管壳式换热器的流路性能数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器是具有结构简单、牢固、操作弹性大、使用经验丰富、可靠性高等优点,是目前应用最广泛的一种换热器。其中弓形折流板换热器是应用最普遍的一种传统管壳式换热器,由于存在时间长,技术相对成熟和完善,加工制造装配容易,虽然存在某些局限性,但仍大量使用。
     管壳式换热器的热力-水力特性的研究对于换热器的设计计算、改造、提高换热效率、降低能源损耗、延长使用寿命等显得尤为重要。而采用数值模拟的方法对管壳式换热器进行流体流动与传热特性的研究的文献报道日渐增多,已经成为一种趋势,但仍存在着壳程流体划分的网格精度不高,数值模拟只局限于定性研究以及回避或简化掉某些重要流路的建模,从而忽略了这些通道的流动与传热对换热器的影响等问题,而解决这些问题,恰恰会导致网格模型复杂、计算成本高等新的问题,甚至导致问题难以求解。
     本文针对上述问题和基于预应力换热器要求完成比较精细的数值分析的研究目的,采用分段建模的模拟新技术来处理大模型和提高离散化精度,实现分段模型的精细化,最后综合处理的方法,并成功引入小间隙流路A和E,考虑各流路间隙对传热压降的影响,建立整体流路模型,对折流板换热器进行数值模拟,获得了更为准确和详细的数值模拟结果,为后续预应力换热器实施技术提供了坚实的基础和有力依据。同时分别进行了单一流路E和流路A在不同间隙下换热器性能的数值模拟,初步探讨了流路E和流路A对换热器流体流动与传热的影响特性,并推导出与间隙结构参数相关的定量无因次准数表达式。
     本文的研究结论是:对换热器整体流路下流体流动与传热特性进行分段建模和综合的数值模拟新方法是可靠的,所得结果与经验计算公式吻合良好。流路E和流路A对换热器性能的影响各有不同,换热器整体传热膜系数随着流路E间隙的增大而逐渐减小且趋于平缓;随着流路A间隙的增大却出现先增大后减小,存在一个间隙最佳值。流路E比流路A对换热器传热性能的影响要大得多。而打开E、A流路都降低壳程总压降,综合来看,流路A对提高换热器综合性能是有利的。
Shell and tube heat exchanger is one of the most widely used heat exchanger because of the advantage of it, which mainly concludes the simplicity and security of the structure, the great flexibility of operating and the abroad application of material and the segmental baffle heat exchanger is the most common application of a traditional shell and tube heat exchanger.The heat exchanger has some limitations but still widely be used because it exits for a long time, has the relatively mature technology and easy manufacturing assembly.
     The heat-hydraulic characteristics research of the shell and tube heat exchanger is very important for design and calculation,reconstruction, improving heat transfer efficiency, saving energy consumption, extending the service life of heat exchanger. The studies of fluid flow and heat transfer characteristics of the shell and tube heat exchanger using the numerical simulation method are reported in the literature more and more and already become a trend, but there are issues including low accuracy shell fluid divided mesh , numerical simulation stopped at the qualitative issues research and avoiding or simplifing the modeling of the some important flow path ,and neglect the influence of flow path flow and heat transfer on heat exchanger.Solving these problems, it will lead to new problems including the grid model precisely complicated and the higher cost of calculation or indeed hard to be solved.
     Based on the above issues, and the research purposes on completing more detailed numerical analysis of prestressed heat exchanger ,this paper uses new sub-modeling simulation technolgy to deal with large models and improve the discretization accuracy, achieves the refinement of sub-model and at last adopts comprehensive treatment method. The small gaps flow path A and E are successfully instroducted taking into account the impact of heat preesure drop of heat exchange.The numberical simulation of overall flow path model of the baffle heat exchanger will obtain more accurate and detailed simulation data ,which will provide a solid foundation and strong evidence for the subsequent technology implementation of prestressed heat exchanger.At the same time,this paper respectively makes simulaton of the model with single flow path E and single flow path A of different gap size of flow path, Preliminaryly studies on the characteristic for the fluid flow and heat impact of flow path E and A.At last we derive quantitatively multidimensional criterion expression associated with the gap structural parameters.
