应用机载千伏级CBCT研究鼻咽癌IMRT的摆位误差及其对受照剂量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用机载千伏级CBCT监测鼻咽癌调强放疗患者疗程中摆位误差的变化和影响因素,分析摆位误差对物理剂量的影响,以达到减少和/或消除摆位误差对放疗的影响。
     方法:本实验选取病理学确诊的鼻咽癌早期患者15例,行调强放疗。患者每周按治疗计划标志点摆位,利用机载KV-CBCT扫描获取摆位误差,将摆位误差代入治疗计划,模拟出未使用IGRT时,实际摆位位置中剂量分布情况。计算在相同治疗阶段所有患者三维线性方向和水平面旋转方向摆位误差平均值、标准差及95%可信区间(CI);分析随疗程进行摆位误差的变化情况;探讨体重指数和体重变化对摆位误差的影响;研究不同方向的摆位误差对危及器官剂量影响;分析三维移动矢量和旋转误差对靶区剂量影响,并探讨本科室鼻咽癌患者靶区外放边界范围。
     结果:患者在腹背、头脚、左右三个坐标轴和水平面旋转方向的摆位误差均值分别为-0.1833cm、-0.0322cm、0.0967cm和-0.8333°,95%的可信区间分别为[-0.2117cm,-0.1549cm],[-0.0768cm,0.0124cm],[0.0563cm,0.1371cm]和[-1.0987°,-0.5687°]。随疗程进行,摆位中心点向腹侧偏移。BMI≥25患者在左右方向及水平面旋转方向首次摆位误差绝对值较BMI<25患者明显增大;BMI≥25患者在左右方向及水平面旋转方向的系统误差较BMI<25患者明显;患者体重下降会引起摆位中心点往腹侧偏移和水平面逆时针旋转。摆位中心点向背侧偏移0.2cm,脑干D1和脊髓D1cc增高率均值分别为6.58%和4.70%,摆位中心点向头侧偏移0.2cm,视交叉D1增高率均值为8.94%,摆位中心点向左侧偏移0.2cm,同侧腮腺D50增高率均值为4.95%。CTV2 D95、GTVnd D98与三维移动矢量和旋转误差有相关性(P<0.05,|r|>0.4);CTV1 D95和GTVnx D98与旋转误差无明显相关性(P>0.05);而GTVnx D98与三维移动矢量无明显相关性(P=0.077,|r|=0.187)。BMI≥25患者各个方向的MPTV值较BMI<25患者明显增大。
     结论:在鼻咽癌调强放疗中:1、BMI≥25患者有必要进行自适应放疗;2放疗疗程中体重减少超过7.10%时,需要及时调整放疗计划;3、摆位中心点偏移应尽量控制在0.2cm以内;4、GTVnd和CTV2剂量较GTVnx、CTV1剂量对线性误差和旋转误差敏感;5、BMI≥25患者可通过机载千伏级CBCT在线或离线纠正摆位误差,缩小CTV至PTV外放边界而获益。
Objective: Using KV-cone beam CT (CBCT) on IGRT to study the setup errors for nasopharyngeal carcinoma treated by fractionated intensity-modulated radiation therapy (IMRT) and to explore the effects on dose distributions in order to reduce and/or eliminate the effects on radiotherapy.
     Methods: Fifteen patients diagnosed with early nasopharyngeal carcinoma by pathology were selected. They were treated by fractionated IMRT. During the treatment courses, patients were posed by the original positions every week in order to get fractional setup errors with on-board KV-CBCT. We applied setup errors into the TPS to acquire dose distributions when patients posed at actual setup positions without image guided radiotherapy (IGRT). The mean values, standard deviations, 95% confidence intervals (CI) of three dimensional and the horizontal rotation errors were calculated. Analyzed the effects of body mass index and weight loss on setup errors. Explored the impact of the setup errors on the dose distributions for targets and organs at risk. And defined margins for planning target volume definition.
