含生化反应的固定化细胞光生物制氢反应器内的多相传输模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,能源需求的不断增加,有限储量化石燃料的减少以及燃烧造成的环境污染等问题使本世纪的能源问题面临巨大挑战。光生物制氢技术将太阳能利用、废水处理以及氢能源回收等有机地结合起来,集环境资源化、能源化等优点而具有广阔的应用前景,备受国内外学者的关注。细胞固定化技术与光生物制氢的结合可使单位反应器的产氢率和运行稳定性提高,因此,深入研究固定化细胞光生物制氢反应器内多相流体流动特性、有机物组分传输特性以及光合细菌通过生化反应降解有机物的产氢特性,将为固定化细胞技术在光生物制氢领域的应用奠定理论基础,具有重要的学术价值。
     本文以两种固定化细胞填充床光生物制氢反应器内的底物降解和产氢特性为研究对象,建立了一个能够完整描述包埋颗粒填充床内气液两相流动、光传递、有机物传输以及光合细菌生化反应的两相混合模型,以及描述固定化生物膜制氢反应器内多相流动与底物降解特性和产氢特性相耦合的两相混合模型,并将计算结果与实验结果进行了对比,获得了较好的吻合度。主要研究内容及结果如下:
     1)针对包埋细胞颗粒填充床光生物制氢反应器,建立了含生化反应的单个包埋颗粒内质量传输理论模型,并以该颗粒内底物降解产生氢气作为源或汇,分析了反应器内流动特性以及操作参数对底物降解和产氢特性的影响,在此基础上,首次建立了包埋颗粒填充床内两相流动、底物及产物传输的一维稳态气液两相混合模型。
     2)以包埋颗粒填充床一维两相混合模型为基础,研究了光生物制氢反应器各操作参数及结构参数对填充床内葡萄糖降解效率和产氢速率的影响模型计算结果和实验数据吻合良好。研究结果表明:入射光照强度、溶液pH值及温度主要影响微生物生化反应速率及代谢能力,进而影响微生物底物降解速率及产氢速率;进口底物流量主要影响物质相对传输通量及传质阻力;而填充床结构参数,如孔隙率、颗粒半径以及反应器高度等则通过改变填充床底物及产物的传质面积,进而影响到反应器底物降解特性及产氢特性。
     3)针对颗粒内微生物、底物溶液及反应器材料对光能的吸收等实际情况,考虑包埋颗粒填充床内光衰减,结合光传递Lambert-Beer定律,建立了能够描述光生物制氢反应器内光分布的传递表达式。以此为基础,建立了包埋颗粒填充床内含生化反应、光衰减、流体流动、底物及产物传输相耦合的二维稳态两相混合模型。模型研究结果表明:在低光照强度下,填充床降解效率和产氢速率随光照强度的增大而增大;沿流体流动方向,底物浓度降低,沿光传递方向,底物浓度增大。产氢率则相反。
     4)以生物膜填充床光生物制氢反应器为研究对象,将反应器内多孔填充床通道简化为平行平板通道,建立了生物膜内物质传输的生化反应动力学模型。在此基础上,将底物降解及氢气产生处理为质量传递的源或汇,建立了含组分扩散、光生化反应的生物膜多孔填充床内一维稳态气液两相混合模型。模型计算值与实验值基本吻合。结果表明:反应器降解效率和产氢速率随孔隙率的增大而减小;而随着入射光照强度或者溶液pH值的增大,反应器降解效率和产氢速率则均先增大后减小。
Currently, due to the continual increase requirement of energy sources , the reduce of finite reserved fossil fuel and the environment pollution brought by fossil fuel burning,etc.,the energy issue will be up against great challenge in 21th century. Photo-biohydrogen production technology, combing solar energy utilizing, waste water biodegradation and hydrogen production, and taking the advantages of environment resource recovery and energy regeneration, thus have abroad applied foreground,and attract a number of foreign and domestic researcher’s attention. The integration of immobilized cells technology with photo-hydrogen production can improve the hydrogen production rate and operating stability of photobioreactor. Therefore, further study on the two-phase behaviors, mass and heat transport characteristics, and photosynthetic bacteria biochemistry reaction properties in immobilized cell packed bed photobioreactor is the theoretical foundation of application of such photo-biohydrogen production technology by photobioreactor, and meanwhile shows great academic values.
