泡沫金属载体板制氢微反应器设计制造及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于硼氢化钠水解制氢反应原理,采用高性能泡沫金属载体板,设计制造了两种针对不同功率氢燃料电池使用的制氢微反应器。通过理论计算、模拟分析和实验验证方法分析了反应器的性能。并开发了针对这两种制氢微反应器的应用系统。本文的主要研究内容如下:
     采用泡沫金属载体板,针对千瓦级燃料电池,设计制造了管式微反应器,采用特殊的喷管结构,使溶液与催化剂充分接触;针对十瓦级燃料电池,设计制造了板式微反应器,采用流道分布结构和气液分离结构,实现氢气和反应溶液的分离。对两种反应器内压降与流体流速的关系及多孔泡沫金属载体板的传热性能进行了理论计算。
     利用Fluent软件,模拟分析了不同入口速度及不同结构参数对泡沫金属中流体速度和压力分布的影响,得出泡沫金属中流体速度分布和压力分布规律。以速度分布均匀情况和压降的大小来分析反应器性能,模拟分析了不同入口速度及不同结构参数对微反应器中流体速度和压力分布的影响。所设计的两种微反应器内流体分布均匀,压降随入口速度的增大而增大。
     加工了板式制氢微反应器及管式制氢微反应器,搭建了反应器性能测试实验系统。实验结果表明:在板式微反应器内,产氢速率随入口速度的增加而降低,随温度的升高而增大,泡沫镍载体板的性能优于泡沫铜载铂的性能;管式微反应器内,入口速度越快产氢速率越大。
     开发了制氢微反应器应用系统。采用管式微反应器,开发出面向千瓦级大功率燃料电池的供氢系统,包括制氢装置及其控制系统,反应系统安全可靠、自动化程度高;采用板式微反应器,开发出面向十瓦级小功率电器的B-μPEMFC集成系统,并搭建了B-μPEMFC系统原理验证平台及系统测试平台。
According to hydrolysis of sodium borohydride, two kinds of microreactor for hydrogen production for different power hydrogen fuel cells which use metal foam as catalyst support were designed and manufactured. Reactor’s performance was analyzed through theoretical calculation, simulation analysis and experimental verification. And these two kinds of microreactors were applied with fuel cell in system. The main research content of this paper is as follows:
     Based on metal foam catalyst support, tube microreactor for kilowatt fuel cell was designed and manufactured, using a special nozzle structure to make solution contact fully with catalyst; board microreactor for 10-watt fuel cell was designed and manufactured, using distribution structure and channel structure of gas-liquid separation to achieve the separation of hydrogen and the reaction solution. The relationship of pressure drop and flow rate in these two kinds of microreactors and the heat transfer performance of metal foam catalyst support were calculated.
     The fluid velocity and pressure distribution in metal foam with different inlet velocity and different structural parameters was analyzed by Fluent, obtained discipline of fluid velocity and pressure distribution in metal foam. The reactor’s performance can be analyzed by velocity distribution and pressure drop. The influence of different inlet velocity to microreactor’s flow velocity and pressure distribution was simulated. The fluid in these two kinds of microreactors distributed uniformly, pressure drop increased with the speed increased.
     Board microreactor and tube microreactor were machined, reactor performance test system was built. The results show that: in the board reactor, hydrogen production rate increased with the inlet velocity decreased and temperature increased, the performance of nickel foam support is better than the performance of copper foam; in the tube microreactor, hydrogen production rate increased with the inlet velocity increased.
     These two kinds of microreactors were applied with fuel cell in system. By using tube microreactor, a hydrogen generation system for kilowatt high-power fuel cells was designed, including hydrogen generation equipment and control system, the system is reliable and automatic; by using board microreactor, B-μPEMFC system for 10-watt low-power electric equipment was designed, theory verification platform and test platform of B-μPEMFC system were built.