     Results: The mean values of setup errors on ventral-dorsal, cranial-caudal, medio-lateral directions and the horizontal rotation were -0.1833cm, -0.0322cm, 0.0967cm, -0.8333°and 95% confidence intervals were [-0.2117cm, -0.1549cm], [-0.0768cm, 0.0124cm ], [0.0563cm, 0.1371cm] and [-1.0987°, -0.5687°] respectively. The displacements increased with the treatment progress along the ventral-dorsal direction. Absolute values of the first setup errors, the system errors of the medio-lateral direction and the horizontal rotation in the patients with BMI≥25 are more apparent than those with BMI<25. Weight loss can obviously result in the center of actual setup position shifting to the ventral direction and the horizontal rotation counterclockwise. The center of actual setup position shifting to the dorsal direction 0.2cm is able to meanly increase brain stem D1 and spinal cord D1cc, with 6.58% and 4.70%. The center of actual position shifting to the cranial direction 0.2cm resulted in 8.94% dose meanly increasing of optic chiasm D1. The center of actual setup position shifting to the left direction 0.2cm resulted in left parotid D50 meanly increasing with 4.95%. The variations of CTV2 D95 and GTVnd D98 are relevant to 3-dimensional shift vector and the rotation setup error (P<0.05, |r|>0.4); the variations of CTV1 D95 and GTVnx D98 are not relevant to the rotation setup error (P>0.05); the variation of GTVnx D98 is not relevant to 3-dimensional shift vector (P=0.077, |r|=0.187). Patients with BMI≥25 of MPTV values were significantly increased in all directions.
     Conclusion: 1. The nasopharyngeal carcinoma patients with BMI≥25 should be treated by adaptive radiation therapy; 2. The treatment planning should be adjusted when the weight lost over than 7.10% during the treatment course; 3. The effective measures should be adopted to control isocenter point deviation of three directions within 0.2cm in nasopharyngeal carcinoma with IMRT; 4. The doses of GTVnd and CTV2 are more sensitive than that of GTVnx and CTV1 in translational and rotational setup error; 5. The patients with BMI≥25 might benefit from KV-CBCT online or offline correcting fractional setup errors to reduce margins for the PTV.
引文
1.刘泰福.现代放射肿瘤学[M].上海:复旦大学出版社, 2001: 116.
    2.于金明,李宝升.调强放射治疗的临床应用现状与存在的问题[J].中华肿瘤杂志, 2005, 27(3): 188-190.
    3. Chen JC, Chao KS, Low D. Comparison of intensity-modulated radiation therapy (IMRT) treatment technique for nasopharyngeal carcinoma [J]. Int J Cancer 2001, 96(2): 126-131.
    4. Shih HA, Jiang SB, Aljarrah KM, et al. Internal target volume determined with expansion margins beyond composite gross tumor volume in three-dimensional conformal radiotherapy for lung cancer [J]. Int J Radiat Oncol Biol Phys, 2004, 60(2): 613-622.
    5. Huiaenga H, Levendag PC, De Porre P. M. Z. R. et al. Accuracy in radiation field alignment in head and neck cancer: A prospective study [J]. Radiotherapy and Oncology, 1988, 11(2): 181-187.
    6. Chin LM, Kijewski PK, Svensson GK, et al. Dose optimization with computer controlled gantry rotation, collimator motion and doserate variation [J]. Int J Radiat Oncol Biol Phys, 1983, 9: 723-729.
    7. McBain CA, Henry AM, Sykes J, et al. X ray volumetric imaging in image-guided radiotherapy: the new standard in on treatment imaging [J]. Int J Radiat Oncol Biol Phys, 2006, 64(2): 625-634.
    8. ICRU Report 50: Prescribing, recording, and reporting photon beam therapy [S]. Bethesda, MD: International Commission on Radiation Units and Measurements, 1993: 1-72.
    9. ICRU Report 62: Prescribing, recording, and reporting photon beam therapy (supplement to ICRU Report 50) [S]. Bethesda, MD: International Commission on Radiation Units and Measurements, 1999.
    10.殷蔚伯,余子豪,徐国镇,等.肿瘤放射治疗学[M].北京:中国协和医科大学出版社, 2008: 464-467.
    11. Butler EB, Teh BS, Grant WH, et al. Smart Boost: a new accelerated fractionation schedule for the treatment of head and neck with intensity modulated radiotherapy [J]. Int J Radiat Oncol Biol Phys 1999, 45(1): 21-32.