     In our study, we forcus on the theoretical research on the biodegradation and hydrogen production characteristics in two kinds of immobilized cell packed bed photobioreactor for hydrogen production. A new two phase mixture model for completely describing gas-liquid flow, light transfer and biochemical reaction characteristics was established meanwhile, we also aimed at the biofilm photobioreactor, and a two phase mixture model was built for describing fluid flow characteristics coupled with biochemical reaction characteristics.A good agreement between the calculated results using our models and experiments results was obtained. The main research contents and achievements are as follows:
     1) Aimed at the immobilized cell granules packed bed bioreactor, we established the mass transfer model in immobilized cell granules, in order to study fluid flow characteristics and the influences of operating parameters. Based on these, then. A one dimension steady state two phase mixture model was creatively established for describing the multiphase flow, and substrate and products transfer in immobilized cell granules packed bed.
     2) Based on the one dimension two-phase mixture model established above, the effect of operating conditions and structure parameters of packed bed on glucose consumption efficiency and HPR were studied theoretically. The model results also revealed that illumination intensity, substrate solution pH value and temperature mainly affected kinetic reaction rate and metabolic ability of photosynthetic bacteria, and further lead to effect on glucose consumption efficiency and HPR. The inlet substrate solution flow rate mainly influenced the mass resistance and mass transfer flux. Moreover, the structure parameters of photobioreactor such as porosity, granule radius and height had influence on the biodegrading characteristics and hydrogen production properties by changing the mass transfer area of substrate and products of packed bed.
     3) Based on the actual situation such as the light absorption in immobilized granules, bulk solution and organic class separately, we added the influence factors of light attenuation to our model. Then, combined with Lambert-beer law of light transfer theory, the light transfer expression was obtained for describing the light intensity distribution in photobioreactor. Based on the above theory, a two dimension steady state two-phase mixture model was creativity established coupled wth biochemical reaction, light attenuation, gas-liquid flow and substrate and products transfer. The model results showed that in low light intensity, the glucose consumption efficiency and HPR increased with the light intensity increase; the substrate concentration decreased along the fluid flow direction, and increased along the light transfer direction; however, the HPR is reverse.
     4) Aimed at the biofilm packed bed bioreactor of hydrogen production, the porous packed bed was simplified for a parallel plate channel and then the biochemical reaction dynamics model of substrate transfer in biofilm was established. Base on the above theory, a theoretical model named one dimension steady state two-phase mixture model was creatively built containing species diffusion and biochemical reaction. The results of model ware basically in agreement with the experimental data. The model results also revealed that with the increasment of the illumination intensity or the pH value of substrate solution, the consumption efficiency and the hydrogen production rate increased at first then decreased.
引文
[1] Chun-Yen Chen, Mu-Hoe Yang, Kuei-Ling Yeh, et al. Biohydrogen production using sequential two-stage dark and photo fermentation processes [J]. International Journal of Hydrogen Energy, 2008: 1-8.
    [2] Harun Koku, ?nci Ero?lu, Ufuk G?nd?z et al. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides [J]. International Journal of Hydrogen Energy, 2002, 27: 1315-1329.
    [3] Baker Zabut, Kamal EI-Kahlout, Meral Y?cel, et al. Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001and Halobacterium salinarum in a photobioreactor [J]. International Journal of Hydrogen Energy, 2006, 31: 1553-1562.
    [4] N. Greenberg, B. Tartakovsky, G. Yirme, S. Ulitzur, M. Sheintuch. Observations and Modeling of growth of immobilized microcolonies of luminous E.Coli [J]. Chemical Engineering. 1996, 51: 743-756.
    [5] R. Bagai, D. Madamwar. Long-term photo-evolution of hydrogen in a packed bed reactor containing a combination of phormidium valderianum halobacterium halobium, and Escherichia coli immobilized in polyvinyl alcohol [J]. International Journal of Hydrogen Energy, 1999, 24: 311-317.
    [6] Haruhiko Yokoi, Tadafumi Tokushige, Jun Hirose, et al. Hydrogen producnton by immobilized cells of Aciduric Enterobacter aerogenes Strain HO-39 [J]. Journal of fermentation and bioengineering, 1997, 83: 481-484.
