折流板预应力换热器性能的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器因其结构简单,设计加工工艺成熟,处理量大,适应性强以及安全可靠等优点而被广泛采用,而弓形折流板换热器具有结构简单、耐高温高压、造价低廉、清洗方便等优点,成为普遍使用的一种传统管壳式换热器。
     预应力技术可以大大降低固定管板换热器的温差应力,因此有良好的应用前景。国内外关于预应力换热器的研究较少,提出的预应力施加方法各有差异。在专利《一种管壳式预应力换热器的设计制造方法》指导下,对折流杆预应力换热器已有较好的研究,并通过模拟和实验对比证明了技术可行性。本文进一步探讨预应力技术在弓形折流板换热器的应用。主要工作包括:
     1.在合理简化实际结构的基础上,建立三维有限元模型。
     2.将CFD模型输出数据转换到有限元模型,作为载荷边界条件加载,从而完成结构模型温度场分析。
     3.利用间接耦合方法,对模型施加预变形进行预应力分析;施加一系列不同的预变形,寻求最佳预变形量。
     4.在其它工艺参数相同的情况下改变管程流体的温度,通过分析换热器整体模型在不同的管程温度下,只受温度载荷、同时受温度和预变形载荷、只受预变形载荷三种工况下的性能变化,探讨管程温度对预应力技术有何影响及规律。
     5.把本文对折流板预应力换热器的研究结果与前人对折流杆换热器的研究成果做比较,分别从两种模型的温度场、热应力场、温度载荷-预变形载荷叠加后的预应力场对比,分析不同的折流元件对预应力技术的影响大小,其最优结构有何异同。
     本文所采用的研究弓形折流板预应力换热器的技术和方法,对其他不同折流元件、多管程、多壳程换热器的预应力技术模拟,具有指导和借鉴作用,值得进一步的研究和推广。通过本文的研究,不但丰富现有的预应力研究理论和技术,为预应力换热器的推广使用奠定坚实的基础,还能通过比较两种不同的折流结构对预应力换热器性能的影响,为现在广泛使用折流板换热器的企业以较简单、经济、可靠的方式提高设备安全性。
The shell-and-tube heat exchanger is widely used because of its simple structure, mature designing and processing craft, large handling capacity, strong compatibility as well as safty and reliability and so on. Heat exchanger with segmental baffles becomes the most universal one in traditional hell-and-tube heat exchangers because of its merit of simple structure, high-heat and high-pressure valve, easy to clean, maintain and low cost.
     The pre-stressed technology has good prospect in development and application for it may greatly reduce the thermal stress of fixed tube-sheet exchanger. There is much research on heat exchanger at home and aboard, but research on pre-stressed heat exchanger is limited. The method how to apply pre-stress to heat exchanger is different. Under the instruction of patent , the rod-baffle pre-stressed heat exchanger has had good research, and which has been proven the technical feasibility through simulation and experiment. Deeply study is conducted on pre-stressed heat exchanger with segmental baffles in this paper. The prime task includes several aspects as follows:
     1. Creat 3D finite element model on the base of rationally simplifying actual structure.
     2. Transform the output data from CFD model to finite element model as the load boundary condition, thus completing temperature analysis on structural model.
     3. Use the indirect coupled method to simulate the pre-stressed analysis by applying pre-deformation; seek the best pre-deformation by represent variety of pre-deformation.
     4. Change the tube-side temperature while the other condition remain the same, analyze the performance of heat exchanger under different tube-side temperature and three kind of operating modes:only receive the temperature load, simultaneous action of temperature load and pre-deformation load, only receive the pre-deformation load. Discuss the influence of pre-stressed technology on different tube-side temperature.
     5. Comparing the two kinds of pre-stressed heat exchanger between the heat exchanger with segmental baffles and the rodbaffle heat exchanger, three aspects is put forward: the thermal field, the thermal-construct field, the pre-stressed field. Analyze the influence of different baffling component, and the differences of the most superior structure.
     The analytical technology and method of pre-stressed heat exchanger with segmental baffles in this paper have direction and lessoning affect for other pre-stressed simulation such as other different baffling components, multipass tubular heater, and is worth to be further researched and widely applied. Through the research in this paper, not only rich the existing pre-stressed theory and technology, lay the foundation of wide-spread use of pre-stressed heat exchanger, but also provide a kind of simple, economic, reliable method for enterprises which use heat exchanger with segmental baffles at present to enhance its security.