引文
[1]衣宝廉.燃料电池高效、环境友好的发电方式[M].北京:化学工业出版社, 2000
    [2] Costamagna P., Srinivasan S.. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects[J], J. Power Sources, 2001, 102(1/2) : 253-269
    [3] Sandrock G.. State of the art review of hydrogen storage in reversible metal hydrides for military fuel cell applications [Z]. Final Report Contract, N00014-97-M20001, 1997, 1 - 159
    [4] Schlesinger H.I., Brown H.C., Finholt A.E., et al. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen[J], J. American Chemical Society, 1953, 75: 215
    [5] Noh J.S., Agarwal R.K., Schwarz J.A., et al. Hydrogen storage systems using activated carbon [J], J .Hydrogen Energy , 1987, 12 (10): 693 -700
    [6] Strêbel R., Garche J., Moseley P.T., et al. Hydrogen storage by carbon materials [J], J. Power Sources , 2006, 159 (2) : 781-801
    [7] Tamura T., Tominaga Y., Matumoto K., et al. Protium absorption properties of Ti–V–Cr–Mn alloys with a b.c.c. structure [J]. J. Alloys Compd, 2002, 330/332: 522-525
    [8] Eyeforfuelcells. Chrysler TC natrium fuel cell minivan nabs“best of What’s new”award. http:www.eyeforfuelcells.com/ReportDisplay. Asp?ReportID=1747
    [9] Kojima Y., Haga T.. Recycling process of sodium metaborate to sodium borohydride [J]. Int. J. Hydrogen Energy, 2003, 28 (9): 989-993
    [10]潘相敏,马建新.燃料电池汽车供氢新技术——硼氢化钠水解制氢.天然气化工[J]. 2003, 5: 51-55
    [11] Schlesinger H.I., Brown H.C., Finholt A.E.. Sodium Borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen [J]. J. Am Chem Soc, 1953, 75: 215-219
    [12] Yoshitsugu K., Ken-ichirou S., Kazuhiro F., et al. Development of 10 kW-scale hydrogen generator using chemical hydride [J], J. Power Sources , 2004, 125: 22–26
    [13] Xia Z.T. and Chan. S.H. Feasibility study of hydrogen generation from sodium borohydride solution for micro fuel cell applications [J]. J. Power Sources, 2005, 152: 46–49
    [14] Don G., Sonja T., Frederic Z., et al. Room temperature micro-hydrogen-generator [J]. J. Power Sources, 2005, 149 :15–21
    [15] Richardson B.S., Birdwell J.F., Pin F.G., et al. Sodium borohydride based hybrid powersystem[J]. J. Power Sources ,2005 , 145 : 21-29
    [16] Jinsong Z., Yuan Z., Jay P., et al. 1kw sodium borohydride hydrogen generation system: Part I: Experimental study [J]. J. Power Sources, 2007, 165: 844–853
    [17] Aiello R., Sharp J.H., Matthews M.A., et al. Production of hydrogen from chemical hydrides via hydrolysis with steam [J]. Int. J. Hydrogen Energy , 1999, 24 : 1123 -1130
    [18]徐东彦,张华民,叶威.硼氢化钠水解制氢.化工进展[J]. 2007, 19(10): 1598-1605
    [19]王亚权.硼氢化钠催化水解发生氢气的方法及反应器[P].中国: CN03130002. 2 ,2003
    [20]杨汉西,董华,艾新平.一种氢气的制备方法及装置[P].中国:CN1438169A , 2003
    [21] Kothare M.V., Pattekar A.V., Alfadhel K.A., et al. Microreactors for efficient on-chip fuel processing and hydrogen generation [A]. Proc. SPIE Int. Soc. Opt. [C]Eng. 2005, 5592(241)
    [22] Pattekar A.V., Kothare M.V.. A microreactor for hydrogen production in micro fuel cell applications [J]. J. microelectromechanical systems, 2004, 13(1):7-18
    [23] Pattekar A.V., Kothare M.V.. A microreactor for in-situ hydrogen production by catalytic methanol reforming [A]. Proceedings of the 5th International Conference on Microreaction Technology (IMRET 5) [C], Strasbourg, France, 2001
    [24] Shannon M.A., Moore G.V., Ganley J., et al. High-temperature micro combustion based ammonia microchemical hydrogen generator reactors for PEM fuel cells [J]. Proceedings of Workshop on Solid State Sensors, Actuators, and Microsystems, 2002
    [25] Ganley J.C., Seebaue E.G., Masel R.I., et al. Development of a microreactor for the production of hydrogen from ammonia[J]. Journal of Power Sources, 2004,137: 53–61
    [26] Schuessler M, Portscher M, Limbeck U. Monolithic integrated fuel processor for the conversion of liquid methanol [J]. Catalysis Today, 2003, 79-80: 511-520
