非轴对称套管井声场并行计算及声波固井质量评价理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对目前声波固井质量检测中存在的若干实际问题,进行了理论、方法研究和有限差分并行数值模拟研究。
     提出了一种可以计算套管井窜槽时各界面单独响应的方法,详细研究了套管井各种水泥胶结状况下各界面广义反射波对井孔声场的贡献,为CBL-VDL测井II界面评价提供了理论依据,并提出解决方法。
     针对快速地层下地层波早于套管波到达对测井结果造成的多解性这一问题,通过对快速地层套管井I界面不同胶结状况井内声场的分析得出:用主频40kHz或80kHz的声源测井可以避免快速地层的影响;从常规CBL-VDL测井5ft波形的时频分布可以评价快速地层I界面固井质量。
     基于信息传递接口(MPI)并行程序设计方案,在计算机集群上,用三维柱坐标系下应力-速度有限差分(SVFD)方法和非裂化完全匹配层(NPML)吸收边界条件,实现了扇区发射接收的非轴对称套管井高频(100kHz)三维瞬态声场模拟的并行计算。系统的考察了不同水泥缺失扇区大小、不同缺失方位角下SBT测井仪8对换能器的波形和首波特征,并进行了对比分析和反演方法的研究,完善了SBT解释方法。本文的并行算法也为同类其它大规模数值计算提供了高效的、经济的手段。
Acoustic logging is one of the main well-log methods, has a wide range of applications in many fields such as oilfield exploration and exploitation, engineering geophysical prospecting. The important part is detecting the cement bond condition in casing holes, also called acoustic cementing quality detection. Well cementing means fixing casing string using cement to seal and isolate oil, water and gas layers, it’s the very important aspect in protecting water and gas layers and ensuring the production life of oil and gas wells. As the constraints environment and the complexity of the underground, cementing jobs often show some quality problems, there is interlayer channeling fluid between casing/cement (first interface) and cement/formation (second interface), so called channeling. Detecting and remedying the quality problems regularly, are essential jobs to ensure the normal production of oil and gas wells. So cementing quality detection is very important in both well completion and production process, and detection technology has been continually developed. Where the acoustic detection technologies are the most successful methods, and are developed to a series of acoustic cementing quality detection technology, become the primary cementing quality evaluation methods. Such as CBL-VDL (Cement Bond Log and Variable Density Log) give the average results of cementing by acoustic amplitude in 3ft, and qualitatively evaluate of the situation second interface by VDL in 5ft. CBL-VDL have a wider application, but they only give the average results of cementing, and are susceptible to kinds of underground environment, their log results have multiple solutions. To solve this problem, in the 1980s and 1990s, ultrasonic echo logging (such as CET, PET, CAST and USI) and segmented bond tool (SBT, Western Atlas, and SBT, Compler) have also been introduced at abroad. They can detect small cement channel. However, these cementing quality detection technologies in development, so far there are still many unresolved issues in theoretical reorganization and evaluation method. The main ones are:①The propagating mechanism of acoustic waves in cased hole with second interface channeling (channel II for short) is not clear, the traditional method that evaluating the second interface bond condition using the intensity of formation arrivals in VDL, usually gives wrong results.②In fast formation (velocity of compressional wave greater than that of tube wave), the formation waves arrival earlier than casing waves, the logging results of CBL-VDL have multiplicity of solutions. With the discovery and exploitation of deep oil and gas field, such as Puguang gas field, Qingshen gas field in China, the cementing quality evaluation in fast formation becomes an urgent problem.③Due to the theoretical study of 100kHz acoustic field transmitted and received by sector transmitters in non-axisymmetric cased holes with sector cement deletion, is not in-depth, the interpretation method for SBT (Compler) logging is very imperfect. So there are lots of mechanisms and evaluation methods yet to be resolved. This dissertation concentrates on the above three problems, by proposing new method, using signal processing technology, numerically simulating 3D transient high-frequency acoustic field using the parallel finite difference algorithm, respectively, carried out systematic studies.