    [7] Narendra Kumar, Debabrata Das. Continuous hydrogen production by immobilized enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices [J]. Enzyme and Microbial Technology, 2001, 29: 280-287.
    [8] Xin Tian, Qiang Liao, Wei Liu, et al. Photo-hydrogen production rate of aPVA-boric acid gel granule containing immobilized photosynthetic bacteria cells [J]. International Journal of Hydrogen Energy, 2009, 34: 4708-4717.
    [9]施明恒,虞维平,王补宣.多孔介质传热传质研究的现状和展望[J].东南大学学报, 1994, 24: 1-7.
    [10]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社.2006.
    [11]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [12] J. Bear. Dynamics of Fluid in Porous Media [M]. New York: Elsevier, 1972.
    [13] L.M.Abriola, G.F.Pinder. A multiphase approach to the modeling of porous mediacontamination by organic compounds 1.equation development [J]. Water Resources Research, 1985, 21: 11-18.
    [14] V. Starikovicus. The multiphase flow and heat transfer in porous media [J]. Berichte des Fraunhofer ITWM, 2003, 5: 1-41.
    [15] C.Y. Wang, P. Cheng. Multiphase flow and heat transfer in porous media [M]. Advances in Heat Transfer, 1997.
    [16] C. Y. Wang, P. Cheng. A multiphase mixture model for multiphase, multi-component transport in capillary porous media-1.Model development [J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3607-3678.
    [17] P.S.Ramesh,K. E. Torrance. Numerical Algorithm for Problems Involving BoilingAnd Natural Convection in Porous Materials [J]. Numerical Heat Transfer, Part B, 1990, 17: 1-24.
    [18] S. Majid, William G. Gray. Toward an improved description of the physics of two-phase low [J]. Advances in Water Resources, 1993, 16: 53-67.
    [19] Shijie Liu. A continuum Model for Gas-Liquid Flow in Packed Towers [J]. Chemical Engineering Science, 2001, 56: 5945-5953.
    [20] P. Cheng, C.Y. Wang. A multiphase mixture model for multi-phase, multi-component transport in capillary porous media—Ⅱ.Numerical simulation of the transport of organic compounds in the subsurface [J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3619-3632.
    [21] Z. H. Wang, C. Y. Wang, K. S. Chen. Two-phase flow and transport in the air cathode of proton exchange fuel cells [J]. Journal of Power Sources, 2001, 94: 40-50.
    [22] Lixin You, Hongtan Liu. A two-phase flow and transport model for the cathode of PEM fuel cells [J]. International Journal of Heat and Mass Transfer, 2002, 45: 2277-2287.
    [23] Ugur Pasaogullari, Chao Yang Wang, Ken S. Chen. Liquid water transport in polymer electrolyte fuel cells with multilayer diffusion media. USA californai: ASME international mechaniacl engineering congress and exposition, 2004: 13-20.
    [24] Ugur Pasaogullari, Chao Yang Wang, Ken S. Chen. Two-phase transport in polymer electrolyte fuel cells with bilayer cathode gas diffusion media [J]. Journal of the Electrochemical Society, 2005, 152(8): A1574- A1582.
    [25] Fu Qian Liu, Chao Yang Wang. Mixed potential in a direct methanol fuel cell modeling and experimentsl [J]. Jouranl of the Electrochemical Society, 2007, 154(6): B514- B522.
    [26] Yun Wang, Suman Basu, Chao-yang Wang. Modeling two-phase flow in PEM fuel cell channels [J]. Journal of Power Sources, 2008, 179: 603-617.
    [27] Suman Basu, Jun Li, Chao Yang Wang. Two-phase flow and maldistribution in gas channels of a polymer electrolyte fuel [J]. Journal of Power Sources, 2009, 187: 431-443.
    [28]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社, 2000.
    [29] P. K. Walsh, D. M. Malone. Cell growth patterns in immobilization matrices [J]. Biotechnology Advances, 1995, 13(1): 13-43.
    [30] V. Lazarova, J. Manem. Biofilm characterization and activity analysis in water and wastewater treatment [J]. Water Research, 1995, 29(10): 2227-2245.
    [31] Madan G. Parvatiyar, Rakesh Govind, Dolloff F. Bishop. Biodegradation of toluene in a membrane biofilter [J]. Journal of Membrane Science, 1996, 119: 17-24.
