高炉料面区域温度特征智能提取方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高炉内部环境复杂,反映煤气流发展状态的料面温度特征难以提取的问题,本文从工艺机理的角度分析了料面红外图像、十字测温、上升管温度、炉墙温度等与料面温度场之间的关系,根据煤气流分布特点,提出了一种高炉料面区域温度特征提取方法,分别对高炉中心区域和边缘区域的特征进行提取。
     首先,进行料面中心区域温度特征提取。根据红外摄像仪的成像原理与安装情况,对红外图像和高炉料面的坐标系完成空间配准;依据高炉生产特点,对高炉中心点进行离线配准,采用动态定标算法,完成红外可视区的温度场检测。利用图像阈值分割与空间配准,进行炉心区宽度和炉心偏移程度特征进行提取。结合料面中心温度指数与炉心宽度,采用模糊推理的方法对中心区的温度特征进行评价,反映中心煤气流的发展状态。
     其次,进行料面边缘区域的温度特征提取。由于十字测温、炉墙温度以及矿焦比与料面边缘温度存在相关性,首先采用单一信息在不同尺度下对边缘温度进行检测;然后,采用模糊D-S证据方法融合单一信息的检测值,获得料面边缘温度,降低了检测的不确定性;最后,结合料面边缘温度指数与边缘宽度,采用模糊推理的方法对边缘区的温度特征进行评价,反映边缘煤气流的发展状态。
     根据提出的特征提取方法,开发了高炉料面温度场检测系统,并成功运行于某钢铁企业2200m3高炉。系统采用可视化界面显示料面温度场,更直观地反映料面温度分布情况,为高炉操作人员提供了炉况的实时、可靠的参考信息。
With the problems about complex environment inside blast furnace(BF) and the difficulty in extracting temperature features of burden surface which reflect the status of gas flow, the relationships among temperature fields of burden surface, infrared image of burden surface, crossing temperature, temperature of rising pipes, and temperature of wall are analyzed in this thesis. According to the characteristic of gas flow distribution, a method is proposed to extract the temperature features in central and peripheral regions of burden surface.
     Firstly, the temperature features in the central region of burden surface are extracted. The coordinates between infrared image and burden surface are matched according to imaging principle of camera and installation conditions of infrared camera, and central point of BF is matched offline in accordance with production process. Then the way of dynamic temperature calibration is employed to achieve the temperature fields of infrared visible region. Through the methods of image threshold segmentation and spatial registration, the features about width and deviation extend of central region are extracted. With temperature index of center and width of central region, the method of fuzzy reasoning is employed to evaluate the feature of central temperature which displays the developing status of central gas flow.
     Secondly, the temperature features in the peripheral region of burden surface are extracted. Beacause of the correlations between temperature of peripheral region and some information such as crossing temperature, wall temperature and ratio of ore and coke, the single information is utilized to measure the temperature of peripheral region of burden surface with different scales. Then the method of fuzzy D-S evidence is adopted to fuse the measured results from singe information, which may reduce the uncertainty. With the peripheral temperature index and width of peripheral region, fuzzy reasoning is also applied to evaluate the feature of peripheral temperature which displays the developing status of peripheral gas flow.
     Finally, according to the method of features extraction proposed in this thesis, a real-time monitoring system of burden surface temperature fields in BF is developed and successfully applied in a 2200m3 BF in some steel company. The visual interface of monitoring system is more effective to understand the distribution of burden surface temperature field and guide the operation of burden distribution.
引文
[1]赵征志.我国钢铁工业产业现状及其发展[J].新材料产业,2008,(8):31-34.
    [2]S. Matsuzak, T. Nishimura, A. Shinotake. Development of mathematical model of blast furnace [J]. Nippon Steel Technical Report,2006, (94):87-94.
    [3]M. G. Rasul, B. S. Tanty, B. Mohanty. Modeling and analysis of blast furnace performance for efficient utilization of energy [J]. Applied Thermal Engineering, 2007 (27):78-88.
    [4]陈令坤,左海滨,于仲洁,等.高炉冶炼专家系统的开发研究[J].钢铁,2006,41(1):14-18.
    [5]郜传厚,渐令,陈积明,等.复杂高炉炼铁过程的数据驱动建模及预测算法[J].自动化学报,2009,35(6):725-730.
    [6]周检平.首钢炼铁高炉专家系统的开发与应用[J].冶金自动化,2008,32(S2):530-534.
    [7]朱清天,程树森.高炉上部煤气流调剂影响研究[J].钢铁,2008,43(2):22-25,34.