     For investigating the propagation mechanism of acoustic waves in cased hole with channel II, we proposed a new method to calculating the single interface wave (SIW for short) of cylindrically multilayered media including liquid interlayer. This method bases on the modified generalized reflection and transmission (R/T) matrices (Chen, et. al., 1996), overcomes difficulty of singular transfer matrix, obtains the iterative expressions of generalized R/T matrices, which are used to determine the SIW of each interface and the full waveforms. The use of normalization factors and normalized Lamécoefficients makes the algorithm stable numerically. The validity of SIW method has been confirmed by comparing our result with that of Tubman (1984) and Schmitt (1985). Using the method we investigate the acoustic field in cased hole with good bond, first interface channeling, and second interface channeling, study the contribution of SIWs to full-wave by analyzing the multi-wavetrain in time domain and the spectral energy densities in frequency axial-wavenumber domain. When the second interface is channeling, the first arrival of full waveform is contributed by coupled extensional mode of the casing and cement. Its velocity increase from 4000m/s to 5257m/s, as the thickness of cement annulus decreasing from 29mm to 5mm (the velocity of pipe wave is about 5546m/s), its amplitude increases also. It has strong frequency dispersion when the cement annulus is thick. Because it is the mode wave of coupled waveguides of casing and cement, it doesn’t affected by velocities of formation, and show straight line in VDL. Then according to the characteristics of its travel time and amplitude, the second interface channeling can be identified from good bond and first interface channeling. A field example is given to validate our statements.
     Aiming at the multiplicity of solutions of CBL-VDL results in fast formations, we investigated the acoustic field in cased hole with different bond condition of first interface, and by analyzing the acoustic field in space frequency domain, we obtained that logging with central frequency 40kHz, the fast formation can be identified by the frequency spectra of waveform received at 5ft, and can avoid the impact of micro-annulus; logging with central frequency 80kHz, both the waveform in time domain and spectra in frequency domain can evaluate the bond condition of first interface accurately, but can not avoid the impact of micro-annulus. The time-frequency analysis of 5ft waveform of normal CBL-VDL (central frequency 20kHz) using smoothed pseudo Wigner-Ville distribution (SPWVD) shows that time-frequency distribution can identify the fast formation. The first arrival energy peaks of SPWVD of first interface channeling and good bond have different characteristics, their arrival time are 0.45ms and 0.7ms, the angles between time axis are 90 degrees and 60-80 degrees, central frequencies are 20-22kHz and 23-24kHz, respectively.
     For improving the interpretation methods of SBT (Compler Com.), on the cluster created by gigabit switch and 5 computers, using the Message Passing Interface (MPI) to realize data communications between processors, using the second order accuracy stress velocity finite difference (SVFD) in 3D cylindrical coordinate system, and nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC), we implemented the parallel numerical computation of acoustic field in non-axisymmetric cased hole with sector cement deletion. The parallel algorithm makes that 3D SVFD simulation of high frequency acoustic field can be realized on general computers. We also analyzed and investigated the implementation of difference equations in cylindrical coordinate system, mesh-size settings, treatment of interfaces, NPML ABC, MPI parallel programming, the relationship between parallel algorithm performances with the number of processors. We compared the results of parallel algorithm and those of discrete wave-number (DW) method under axisymmetric borehole, good bond cased hole, and free pipe cased hole, with central frequencies 20 kHz and 100 kHz. The comparisons show that the SVFD parallel algorithm are convergent and stable, haven’t grid frequency dispersion phenomenon. The NPML ABC does a perfect job, and there are no reflected waves. The whole waveform including Stoneley waves are excellent agreement with those of DW method. The correctness and accuracy are validated.