    [32] Tzu Yang Hsien, Yen Hui Lin. Biodegradation of phenolic wastewater in a fixed bilfilm reactor [J]. Biochemical Engineering Journal, 2005, 27: 95-103.
    [33] S. Venkata Mohan, Y. Vijaya Bhaskar, P. N. Sarma. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch model by selectively enriched anaerobic mixed consortia [J]. Water Research, 2007, 41: 2652-2664.
    [34] Y. Vijaya Bhaskar, S. Venkata Mohan, P. N. Sarma. Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor [J]. Bioresource Technology, 2008, 99: 6941-6948.
    [35] S. Patel, D. Madamwar. Continuous hydrogen evolution by an immobilized combined system of phormidium valderianum halobacterium halobium and escherichia coli in a packed red reactor [J]. International Journal of Hydrogen Energy, 1995, 20(8): 631-634.
    [36] Narendra Kumar, Debabrata Das. Continuous hydrogen production by immobilized Enterobacter cloacaeⅡT-BT 08 using lignocellulosic materials as solid matrices [J]. Enzyme and Microbial Technology, 2001, 29: 208-287.
    [37] Y. Kourkoutas, A. Bekatorou, I.M. Banat, et al. Immobilization technologies and support materials suitable inalcohol beverages production: a review [J]. Food Microbiology, 2004, 21: 377–397.
    [38] A. Laca, C. Quirós, L. A. García, M. Díaz. Modelling and description of internal profiles in immobilized cells systems [J]. Biochemical Engineering Journal, 1998, 1: 225-232.
    [39]戚以政,汪叔雄.生化反应动力学与反应器[M].北京:化学工业出版社, 2005.
    [40] Adolf Willem Schepers, Jules Thibault, Christophe Lacroix. Continuous lactic production in whey permeate/yeast extract medium with immobilized Lactobacillus helveticus in a two-stage process: Model and experiments [J]. Enzyme and Microbial Technology, 2006, 38: 324-337.
    [41] M. Ladero, A. Santos, J.L. García, F. García-Ochoa. Activity over lactose and ONPG of a genetically engineeredβ-galactosidase from Escherichia coli in solution and immobilized:Kinetic modeling [J]. Enzyme and Microbial Technology, 2001, 29(2001): 181-193.
    [42] Atkinson B, Towler. H. W. The significance of microbial film in fermenters [J]. Advanced Biochemical Engeering, 1974, 3: 221-277.
    [43] Haluk Beyenal, Zbigniew Lewandowski. Modeling mass transport and microbial activity in stratified biofilms [J]. Chemical Engineering Science, 2005, 60: 4337-4348.
    [44] V. Saravanan, T. R. Sreekrishnan. Modelling anaerobic biofilm reactors-A review [J]. Journal of Environmental Management, 2006, 81: 1-18.
    [45] Sarine J. Ergas, Leslee Shumway, Mark W. Fitch, Jeffrey J. Neemann. Membrane process for biological treatment of contaminated gas streams [J]. Biotechnology Bioengineering, 1999, 63(4): 431-441.
    [46] Cristian Picioreanu, Jan-Ulrich Kreft, Mark C. M. van Loosdrecht. Particle-based multidimensional multispecies biofilm model [J]. Applied and Environmental Microbiology, 2004: 3024-3040.
    [47] Jerome Lefebvre, Jean-Claude Vincent. Diffusion reaction growth coupling in gel-immobilized cell systems: model and experiment [J]. Enzyme and Microbial Technology, 1995, 17: 276-284.
    [48] Sunil Nath, Subhash Chand. Mass transfer and biochemical reaction in immobilized cell packed bed reactors: correlation of experiment with theory. Journal of Chemical Technology & Biotechnology, 1996, 66: 286-292.
    [49] I. Banerjee, Jayant M. Modak, K. Bandopadhyay et al. Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonnas putida [J]. Journal of Biotechnology, 2001, 87: 221-223.
    [50] Yen H. Lin, Jyh Y. Leu, Chi R. Lan, et al. Kinetics of inorganic carbon utilization by microalgal biofilm in a flat photoreactor [J]. Chemosphare, 2003, 53(7): 779-787.