     It is conclude that:
     The numerical simulation method of fluid flow and heat transfer at the overall heat flow path is reliable,and the results obtained are in good agreement with the empirical formula.Flow path E and A have different impacts on the performance of heat exchanger.The overall heat transfer film coefficient decreases with the increase of flow path E gap,but first increases and then decreases with the increase of flow path A gap which has a best value.The impact on heat transfer performance of flow path E has much greater than A.Opening flow path E and A cutts down the pressure drop in shell.The flow path A is favorable for improving the comprehensive performance of heat exchanger.
引文
[1]陈文昕.管壳式换热器强化传热技术新进展和展望.过程装备与控制工程专业第九届全国高校交流会议论文集,昆明,2004:336-340
    [2]秦叔经,叶文邦等.换热器[M].北京:化学工业出版社, 2003: 3-10
    [3]钱颂文.换热器设计手册[M].北京:化学工业出版社, 2002: 6-12
    [4]张平亮.新型换热器及其技术进展[J].炼油技术与工程, 2007, 37(1): 25-29
    [5]靳明聪.程尚模,赵永湘.换热器[M].重庆:重庆大学出版社, 1990: 10-15
    [6]贺运初.换热器的强化传热与优化设计[J].化工装备技术, 1997, 18(2): 25-28
    [7]曹纬.国外新型换热器介绍仁[J].化学工程, 2000, 28(6): 50-52, 56
    [8]黄文江,张剑飞,陶文铨.弓形折流板换热器中中折流板对换热器性能的影响.[J].工程热物理学报,2007,28(6):1022-1024
    [9]史美中,王中铮.换热器原理与设计[M].南京东南大学出版社,1989:57-59
    [10]邓颂九.提高管壳式换热器传热性能的途径.化学工程.1992,(2):30-36
    [11]朱冬生,钱颂文.强化传热技术及其设计应用.化工装备技术. 2000,21(6): 1-9
    [12]陈文昕.折流杆换热器的数值模拟与实验研究[D].广州:华南理工大学, 2006
    [13]江楠,易宏.管壳式换热器壳程强化传热研究进展.化肥工业.1998,25(6)27-32
    [14]王秋旺.螺旋折流板管壳式换热器壳程传热强化研究进展[J].西安交通大报.2004,38(9):881-885
    [15]潘振,陈保东,商丽艳.螺旋折流板换热器的研究与进展[J].2006,24(1):81-85
    [16]杨军,孙成家,陈保东.螺旋与弓形折流板换热器性能对比及螺旋角优化[J].辽宁石油化大学学报,2005, 25(2):59-62.
    [17]孙成家,杨军,陈保东.不同折流板换热器的传热与流阻性能对比节能技术[J]. 2005, 23(1):59-61.