    12.付培树,吴艳龙.图象引导放疗匹配区域Clipbox及匹配方式初探[J].中国西部科技, 2007, 6: 31.
    13. Rosenthal SA, Galvin JM, Goldwein JW, et a1. Improved methods for determination of variability in patient positioning for radiation therapy using simulation and serial portal film measurements [J]. Int J Radiat Oncol Biol Phys, 1992, 23(3): 621-625.
    14. Herk MV, Remeijer P, Lebesque JV. Inclusion of geometrical uncertainties in treatment plan evaluation [J]. Int J Radiat Oncol Biol Phys, 2002, 52(5): 1407-1422.
    15. Bedwinek J, Perez C, Keys D. Analysis of failures after definitive irradiation for epidermoid carcinoma of nasopharynx [J]. Cancer, 1990, 45 (11): 2725-2729.
    16.姜雪松,何侠.鼻咽癌治疗研究进展[J].肿瘤学杂志, 2009, 15( 5): 28-31.
    17.闵华庆.鼻咽癌研究[M].广州:广东科技出版社, 1998: 290-306.
    18.胡逸民.调强放射治疗的最新进展[J].中国医疗器械信息, 2005, 11( 2): 1-5.
    19.惠周光,徐国镇.鼻咽癌调强适形放疗的临床应用[J].实用肿瘤杂志, 2004, 19( 2): 1042-1061.
    20. Lee N, Xia P, Quivey JM, et al. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience [J]. Int J Radiat Oncol Biol Phys, 2002, 53(1): 12-22.
    21.卢泰祥,赵充,吴少雄,等.鼻咽癌单纯常规外照射放疗疗效的分析.中华肿瘤杂志, 2005, 27( 10): 620-622.
    22. Gierga DP, Chen GTY, Kung JH, et al. Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions [J]. Int J Radiat Oncol Biol Phys, 2004, Vol 58: 1584-1595.
    23. Stroom JC, De Boer HC, Huizenga H, et al. Inclusion of geometrical uncertainties inradiotherapy treatment planning by means of coverage probability [J]. Int J Radiat Oncol Biol Phys, 1999, 43(4): 905-919.
    24. Hurkmans CW, Remeijer P, Lebesque JV, et al. Set-up verification using portal imaging: review of current clinical practice [J]. Radiatherapy and Onco1ogy, 2001, 58(2): 105.
    25. Samuelsson A, Mercke C, Johansson KA. Systematic set-up errors for IMRT in the head and neck region: Effect on dose distribution [J]. Radiatherapy and Onco1ogy, 2003, 66(3): 303-311.
    26. Astreinidou E, Bel A, Raaijmakers CPJ, et al. Adequate margins for random setup uncertainties in head-and-neck IMRT [J]. Int J Radiat Oncol Biol Phys, 2005, 61(3): 938-944.
    27. Dawson LA, Jaffray DA, Advanced in image-guided radiation therapy [J]. Journal of Clinical Oncology, 2007, 25(8): 938-946
    28. Low D, Chao KS, Mutic S, et a1. Quality assurance of serial tomotherapy for head and neck patient treatments [J]. Int J Radiat Oncol Biol Phys, 1998, 42(3): 681-692.
    29. Fuss M, Salter BJ, Cheek D, et a1. Repositioning accuracy of a commercially available thermoplastic mask system [J]. Radiother and Oncol, 2004, 71(3): 339 -345.
    30. Rajendran MD, John P, Plastaras MD. Daily Isocenter Correction With Electromagnetic-Based Localization Improves Target Coverage and Rectal Sparing During Prostate Radiotherapy [J]. Int J Radiat Oncol Biol Phys, 2010, 76(4): 1092-109.
    31. Bentel GC. Radiation therapy planning [M]. McGraw-Hill, New York, 1996: 101.
    32. Kutcher GJ, Mageras GS, Leibel SA, Control, correction, and modeling of setup errors and organ motion [J]. Semin Radiat Oncol, 1995, 5(2): 134-145.
    33. Yan J, Wong F, Vicini J, et al. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors [J]. Int J Radia Oncol Biol Phys, 1997, 38(1): 197-206.
