically. In this paper, the small oscillation and stability of Powerformer is studied thoroughly.
     Firstly, the developing background and study state at home and abroad are introduced in this paper, and the significance of stability research for large synchronous generator and Powerformer is analyzed detailed.
     Then, the static operation state of Powerformer is analyzed, and the mathematical model of static operation state for Powerformer is built, the expressions of static power characteristic and static stability power limit for Powerformer are deduced. The influence of field regulation on the static power characteristic of Powerformer is analyzed, and it is proved that the static stability reserve factor and static stability power limit of Powerformer are all higher than that of conventional generator with comparative research method.
     At the same time, the physical process of steady small oscillation is analyzed systematically based on the parameters of the Powerformer model, some expressions of Powerformer are deduced such as synchronizing torque coefficient, damping torque coefficient and the small changes of current, torque, electromagnetic power, and the variable rule of the corresponding small changes variables of Powerformer is induced by simulation without the consideration of the stator resistance and the line reactance. Besides, the changes of small changes in volume of small oscillation are studied by simulation under the consideration of the function of field regulation in the paper, and the variable rule of the corresponding small changes in this state are presented.
     Finally, some physical processes of Powerformer system are analyzed respectively when the line breaks down because of one phase to ground fault, phase to phase fault and two phases to ground fault, the electric drawings and equivalent circuits are plotted when Powerformer runs in normal state and fault state, after that, the expressions of power are deduced based on the equivalent circuits when Powerformer system runs in fault state, and the circuit fault removal times of the one phase to ground fault, phase to phase fault and two phases to ground fault for Powerformer system are presented with simulation analyses and comparative study, with the studies above, the dynamic stability limit is obtained.
     The conclusion of this paper provides some basis for the reliable design and operation of Powerformer, having certain theoretical significance and practical value.
引文
[1] MATS, Leijon. PowerformerTM——A Radically New Rotating Machine[J]. ABB Review, 1998, (2): 21-26.
    [2] STEFAN Altredson, BO Hernnǎs, HANS Bergstrǒm. Assembly of Generators with Rated Voltage Higher than 100kV[J]. In: Proceedings of International Conference on Power System Technology. Perth (Australia): 2000: 189-193.
    [3] DETTMER R. The Heart of A New Machine: Powerformer Is a Radically New Generator Design that Could Herald a New Era in A High Voltage Generation[J]. IEE Review. 1998, 44(6): 255-258.
    [4] S Thorén, T Sarqvist, M Kjellberg, et al. PowerformerTM-The First Commercial Turbo Powerformer Application[J]. CIGRE/SC11-1, Orlando, USA, Sept, 1999: 1-12.
    [5]戈宝军,梁艳萍,周垂有,等.Powerformer——21世纪的新型发电装置.电力系统自动化[J],2004,28(7):1-4.
    [6]高景德,王祥珩,李发海.交流电机及其系统的分析[M].第二版.北京:清华大学出版社:2005:111-129.
    [7]汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2005:163-173.
    [8]高景德,张麟征.电机过渡过程的基本理论及分析方法[M].北京:科学出版社,1983:539-728.
    [9]汤蕴璆,史乃.电机学[M].北京:机械工业出版社,2002:281-298.
    [10] TAMURA J, MURATA T, TAKEDA I, et. New Approach to the Steady Stability Analysis of Synchronous Machines[J]. IEEE Transactions on Energy Conversation, 1988, 3(2): 323-329.
    [11] OSVALDO Rodriguez, AURELIO Medina Senior. Efficient Methodology for the Transient and Periodic Steady-State Analysis of the Synchronous Machine Using a Phase Coordinates Model[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 464-466.
    [12] RAFAEL Escarela-Perez, EDUARDO Campero-Little wood, TADEUSZ Nie-wierowicz. Efficient Finite-Element Computation of Synchronous Machine Transfer Functions[J]. IEEE Transactions on Magnetic, 2002, 38(2): 1245-1248.
    [13]郭景斌,单周平.凸极同步电机静稳定边界的解析法和应用[J].中国电力,2000,33(10):39-41.
    [14]张元鹏,周又喜,王利锋,等.静态电压稳定性分析模型的理论基础[J].中国电机工程学报,1999,19(10):55-63.
    [15]张元鹏,周又喜,王利锋,等.静态电压稳定分析中的动态元件模型及其实现[J].中国电机工程学报,2000,20(3):66-70.
    [16]颜湘武,于世涛,朱凌,等.异步化同步发电机的静态稳定性研究[J].中国电机工程学报,2002,22(9):89-93.
    [17]万秋兰,单渊达.多机电力系统发电机的同步稳定特性分析[J].电力系统自动化,2005,29(12):15-18.
    [18]吴先梅,蔺善荣.同步发电机的振荡和失步的原因及其处理[J].东北水利水电,2003,21(9):47-48.
    [19]李天然,王正风,司云峰.发电机无功功率与系统稳定运行[J].现代电力,2005,22(1):37-40.
    [20]刘鹏,吴刚.世界范围内两起典型电压崩溃事故分析[J].国际电力,2003,7(5):35-37.