引文
[1]冯国红,曹艳芝,郝红.管壳式换热器的研究进展[J].化工技术与开发,2009,38(6):41-44
    [2]孙奉仲.换热器的可靠性与故障分析导论[M].中国标准出版社,1998
    [3]覃耕,张士科.换热器实用技术问题[M].煤炭工业出版社,1991
    [4]朱聘冠.换热器原理及计算[M].清华大学出版社,1987
    [5]余建祖.换热器原理与设计[M].北京航空航天大学出版社,2006
    [6]兰州石油机械研究所.换热器上册[M].烃加工出版社,1986
    [7]李诚.降低固定管板式换热器温差应力的措施[J].炼油技术与工程,2003,33(7):22-23
    [8]郭崇志.一种管壳式预应力换热器的设计制造方法[P].发明专利说明书,00114032,2000
    [9] S.Mukherjee. Comments of the design on tube-plate heat exchanger [J]. Chemical Age of India,1973,24(2):81-86
    [10]周兆圻.固定式换热器薄管板试验试验[J]. 1977,31-44
    [11]上海化工机修总厂,上海化工设计院.薄型管板应力测定小结[J]. 12-26
    [12]张如一.高压固定式换热器管板应力测定[J].压力容器,1984,9(5):1-8
    [13]张恩泽,邵泽波,付淑芝,等.薄管板换热器应力测试研究[J].吉林化工学院学报,1986,3(2):15-27
    [14] JB4732-95,钢制压力容器-分析法设计标准[S].全国压力容器标准化技术委员会,1995
    [15] ASME.锅炉及压力容器规范(II)(含A99)材料D篇性能[S].石油工业出版社,1998
    [16] Ohol R D,Rane M T,Noras R A. A finite element pro-cedure for temperature distribution in tube sheets[C]. Proceedings of the 7th International Conference on Pressure Vessel Technology,Dusseldorf:Spring Press,1992,2:355-370
    [17]薛明德,吴强胜.对流换热条件下换热器管板的应力分析[J].核动力工程,1998,19(6):519-524陈树宁.卧式固定管板换热器壳体的应力计算[J].化工炼油机械, 1984,13(3):30-33
    [18]胡锡文,林兴华.管壳式换热器管板的有限元分析[J].压力容器,2004,21(10):26-28
    [19] N.Merah,A.Alzayer,A.Shuaib. Finite elemente valuation of clearanee effect on tube-tube sheet joint strength [J]. Initernational Joumal of Pressure Vessels and piping,2003,80:879-885
    [20] H.F.Chen,R.S.Alan. Ponter integrity assessment for a tubeplate using the linear matching method [J]. International Journal of Pressure Vessels and piping,2004,81:327-336
    [21] H.EChen,R.S. Alan. Integnty assessment of a 3D tubeplate using the linear matching, Part I:shakedown,reverse plasticity and ratcheting [J]. International Journal of Pressure Vessels and Piping,2005,82:85-94
    [22] H.F.Chen,R.S.Alan. Integrity assessment of a 3D tubeplate using the linear matching, Part II:creep relaxation and reverse plasticity [J]. International Journal of Pressure Vessels and Piping,2005,82:95-104
    [23]王定标,向飒,魏新利.换热设备管板热应力的数值模拟及应用[J].轻工机械,2004, (3):31-34
    [24]刘海亮.高压U型管式换热器管板的有限元分析研究[D].北京:北京化工大学,2005
    [25]贾慧灵,杜鹏飞.固定管板式换热器应力的有限元分析[J].煤矿机械,2009,30(12):87-88
    [26]刘燕飞,程新春,李承章.预应力技术的发展[J].工程建设与档案,2005,19(2):138-141
    [27]卓震,张晶.固定管板式换热器的预应力技术[J].化工设备设计,1996,33(1):21-25
    [28]公维生,王锦勇.预应力列管换热器及其制造技术[J].化工施工技术,1999,21(2): 24-25
    [29]王维慧,胡光忠.预应力换热器的特点及其制造方法[J].机械设计与制造,2007,(6):136-138
    [30]王友红,许乐.预应力换热器初步研究报告[R].广州:华南理工大学工业装备与控制工程学院,2002
    [31]陈文昕,王友红,郭崇志.管壳式换热器预应力计算方法的初步研究[J].广东省锅炉压力容器技术论坛,2005
    [32]陈文昕.折流杆换热器的数值模拟与实验研究[D].广州:华南理工大学,2006