     According to the work principle of SBT logging, 8 transmitting and 8 receiving using 100 kHz source, we simulated the borehole acoustic field in cased hole under various situations of cement sector deletion using parallel algorithm, and quantitatively analyzed the arrival time, amplitude of first minus apex, integral of absolute amplitude and integral of square of amplitude of tube waves. We found that the amplitude was the best choice of inversion of the deletion sector size and azimuth, so only the characteristics of amplitude are given out in this abstract. With the deletion sector increasing in size from 0o to 360o, the average of 8 transmitters’amplitude approximately monotonically linearly increases. The numerical simulation and analysis of 45o deletion sector show that the deletion sector azimuth (azimuth for short) has little impact on the average, the ratio of minimum and maximum average is 93.3%. Therefore, the deletion sector size (size for short) can be obtained directly by the average of 8 transmitters’amplitude. For different size, the characteristics of tube waves with the changes of angle between transmitters and azimuth (angle for short) are very different. When the size is 45o, with the increasing of angle, the amplitude approximately linearly decreases between angle 0o and 80o, every increase of 10o decreases 2 dB, after angle bigger than 80o, the change rate is very small. The azimuth can be obtained by 2 or 3 bigger amplitudes. With the size gradually increasing, the maximal amplitude no longer appears in the minimum angle, the relationship between amplitude and angle is non-monotonic. For inversion of azimuth, the fitting function between amplitude and angle must be obtained first by numerical simulations. Then scan the azimuth from 0o to 360o, for each azimuth, compute sum of square of differential value between the amplitudes of 8 transmitters obtained by the fitting function and obtained by logging. The minimum sum of square corresponds to the real azimuth. Therefore, inversion of size is relatively easy, but inversion of azimuth needs the fitting function of each size obtained by numerical simulations. The more situations are simulated, the more accurate of inversion. The parallel algorithm proposed in this dissertation, can complete the job which needs 4 years using general computer, in 3 months using 5 nodes, and has good expansibility, the more computing nodes, the higher efficiency. Parallel algorithm resolves the need of computing resources satisfactorily, and has an economic advantage.
     To sum up, the SIW method we proposed is helpful to understand the characteristics and mechanism of acoustic field in cased hole, thereby helpful to get more information from acoustic logging data, provides a theoretical basis and interpretation of second interface evaluation, improves the efficiency of exploration. We provided several schemes for cementing quality evaluation in fast formation use space frequency and time-frequency analysis. We proposed 3D SVFD parallel algorithm, which greatly improved the computing efficiency, perfected the theoretical study of non-axisymmetric cased hole acoustic field and interpretation method of SBT. The parallel algorithm provides a powerful and economic method, and is easy to approach.
     The works in this dissertation are needed to be carried out in-depth, and process and interpret logging data in field, make the methods playing a role in the production practice. Moreover, cementing quality evaluation under the situations with the micro-annulus, and eccentricity of tool, eccentricity of casing, inclined stratum, cuttings bed in inclined or horizontal well, is also the problems need to be studied in acoustic cementing quality detection technology.
引文
[1] Aki, K., and Richards, P. G., Quantitative Seimology: Theory and Methods, Freeman, San Francisco,1980.
    [2] Baker, L. J., and Winbow, G. A., Multipole P-wave logging in formations altered by drilling, Geophysics, 1988, 53, 1207-1218.
    [3] Bayliss, A., Jordan, K. E., LeMesurier, B. J., and Turkel, E., A fourth-order accurate finite-difference scheme for the computation of elastic waves: Bull., Seis. Soc. Am., 1986, 76, 1115-1132.
    [4] Berenger, J. P., A perfectly matched layer for absorption of electromagneticwaves: J. Comput. Phys.,1994, 114, 185–200.
    [5] Biot, M. A., Propagation of elastic waves in a cylindrical bore containing a fluid, J. Appl. Phys., 1952, 23, 997-1005.
    [6] Biot, M. A., Theory of Propagation of elastic waves in a fluid-filled staurated porous solid in Low frequency range, J. Acoust.Soc. Am., 1956, Vol.28,168-178.