    [8]N. K. Nath. Simulation of gas flow in blast furnace for different burden distribution and cohesive zone shape [J]. Materials and Manufacturing Processes, 2002,17 (5):671-681.
    [9]J. Yagi, K. Takeda, Y. Omori. Two-dimensional simulation on the gas flow and heat transfer in the blast furnace [J]. Transactions ISIJ,1982,22 (11):884-892.
    [10]T. Iwamura, H. Sakimura, Y. Maki, et al. Sensor and signal quantification for blast furnace gas distribution control [J]. Transactions ISIJ,1982,22 (10): 764-773.
    [11]J. Luckers, D. Ramelot, C. Desplanques, et al. Use of high performance instrumentation in blast furnace computer monitoring [C]. Ironmaking Conference Proceeding, Dallas, TX, USA,1993:583-594.
    [12]段国锦.炉喉十字测温的应用[J].炼铁,1991,10(4):18-22.
    [13]赵鸿波.十字测温曲线在本钢2号高炉的应用[J].炼铁,2004,23(6):36-38.
    [14]张贺顺,刘利锋.首钢2号高炉装料制度调整实践[J].炼铁,2005,24(3):12-16.
    [15]王良周,贾勇,林建峰,等.济钢1750m3高炉炼铁技术进步[J].山东冶金,2008,30(6):34-35.
    [16]倪雪飞.浅谈红外测温及其应用[J].计量与测试技术,2009,36(7):7-8.
    [17]王宫祥,古勇合,张志荣.红外热图像仪在新钢2号高炉上的应用[C].2007年中小高炉炼铁学术年会论文集,2007:181-185.
    [18]孙坚,富雅琼,杭庆彪,等.基于红外热成像技术的复合式温场测温方法[J].2009,30(6):517-520.
    [19]鲁明发.高炉炉顶料面温度分布监测装置—红外线热像仪[J].冶金自动化,1993,17(5):26-28.
    [20]魏强.高炉炉顶新技术的设计及应用[J].山西冶金,2008,31(4):49-50.
    [21]张丽丽,安钢,张志刚,等.宣钢高炉炉顶红外摄像技术的应用[J].河北冶金,2007,(6):33-35,39.
    [22]崔巍,孙式伟,魏绍红,等.高炉炉顶红外成像系统在莱钢的研究与应用[J].中国钢铁业,2006,(8):30-31.
    [23]K. Ishimaru, M. Konishi, J. Imai, et al. Application of sequential quadratic programming method to temperature distribution control in reactor furnace [J]. ISIJ International,2005,45 (3):347-355.
    [24]M. Nikus, H. Saxen. On-line model of gas distribution in the blast furnace [J]. Steel Research,1996,67(4):121-126.
    [25]杨尚宝,刘文全.人工智能在高炉控制中的应用[J].炼铁,1994,24(5):43-47.
    [26]涂春林.高炉炉顶煤气温度分布模式识别神经元网络的研究:[硕士学位论文].武汉:武汉科技大学,2004.
    [27]钟勇.高炉炉喉煤气流分布数学模型[J].钢铁钒钛,1998,19(3):59-64.
    [28]姜慧研,许桂清,周建常.高炉煤气流分布模式识别与操作指导专家系统[J].控制与决策,2001,16(6):930-933.
    [29]许永华,吴敏,曹卫华,等.高炉温度场的红外图像识别检测方法及应用[J].控制工程,2005,12(4):354-356.
    [30]高征凯.高炉炉内监测技术的新进展[C].中国金属学会2004年全国炼铁生产技术暨炼铁年会,2004:531-534.
    [31]陈令坤,王志刚,赵思,等.基于图像处理的高炉煤气流评估系统的研究与应用[C].2007中国钢铁年会论文集,2007.
    [32]赵征.基于信息融合的锅炉燃烧状态参数检测技术研究:[博士学位论文].北京:华北电力大学,2007.
    [33]J. Zhang. Improved on-line process fault diagnosis through information fusion in multiple neural networks [J]. Computers & Chemical Engineering,2006,30 (3): 558-571.
    [34]周传典.高炉炼铁生产技术手册[M].北京:冶金工业出版社,2005.
    [35]刘云彩.高炉布料规律[M].北京:冶金工业出版社,2005.
    [36]王玉庆.高炉合理煤气流分布探讨[J].南钢科技与管理,2004,(3):19-23.
    [37]王平,惠志刚.马钢2500m3高炉上下部调剂实践[J].钢铁,2002,37(7):12-15.
    [38]J. Chen, T. Akiyama, J. Yagi. Effect of burden distribution pattern on gas flow in a packed bed [J]. ISIJ international,1992,32 (12):1259-1267.