    [18]兰州石油机械研究所.换热器(上册)[M].北京:中国石化出版社,1991:242-243
    [19] process engineering.november .1977(11): 60~61
    [20]吴金星,魏新利,董其伍等.纵向流管壳式换热器强化传热研究与发展.石油机械. 2002,30(4):49-52
    [21]薛建设.高效,节能的换热设备—折流杆换热器.氮肥设计. 1993,31(1):26-30
    [22]胡明辅,金涛.双壳程折流杆换热器的理论,设计与工程计算.化工设备设计. 1994(6):13-15
    [23]邓先和,陈详.空心环管壳式换热器工业化应用回顾.硫酸工业. 2000(6):23-25
    [24]吴家声.纵向流绕丝管管束换热器实验研究.化工装备技术. 2002,23(1):21-22
    [25]刘吉普,文美纯.壳程螺旋扭片强化传热研究.石油化工设备.2000,29(6):3-5
    [26]付秀琳,陈晓君.折流板-扁钢条复合支撑在换热器上的应用.化工设备与管道. 2003,40(3):9-12
    [27]钱颂文,江楠,吴家声.纵向流混合管束换热器实验研究.石油化工设备. 2001,30(1):1-3
    [28] Ofmann A.H.Theoretical solution for the cross-flow heat exchanger[J]. Heat and Mass Transfer, 2000, 36: 127-133
    [29]王永庆.纵流壳程换热器不同支承结构壳程特性研究与分析[D].郑州:郑州大学. 2005
    [30]王福军.计算流体动力学分析:CFD软件应用及原理.北京:清华大学出版社. 2004
    [31]陶文铨.计算传热学的近代进展.北京:科学出版社.2000
    [32] Colburn.A.P..AIChE Trans. 1933,29:174
    [33] Tinker,T..Shell Side Heat Transfer Characteristics of Segmentally Baffled shell-and-Tube Heat Exchangers[J].ASME Paper.1947: 47-A-130
    [34] Donohue,D.A..Heat Transfer and Pressure Drop in Heat Exchangers[J]. Ind.eng.chem..1949,41(11):2499
    [35] Donohue,D.A..Petrol.Refiner,1955-1956:part1-part4
    [36] Kern,D.Q..Process Heat Transfer[M]. Americian: McGraw hill,1950
    [37] Kakc,Bergles,and Fmayinger.Heat Exchangers:Thermal-Hydrolic Fundamentsls and design[M]. washangton New York,London,Hemisphere Publishing Corporation:1981
    [38] Zahid H Ayub. A new chart methord For Evaluating single-phase shell side heat transfer coefficient in a single segmental shell and tube heat exchanger[J].Applied thermal engineer-ing, 2005,25:2412-2420
    [39] Palen,J.W., J. Taborek. Solution of Shell Side Flow Pressure Drop and Heat Transfer by stream Analysis Method[J]. Heat Transfer-Philadelphia:1969
    [40] V.Gnielinski, E.S.Gaddis.装有弓形折流板的管壳式换热器壳程平均给热系数的计算[J]化工炼油机械. 1981,5:67-76
    [41]黄鸿鼎,冯亚云.计算管壳式换热器壳程压强降的流路分析法[J].化工学报. 1979:91-108
    [42]天津大学化工系化学工程教研室.用流路分析法计算管壳式换热器壳程的流体阻力[J].化学工程. 1976:25-49
    [43]天津大学化工系化学工程教研室.用流路分析法计算管壳式换热器的壳程压强降[J].化学工程. 1976. 51-56
    [44]黄鸿鼎,冯亚云.流路分析法(I).石油炼制. 1979,10:45-57
    [45]黄鸿鼎,冯亚云.流路分析法(II).石油炼制. 1979,11:31-37
    [46] Tinker.T.. Trans. ASME.1958, 80(1): 36
    [47]林长青.工艺参数对预应力换热器性能的影响[D].广州:华南理工大学, 2009
    [48]陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社, 2001:115-130
    [49] Fluent Inc. Fluent User’s Guide[M]. Fluent Inc. 2006
    [50] S.V. Patankar. Recent Development in Computational Heat Transfer. Journal of Heat Transfer. 1998,110:1037-1045
    [51] PATANKAR S V, SPALDING D B. A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchangers[A].AFGAN N,SCHLUNDER E U.Heat Exchanger Design and Theory Sourcebook[C].Wash-ington DC:Scripta book Company, 1974.155-176.