    [21]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007:9-15.
    [22]兰洲,倪以信,甘德强.现代电力系统暂态稳定性控制研究综述[J].电网技术,2005,29(15):40-50.
    [23] MATS Leijon. Novel Concept in High Voltage Generation: PowerformerTM. In: Proceedings of Eleventh International Symposium on High Voltage Engineering[J]. London(UK): 1999, 5: 379-382.
    [24] MATS Leijon, FREDRIK Owman. Powerformer: A Giant Step in Power Plant Engineering[J]. In: Proceedings of International Conference IEMD’99. Seattle(USA): 1999: 830-832.
    [25] MATS Leijon. PowerformerTM: the Prototype and Beyond[J]. In: Proceedings of IEEE Power Engineering Society Winter Meeting. Singapore: 2000, 1: 139-144.
    [26] STURE Lindahl. Improved Control of Field Current Heating for Voltage Stability Machine Design-PowerformerTM[J]. In: Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference (Winter Meeting). Atlanta(USA): 2001: 209-214.
    [27] DARVENIZA M. A Research Project to Investigate the Impact of Electricity System Requirements on the Design and Optimal Application of the PowerformerTM[J]. IEEE Transactions on Power Systems, 2001, (1): 504-509.
    [28] HOLMBERG P, MAT Leijon. Wide-Band Lumped Circuit Model of the Terminal and Internal Electromagnetic Response of a Coil with A Coaxial Insulation System[J]. IEE proc-Electr. Power Application, 2002, 149(6): 459-464.
    [29] Pǎr Holmgerg, MATS Leijon, Torbjǒrn Wass. A Wide Band Lumped Circuit Model of Eddy Current Losses in a Coil with a Coaxial Insulation System and a Stranded Conductor[J]. IEEE Transaction on Power Delivery, 2003, 18(1): 50-60.
    [30] CRAIG Anthony Aumuller, TAPAN Kumar Saha. Investigating the Impact of Powerformer on Voltage Stability by Dynamic Simulation[J]. IEEE Transactions on Power Systems, 2003, 18(3): 1142-1148.
    [31] STEFAN G Johansson, BERTIL Larsson. Short-Circuit Tests on a High-Voltage, Cable-Wound Hydropower Generator[J]. IEEE Transactions on Energy Conversion, 2004, 19(1): 28-33.
    [32] MARGUERITE Touma-Holmberg, KAILASH Srivastava. Double Winding, High-Voltage Cable Wound Generator: Steady-State and Fault Analysis[J]. IEEE Transaction on Energy Conversion, 2004, 19(2): 245-250.
    [33]刘军.基于同轴绝缘电缆线圈的新型电磁装置高电压技术[J].高电压技术,2002,28(12):18-20.
    [34]张宇,黄华,周建国.电力新技术介绍与展望[J].华东电力,2002,(6):71-76.
    [35]邱毓昌,夏明通.电缆绕组在发电机和变压器中的应用[J].电线电缆,2002,(1):8-10.
    [36]周垂有,戈宝军,王志敏,等.Powerformer定子槽漏抗推导[J].大电机技术,2003,(4):11-14.
    [37]刘裕娟,梁艳萍.阻尼绕组分布对Powerformer气隙磁场和参数的影响[J].哈尔滨理工大学学报,2004,9(2):10-12.
    [38]沈梁伟.超高压发电机Powerformer.电力设备,2004,5(9):79-81.
    [39]张大魁,戈宝军,关星,等.电力发生器定子端部磁场与漏抗计算[J].哈尔滨理工大学学报,2004,9(4):104-107.
    [40]宋福川,戈宝军,张大魁.基于ANSYS的Powerformer定子端部模型的建立[J].大电机技术,2004,(1):21-23.
    [41]戈宝军,张大魁,梁艳萍.能量变换器定子漏抗的分析与计算[J].电网技术,2005,29(3):15-22.
    [42]戈宝军,张大魁,梁艳萍.能量变换器及其最新发展[J].电工技术学报,2005,20(1):26-30.
    [43]林湘宁,田庆.Powerformer一次系统设计及运行实例简介[J].电力系统自动化,2005,29(5):1-5.
    [44]林湘宁,田庆.Powerformer继电保护系统研究动态[J].电力系统自动化,2005,29(8):5-9.
    [45]田庆,林湘宁,刘沛.高压发电机内部故障仿真研究[J].中国电机工程学报,2006,26(5):26-31.
    [46]田庆,林湘宁,刘沛.高压发电定子电容电流自适应补偿差动保护方案[J].电力系统自动化,2006,30(24):62-68.
    [47]苏国霞,戈宝军,陶大军,等.能量变换器内部单相接地故障建模与分析[J].电机与控制学报,2007,11(6):584-588.
    [48]高艳,林湘宁,刘沛.Powerformer非全相运行保护[J].电力系统自动化,2007,31(6):48-51.
    [49]陈珩.同步电机运行基本理论与计算机算法[M].北京:水利电力出版社,1992:168-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700