    [39]王晓鹏,王胜,陈军.首钢2号高炉煤气流分布的调整[J].炼铁,2009,28(1):8-11.
    [40]B. D. Pandey, U. S. Yadav. Blast furnace performance as influenced by burden distribution [J]. Ironmaking and Steelmaking,1999,26 (3):187-192.
    [41]杭庆彪,陈乐,刘瑞祥.红外辐射相对温度测量法的新研究[J].红外技术,2009,31(6):315-318.
    [42]陈坚红,李蔚,盛德仁,等.一种火电机组在线性能计算中的数据融合方法[J].中国电机工程学报,2002,22(5):152-155.
    [43]金建华,杨叔子.油管壁厚测量数据的一致性加权融合估计算法[J].仪表技术与传感器,2002,(11):43-45.
    [44]文武,黄地龙,郭曦榕.保信去噪在图像预处理中的应用[J].红外技术,2006,28(7):415-418.
    [45]谢勤岚.结合双边滤波和多帧均值滤波的图像降噪[J].计算机工程与应用,2009,45(27):154-156.
    [46]姜会亮,郭振民,胡学龙.数字图像处理中几种平滑技术的研究比较[J].现代电子技术,2004,27(8):80-81,84.
    [47]孔琛,孙坚.线性灰度变换算法在红外测温系统中应用[J].红外技术,2008,30(8):465-467,484.
    [48]刘恒辉,尹勇,李宇.基于FPGA的高精度红外测温系统的研究与实现[J].电子器件,2009,32(2):452-454,459.
    [49]孙志远,李孟华,乔彦,等.BP神经网络在比色法测温系统标定中的应用[J].激光与红外,2007,37(12):1274-1277.
    [50]许永华,吴敏,曹卫华,等.基于图像灰度统计分布的高炉温度场动态定标算法[J].冶金自动化,2007,31(3):40-43,61.
    [51]M. Sezgin, B. Sankur. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging,2004,13 (1):146-165.
    [52]孙树亮,艾矫燕,张丽华.几种灰度图像分割方法的比较与分析[J].计算技术与自动化,2005,24(4):272-275.
    [53]王磊,段会川.Otsu方法在多阈值图像分割中的应用[J].计算机工程与设计,2008,29(11):2844-2845,2972.
    [54]向艳,王洪元.基于模糊推理模型的专家系统的研究与应用[J].计算机工程,2005,30(10):180-181,187.
    [55]党宏社,韩崇昭,王立琦,等.基于模糊推理原理的多传感器数据融合方法[J].仪器仪表学报,2004,25(4):527-530.
    [56]程素森,杨天钧.高炉炉墙热负荷的传热学分析和研究[J].钢铁研究学报,2002,12(4):5-8.
    [57]薛庆国.高炉炉墙的传热学研究:[博士学位论文].北京:北京科技大学,2001.
    [58]M. Ichida, K. Nishihara, K. Tamura, et al. Influence of ore/coke distribution on descending and melting behavior of burden in blast furnace [J]. ISIJ International,1991,31 (5):505-514.
    [59]许永华.基于料面温度场和布料模型的高炉煤气流分布在线检测方法及应用:[博士学位论文].长沙:中南大学,2007.
    [60]潘泉,于昕,程咏梅,等.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615.
    [61]蓝金辉,马宝华,蓝天,等.D-S证据理论数据融合方法在目标识别中的应用[J].清华大学学报(自然科学版),2001,41(2):53-55,59.
    [62]H. Wu, M. Siegel, R. Stiefelhagen, et al. Sensor fusion using Dempster-Shafer theory [C]. IEEE Instrumentation and Measurement Technology Conference, USA,2002:21-23.
    [63]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2004.
    [64]韩静,陶云刚.基于D-S证据理论和模糊数学的多传感器的数据融合算法[J].仪器仪表学报,2000,21(6):644-647.
    [65]A. O. Boudraa, A. Bentabet, F. Salzenstein, et al. Dempster-Shafer's basic probability assignment based on fuzzy membership functions [J]. Electronic Letters on Computer Vision and Image Analysis,2004,4(1):1-9.
    [66]A. K. Vaish, R. K. Minj. Significance of burden distribution in the performance of blast furnace [J]. Journal of Metallurgy and Materials Science,2002,44 (4): 167-183.
    [67]程素森,孙磊,杨天钧.异常炉况高炉冷却板及炉衬非稳态温度场[J].北京科技大学学报,2004,26(4):360-365.
    [68]H. Xu, J. Wang. Using standard components in automation industry:A study on OPC specification [J]. Computer Standards & Interfaces,2006,28 (4): 386-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700