    34.潘才住,潘建基,陈传本,等.应用电子射野装置实时纠正鼻咽癌调强放疗摆位误差的研究[J].中华放射肿瘤学杂志, 2009, 18( 5): 341-345.
    35. International Commission on Radiation Units and Measurements ICRU-24. Determination of absorbed dose in a patient by beams of X or gamma rays in radiotherapy procedures [S]. Washington, DC: International Commission on Radiation Units and Measurements. Bethesda, MD: IGRT, 1976.
    36. Dische S, Saunders MI, Williams C, et al. Precision in reporting the dose given in a course of radiotherapy [J]. Radiother Oncol, 1993, 29 (3): 287-293.
    37. Dutreix A., When and how can we improve precision in radiotherapy? [J]. Radiother Oncol, 1984, 2(4): 275-292.
    38. Dutreix J, Tubiana M, Dutreix A. An approach to the interpretation of clinical data on the tumour control probability-dose relationship [J]. Radiother Oncol, 1988, 11(3): 239-248.
    39.王鑫,胡超苏.摆位系统误差对鼻咽癌放疗剂量分布的影响[J].中国癌症杂志2008, 18( 8): 620-625.
    40. Meyer J, Wilbert J, Baier K, et al. Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment [J]. Int J Radiat Oncol Biol Phys, 2007, 67(4): 1220-1228.
    41. Yamada Y, Lovelock DM, Yenice KM, et al. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: A preliminary report [J]. Int J Radiat Oncol Biol Phys, 2005, 62(1): 53-61.
    42. Langer MP, Papiez L, Spirydovich S, et al. The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design [J]. Int J Radiat Oncol Biol Phys 2005, 63(5): 1592-1603.
    43. Guckenberger M, Meyer J, Vordermark D, et al. Magnitude and clinical relevance of translational and rotational patient set-up errors: A cone-beam CT study [J]. Int J Radiat Oncol Biol Phys, 2006, 65(3): 934-942.
    44. Gilbeau L, Octave-Prignot M, Loncol T, et al. Comparison of setup accuracy of three different thermoplastic masks for the treatment of brain and head and neck tumors [J]. Radiotherapy and Oncology, 2001, 58(2): 155-162.
    45. Eisbruch A. Intensity-modulated radiotherapy of head-and-neck cancer encouraging early results [J]. Int J Radiat Oncol Biol Phys, 2002, 53 (1): 1-3.
    46. Humphreys M, Urbano G, Mubata C, et al. Assessment of a customised immobilisation system for head and neck IMRT using electronic portal imaging [J]. Radiother Oncol, 2005, 77(1): 39-44.
    47. Suzuki M, Nishimura Y, Nakamatsu K, et a1. Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV) and planning organs at risk volume (PRV)- margins [J]. Radiother Oncol, 2006, 78(3): 283-290.
    48. Rajendran RR, Plasteras JP, Mick R, et al. Daily Isocenter Correction With Electromagnetic-Based Localization Improves Target Coverage and Rectal Sparing During Prostate Radiotherapy [J]. Int J Radiat Oncol Biol Phys, 2010, 76(4)15: 1092-1099.
    49. Schulze D, Liang J, Yan D, et al. Comparison of various online IGRT strategies: The benefits of online treatment plan re-optimization [J]. Radiotherapy and Oncology, 2009, 90(3): 367-376.
    1.于金明,李宝升.调强放射治疗的临床应用现状与存在的问题[J].中华肿瘤杂志, 2005, 27(3): 188-190.
    2. Huiaenga H, Levendag PC, De Porre P. M. Z. R. et al. Accuracy in radiation field alignment in head and neck cancer: A prospective study [J]. Radiother Oncol, 1988, 11(2): 1871-1872.
    3. Shih HA, Jiang SB, Aljarrah KM, et al. Internal target volume determined with expansion margins beyond composite gross tumor volume in three dimensional conformal radiotherapy for lung cancer [J]. Int J Radiation Oncology Biol. Phys, 2004, 60(2): 613-622.
    4. Chin LM, Kijewski PK, Svensson GK, et al. Dose optimization with computer controlled gantry rotation, collimator motion and dose-rate variation [J]. Int J Radiat Oncol Biol Phys, 1983, 9(5): 723-729.