    [51] Mitra Dadvar, Muhammad Sahimi. Pore network model of deactivation of immobilized glucose isomerase in packed bed reactors. PartⅢ: Multiscale modeling [J]. Chemical Engineering Science, 2003, 58: 4935-4951.
    [52] Giorgia Spigno, Mario Zilli, Cristiano Nicolella. Mathematical modeling and simulation of phenol degradation in biofilters [J]. Biochemical Engineering Journal, 2004, 19: 267-275.
    [53] Arzu Y. Dursun, Ozlem Tepe. Internal mass transfer effect on biodegradation of phenol by ca-alginate immobilized Ralstonia eutropha [J]. Journal of Hazardous Materials, 2005, B126: 105-111.
    [54] Tzu-Yang, Hen-Hui Lin. Biodegradation of phenolic wastewater in a fixed biofilm reactor [J]. Biochemical Engineering Journal, 2005, 27: 95-103.
    [55] Ozlem Tepe, Arzu Y. Dursun. Combined effects of external mass transfer and biodegradation rates on removal phenol by immobilized Ralstonia eutropha in a packed bed reactor [J]. Journal of Hazardous Materials, 2008, 151: 9-16.
    [56] Debabrata Das, P.K. Badri, Narendra Kumar, Pinaki Bhattacharya. Simulation and modeling of continuous H2 production process by Enterobacter cloacae IIT-BT 08 using different bioreactor configuration [J]. Enzyme and Microbial Technology, 2002, 31: 867-875.
    [57] Harun Koku, ?nci Ero?lu, Ufuk G?nd?z, Meral Y?cel, Lem? T?rker. Kinetic of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001 [J]. International Journal of Hydrogen Energy, 2003, 28: 381-388.
    [58] Venkataramana Gadhamshetty, Anoop Sukumaran, Nagamany Nirmalakhandan, Maung Thein Myint. Photofermentation of malate for biohydrogen production—A modeling approach [J]. International Journal of Hydrogen Energy, 2008, 33: 2138-2146.
    [59] Kaushik Nath, Manoj Muthukumar, Anish Kumar, Debabrata Das. Kinetics of two-stage fermentation process for the production of hydrogen [J]. International Journal of Hydrogen Energy, 2008, 33: 1195-1203.
    [60] Jianlong Wang, Wei Wan. Kinetic models for fermentative hydrogen production: a review [J]. International Journal of Hydrogen Energy, 2009, 34: 3313-3323.
    [61] Jamila Obeid, Jean-Pierre Magnin, Jean-Marie Flaus, Olivier Adrot, John C. Willison, Roumen Zlatev. Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus [J]. International Journal of Hydrogen Energy, 2009, 34: 180-185
    [62] M. Kaviany. Principles of Heat Transfer in Porous Media [M]. New York: Springer-Vezlag, 1995.
    [63]陶文铨.数值传热学(第二版) [M].西安:西安交通大学出版社, 2001
    [64]王永忠.固定化光合细菌光生物制氢反应器传输与产氢特性[D].重庆:重庆大学博士学位论文, 2008.
    [65]赵长伟,马沛生,朱春英等.葡萄糖水溶液扩散系数的测定与关联[J].化工学报, 2005, 56(1): 1-5.
    [66]张兆奎,缪连元,张立.大学物理实验[M].上海:华东理工大学出版社, 1990.
    [67]吴长义.光腔衰荡光谱技术及其应用[J].科协论坛(下半月), 2008, 3: 93-95.
    [68] Y. S. Yun, J. M. Park. Attenuation of monochromatic and polychromatic lights in chlorella vulgaris suspensions [J]. Apple Microbiol Biotechnol, 2001, 55: 765-770.
    [69] F.G.A. Fernándes, F.G. Camacho, J.A.S. Pérez, J.M.F. Sevilla, E.M.Grima. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for themicroalgal mass culture [J], Biotechnology Bioengineering, 1997, 55: 701–714.
    [70] Tomohisa Katsuda, Takeshi Arimoto, Koichi Igarashi, Masayuki Azuma, Jyoji Kato, Susumu Takakuma, Hiroshi Ooshima. Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus [J]. Biochemical Engineering Journal, 2000, 5: 157-164.
    [71] L F. Melo. Biofilm physical structure, internal diffusivity and tortuosity [J]. Water Science & Technology, 2005, 52(7): 77-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700