    [52] W.T.Sha, C.I.Yang , T.T.Kao. Multidimensional Numerical Modeling Of Heat Exchangers. Journal of Heat Transfer. 1982, 104:417-425
    [53]谢永宏,郭方中,吴洪涛等.紧凑换热器的多孔介质模型化[J].核动力工程, 1995, 16(2): 177-182
    [54] Prithiviraj M, Andrews M J. Three Dimensional Mumerical Simulation Of Shell And Tube Heatexchangers. Numerical Heat Transfer,Part A. 1998, 33:799-828
    [55]黄兴华.管壳式换热器壳侧紊流流动及凝汽器中汽液两相流动的数值研究.上海交通大学博士后学位论文. 2000
    [56]黄兴华,王启杰.管壳式换热器壳程流动和传热的三维数值模拟.化工学报. 2000,51(3):297-302
    [57]黄兴华,陆震.换热器壳侧紊流流动特性的数值研究.上海交通大学学报. 2000,34(9):1191-1194
    [58]解衡,高祖瑛.管壳式换热器流场三维数值模拟[J].核科学与工程, 2002, 22(3): 240-243.
    [59]邓斌,陶文铨.管壳式换热器壳侧湍流流动的数值模拟及实验研究.西安交通大学学报. 2003,37(9): 889-893,924
    [60]王定标胡祥报等.大型纵流壳程换热器三维流动与传热数值模拟.郑州大学学报:工学版. 2002, 23(3): 13-18
    [61]刘利平,黄万年. Fluent软件模拟管壳式换热器壳程三维流场[J].化工装备技术. 2006,27(3): 52-57
    [62]王艳云,李志安,刘红禹等. FLUENT软件对管壳式换热器壳程流体数值模拟方法可行性的验证[J].2007,6:46-48
    [63]徐百平,王铭伟,江楠,等.螺旋折流板换热器壳程流动与传热数值模拟研究[J].石油炼制与化工.2005,36(10):33–37.
    [64]张少维,桑芝富.螺旋折流板换热器壳程流体流动的数值模拟[J].南京工业大学学报.2004,26(2):81-84
    [65]邓斌,吴扬,陶文铨.螺旋折流板换热器壳侧流动的数值模拟[J].西安交通大学学报2004,38(11):1106-1109
    [66]刘红禹,王艳云,丰艳春等.单弓形和螺旋折流板换热器数值模拟及性能分析[J].炼油技术与工程.2007,37(11):45-49
    [67]郭崇志,梁泉水.折流杆换热器数值模拟新方法[J].化工进展, 2007, 26(8): 1198-1200,
    [68]郭崇志,林雄.预应力固定管板换热器预变形与应力特性的数值分析[J].化工进展. 2009, 28(3): 378-382
    [69]郭崇志,庞凌慧.预应力换热器性能的数值分析与实验研究[J].压力容器. 2009. 26(1): 4-9, 22
    [70]刘国俊.计算流体力学的地位、发展情况和发展趋势[J].航空计算技术. 1994(1): 15-21
    [71]常思勤,扈圣刚.计算流体力学进展及其在汽车设计中的应用[J].武汉汽车工业大学学报. 1997, 19(4): 12-15
    [72]韩占忠,王敬,兰小平. Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社. 2004
    [73]天津大学化工原理教研室编.化工原理(上册)[M]. 1982:54
    [74] M Greiner , R J Faulkner, etal. Simulations of Three-Dimensional Flow and Augmented Heat Transfer in a Symmetrically Grooved Channel[M]. Journal of Heat Transfer. 2000, 122(11): 653-659
    [75]夏利荣.新型纵流壳程换热器夹套式变截面导流筒流场分析与结构优化.郑州大学硕士学位论文.2004.
    [76]朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987:8-14
    [77] [日]幡野佐一,等.换热器[M].北京:化学工业出版社,1987:36
    [78] [日]尾花英郎著,徐中权译.热交换器设计手册[M].北京:石油工业出版社,1982
    [79] Donohue,D.A.. I.E.C.1949,41: 2499-2511
    [80] [日]幡野佐一,等.换热器[M].北京:化学工业出版社,1987: 243-246
    [81]马小明,钱颂文,朱冬生等.管壳式换热器[M].北京:中国石化出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700