    5. McBain CA, Henry J, Sykes A, et al. X ray volumetric imaging in image-guided radiotherapy;the new standard in on treatment imaging [J]. Int J Radiat Oncol Biol Phys, 2006, 64(2): 625-634.
    6. Herman MG, Pisansky TM, Kruse JJ, et al. Technical aspects of daily online positioning of the prostate for three-dimensional conformal radiotherapy using an electronic portal imaging device [J]. Int J Radiat Oncol Biol Phys, 2003, 57(4): 1131-1140.
    7. Wong JR, Cheng CW, Grimm L, et al. Clinial implementation of the world′s first Primation, a combination of CT scanner and linear accelerator, for precise tumor targeting and treatment [J]. Italy Med Phys, 2001, 17: 271-276.
    8. Chandra A, Dong L, Huang E, et al. Experience of ultrasound-based daily prostate localization [J]. Int J Radial Oncol Biol Phys, 2003, 56(2): 436- 447.
    9. Philips M, Singer K, Miler E, et al. Commissioning an image-guided localization system for radiotherapy [J]. Int J Radial Oncol Biol Phys, 2000, 48(1), 267-276.
    10. Nakagawa K, Aoki Y, Tago M, et al. Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: original research in the treatment of thoracic neoplasms [J]. Int J Radiat Oncol Biol Phys, 2000, 48(2): 449-457.
    11. Mosleh-Shirazi MA, Evans PM, Swindell W, et al. A cone-beam megavoltage CT scanner for treatment verification in conformal radiotherapy [J]. Radiother Oncol, 1998, 48(3): 319-328.
    12. Silanpaa J, Chang J, Mageras G, et a1. Developments in megavohage CBCT with an amorphous silicon EPID: reduction of exposure and synchronization with respiratory gating [J]. Med Phys, 2005, 32: 819.
    13. Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy [J]. Int J Radiat Oncol Biol Phys, 2002, 53(5): 1337-1349.
    14. Vincent Wu WC, Leung WS, Kay SS, et al. A comparison between electronic portal imaging device and cone beam CT in radiotherapy verification of nasopharyngeal carcinoma [J]. Medical Dosimetry, 2010, 3.
    15. Cheng CW, Wong J, Grimm L, et al. Commissioning and clinical implementation of a sliding gantry CT scanner installed in an existing treatment room and early clinical experience for precise tumor localization [J]. Am J Clin Oncol, 2003, 26(3): e28-36.
    16. Hurkmans CW, RemeijerP, Lebesque JV, et al. Set-up verification using portal imaging: review of current clinical practice [J]. Radiother Oncol, 2001, 58(2): 105.
    17. Yan J, Wong F, Vicini J, et al. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors [J]. Int J Radia Oncol Biol Phys, 1997, 38(1): 197-206.
    18. Castadot P, Lee JA, Geets X, et al. Adaptive Radiotherapy of Head and Neck Cancer [J], Seminars in Radiation Oncology, 2010, 20(2): 84-93.
    19. Chen J, Chuang CF, Morin O, et al. Calibration of an amourphous-silicon flat panel detector for absolute dosimetry [S]. American Association of Physicists in Medicine 46th annual meeting. Pittsburg, PA. Med. Phys, 2004, 31: 1831.
    20. Pouliot J, Chen J, Zheng Z, et al. Dose reconstruction from MV conebeam CT for dose-guided radiation therapy [S]. American Association of Physicists in Medicine 46th annual meeting. Pittsburg, PA. Med. Phys, 2004, 31: 1832.
    21. Keall P, 4-dimemsional computed tomography imaging and treatment planning [J]. Semi Radiat Oncol, 2004, 14(1): 81-90.
    22. Schulze D, Liang J, Yan D. Comparison of various online IGRT strategies: The benefits of online treatment plan re-optimization [J]. Radiotherapy and Oncology, 2009, 90(3): 367-376.
    23. Fowler JF, Welsh JS, Howard SP. Loss of biological effect in polonged fraction delivery [J]. Int J Radial Oncol Biol Phys, 2004, 59(1): 242-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700