    [27] Martin P.M., Matson D.W., Bennett W.D., et al. Laser micromachined and laminated icrofluidic components for miniaturized thermal,chemical and biological systems[A]. SPIE Conference Proceedings, Design, Test, and Micro-fabrication of MEMS and MOEMS[C], 1999, 3680: 826-833
    [28] Matson D.W., Martin P.M., Stewart D.C., et al. Fabrication of microchannel chemical reactors using a metal lamination process[A]. Proceedings of 3rd International Conference on Microreaction Technology(IMRET 3) [C]. Berlin, 2000: 62-71
    [29] Martin P.M., Matson D.W., Bennett W.D., et al. Laminated ceramic microfluidic components for microreactor applications [A]. AIChE 2000 Apring National Meeting[C].Atlanta, 2000
    [30] Tonkovich A.L., Zilka J.L., Powell M.R., et al. The catalytic partial oxidation of methane in a micro- channel chemical reactor [A]. 2nd International Conference on Microreaction Technology,Topical Conference preprints[C], New Orleans, USA,1998, 45-53
    [31] Leonardo G., Gianpiero G., Enrico T.. Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts[J]. Industrial & Engineering Chemistry Research. 2005, 44: 4993-5002
    [32]许佩敏,张健,孙旭东.我国金属纤维及制品的应用研究状况[J].稀有金属快报, 2008, 27(9): 11-16
    [33]刘海洋,刘慧英,王伟霞.金属纤维的发展现状及前景展望[J].稀有金属快报, 2005,10: 1-4
    [34]潘敏强,汤勇,张铱洪等.催化波纹载体薄片多齿流滚压成形工艺[J].华南理工大学学报(自然科学版)2007, 8: 4-10
    [35] 31史鹏飞,尹鸽平,张新荣等.电启动甲醇重整器及所用的催化剂载体[P].中国: 03133540.3
    [36] Florina C.P., Gerardo I.G., Bettina K.C., et al. CO oxidation over structured carriers:Acomparison of ceramic foams, honeycombs and beads [J]. Chemical Engineering Science. 2007, 62: 3984–3990
    [37] Matteo M., Alessandra B., Gianpiero G., et al. Comparison among structured and packed-bed reactors for the catalytic partial oxidation of CH4 at short contact times [J]. Catalysis Today, 2005, 105: 709–717
    [38] Leonardo G., Gianpiero G., Enrico T., et al. Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts [J]. Industrial & Engineering Chemistry Research, 2005, 44: 4993-5002
    [39]陈学广,赵维民,马彦东.泡沫金属的发展现状、研究与应用[J].粉末冶金技术, 2002, 20(6): 356-359
    [40]毕于顺,韩雯雯,左孝青.多孔泡沫金属的制备方法与应用前景[J].有色金属加工, 2007, 36(2): 31-34
    [41]王正平,陈兴娟.精细化学反应设备分析与设计[M].化学工业出版社,2004.11
    [42]王芳,王录才.泡沫金属的研究与发展[J] .铸造设备研究,2000 (3) :48 - 51
    [43] Gibson L.J., Ashby M.F..多孔固体结构与性能[M] .刘培生译,田民波校.北京:清华大学出版社, 2003
    [44] Bhattacharya V., Calmidi R.L., Mahajan. Thermophysical properties of high porosity metal foams [J]. Int. J. Heat and Mass Transfer, 2002, 45: 1017-1031
    [45] Boomsma K., Poulikakos D., Ventikos Y., et al. Simulations of flow through open cell metal foams using an idealized periodic cell structure [J]. Int J. Heat and Fluid Flow 2003, 24 : 825–834
    [46] Shankar K., Jayathi Y., Murthy, Suresh V.. Garimella, Direct Simulation of Transport in Open-Cell Metal Foam [J]. ASME J.Heat Transfer, 2006, 128: 793-79
    [47] Kopanidis A., Theodorakakos A., Gavaises E., et al. Numerical simulation of fluid flow and heat transfer with direct modeling of micro scale geometry [A]. 5th European Thermal-Sciences Conference[C] 2008
    [48]吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报, 2001, 25(3):257-261
    [49]王瑞金,张凯,王刚. FLUENT技术基础与应用实例[M].清华大学出版社, 2007:1-2
    [50]韩占忠,王敬,兰小平. Fluent流体工程仿真计算实例与应用[M].北京理工大学出版社, 2004: 19-26
    [51] Kojima Y., Suzuki K., Fukumoto K., et al. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide [J]. Int. J. Hydrogen Energy, 2002, 27 (10): 1029–1034
    [52] Jeong S.U., Kim R.K., Cho E.A.. A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst [J]. J. Power Sources , 2005 ,144 (2) : 129–134
    [53] Kreevoy M.M., Jacobson R.W.. The rate of decomposition of NaBH4 in basic aqueous solutions [J]. J .Ventron Alembic, 1979 , 15: 2–3
    [54] Dongyan X., Huamin Z., Wei Y.. Hydrogen production from sodium borohydride [J]. Process in Chemistry, 2007, 19 (10): 1598-1605

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700