    [33]郭崇志,梁泉水.折流杆换热器数值模拟新方法[J].化工进展,2007,26(8):1198-1200,1206
    [34]梁泉水.预应力换热器的分析与实验研究[D].广州:华南理工大学,2007
    [35]郭崇志,周洁.固定管板式换热器的温差热应力数值分析[J].化工机械,2009, 36(1):41-46
    [36]郭崇志,林雄.预应力固定管板换热器预变形与应力特性的数值分析[J].化工进展, 2009,28(3):378-382
    [37]郭崇志,庞凌慧.预应力换热器性能的数值分析与实验研究[J].压力容器,2009,26(1):4-9
    [38]郭崇志,林长青.固定管板式换热器的温度场数值分析[J].化工机械,2008,35(6):338-344
    [39]林长青.工艺参数对预应力换热器性能的影响研究[D].广州:华南理工大学, 2009
    [40]李红云. ANSYS10.0基础及工程应用[M].北京:机械工业出版社,2008
    [41]张国智. ANSYS10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007
    [42]张朝晖. ANSYS11.0结构分析工程应力实例解析[M].北京:机械工业出版社,2008
    [43]王建江. ANSYS11.0结构与热力学有限元分析实例指导教程[M].北京:机械工业出版社,2008
    [44] M Greiner,R J Faulkner,etc. Simulations of three-dimensional flow and augmented heat transfer in a symmetrically grooved channel [J]. Journal of Heat Transfer. 2000, 122(11):653-659
    [45]林雄.折流板换热器的流路性能数值模拟研究[D].广州:华南理工大学,2010
    [46]钱颂文.管壳式换热器设计原理;换热器结构动力学[M].华南理工大学出版社, 1990
    [47] R.Mukheriee.双弓形折流板管壳换热器[J].石油化工设备技术,1993,14(5):17-20
    [48] SoltanBK,Saffar-Avval M,DamangirE. Minimization of capital and operating costs of shell and tube condensers using optimum baffle[J]. APPL Thermal Eng 2004:24:2801-2810
    [49] Dogan Eryener. Thermoeonomic optimization of baffle for shell and tube heat exehanger [J]. Energy Conversion and Management. 2006,47:1478-1489
    [50] GB150-1998,钢制压力容器[S].全国压力容器标准化技术委员会,1998
    [51] GB151-1999,管壳式换热器[S].全国压力容器标准化技术委员会,1999
    [52]美国管式换热器制造者协会编. TEMA管式换热器标准[S].兰州:兰州工业大学校:兰州石油机械研究所,1970
    [53]幡佐野一.换热器[M].化学工业出版社,1987
    [54] ANSYS公司. ANSYS帮助[HTML]. ANSYS软件
    [55]钱颂文.换热器管束流体力学与传热[M].中国石化出版社,2002
    [56]黄鸿鼎,冯亚云.计算管壳式换热器壳程压降的流路分析法[J].化工学报,1979(1)
    [57] Murthy J Y,Mathur S.Periodic flow and heat transfer using unstructured meshes[J]. International Journal for Numerical Methods in Fluids,1997,25:659–677
    [58]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004
    [59]吴金星,王定标,魏新利.管壳式换热器壳程流动和传热数值模拟研究进展[J].流体机械,2005,30(5):28-32
    [60] Weiya Jin. Comaparison of two FEA models for calculating stress in shell-and-tube heat exchanger[J]. Internatuonal Journal of Pressure Vessels and Piping,2002,8:563-567
    [61]李静,刘敏珊,董其伍.纵流壳程换热器新型抗振折流元件的数值研究[J].热能动力工程,2005,20(6):579-583
    [62]董其伍,吴金星,刘敏珊.孔板支撑换热器壳程流场的数值预测[J].压力容器,2003,20(8):4-7
    [63]王定标,胡祥报,郭茶秀.大型纵流壳程换热器三维流动与传热数值模拟[J].郑州大学学报(工学),2002,23(3):13-18
    [64]严良文.壳程纵流换热器的强化传热研究[D].上海:华东理工大学,2004
    [65]徐百平,王铭伟,江楠.螺旋折流板换热器壳程流动与传热数值模拟研究[J].石油炼制与化工,2005,36(10): 33-37
    [66]郭崇志,林长青.基于ANSYS和FLUENT的管壳式换热器整体分析方法[HTML].安世亚太http://pera.e-works.net.cn/document/200907/article8611.htm,2009.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700