    [7] Blanch, J. O., Cheng, A. C., and Varsamis, G. L., Attainable computational speed for large-scale seismic modeling on PC-based cluster, SEG Annual Meeting, 2005.
    [8] Bohlen, T., Parallel 3-D viscoelastic finite difference seismic modeling, Computers & Geosciences, 2002, 28, 887-899.
    [9] Bouchon, M., A numerical simulation of the acoustic and elastic wavefields radiated by a source on a fluid-filled borehole embedded in a layered medium, Geophysics, 1993, 58, 475-481.
    [10] Bouchon, M., and Aki, K., Discrete wavenumber presentation of seismic-source wavefields, Bull. Seis. Soc. Am., 1977, 67, 259-277.
    [11] Bouchon, M., and Schmitt, D. P., Full-wave acoustic logging in an irregular borehole, Geophysics, 1989, 54, 758-765.
    [12] Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., A nonreflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 1985, 50, 705–708.
    [13] Chang,C.H.,and Toksoz,M.M.,1981,Elastic wave propagation in a fluid-filled borehole and synthetic acoustic logs,Geophysics, 1981, 46, 1042-1053.
    [14] Chen, J.H., Numerical boundary conditions and computational modes: J. Computational Phys.,1973, 13, 522.
    [15] Chen, S. T., Shear-wave logging with dipole sources, Geophysics, 1988, 53, 639-667.
    [16] Chen, S. T., Shear-wave logging with quadrupole sources, Geophysics, 1989, 54, 590-597.
    [17] Chen, X. F., Quan, Y. L. and Harris, J. M., Seismogram synthesis for radiallylayered media using the generalized reflection/transmission coefficients method: theory and applications to acoustic logging, Geophysics, 1996, 61(4), 1150-1159.
    [18] Chen, Y. H., Chew, W. C., and Liu, Q. H., A three-dimensional finite difference code for the modeling of sonic logging tools, J. acoustic.Soc. Am.,1998, 103(2), 701-712.
    [19] Cheng Ningya, Cheng, C., H., and Toksoz, M. N., Borehole wave propagation in three dimensions, J. Acoust. Soc. Am., 1995, 97, 3483-3493.
    [20] Cheng, C. H, et.al, Effects of permeability on the propagation of Stoneley tube wave in a borehole, Geophysics, 1987, 52, 1277-1287.
    [21] Chew, W. C., and Liu, Q. H., Perfectly matched layers for elastodynamics: A new absorbing boundary condition: J.Computat.Acoustics, 1996, 4, 341–359.
    [22] Clayton, R., and Engquist, B., Absorbing boundary conditions for acoustic and elastic wave equations: Bull. Seism. Soc. Am.,1977, 67, 1529-1540.
    [23] Cohen, L., and Posch T., Positive time-frequency distribution functions, IEEE trans. ASSP, 1985, 33(1), 31-38.
    [24] Cohen, L., Generalized phase-space distributions, J. Math. Phys., 1966, 7(5), 781-786.
    [25] Cohen, L., Time-frequency distributions--a review, Proc. IEEE, 1989,77,941-981.
    [26] Collino, F., and Tsogka, C., Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 2001, 66, 294–307.
    [27] Collino, F., and Tsogka, C., Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, 2001, 66(1), 294–307.
    [28] Cooper, H. F. Jr., Reflection and transmission of oblique plane waves at a plane interface between viscoelatic media, J. Acoust. Soc. Am., 1967, 42(5), 1064-1069.
    [29] Dai, N., Vafidis, A., and Kanasewich, E. R., Wave propagation in heterogeneous,porous media: A velocity-stress, finite-difference method: Geophysics,1995, 60, 327–340.
    [30] Daubechies I, The wavelet transform, time-frequency localization and signal analysis, IEEE trans. Informatin theory, 1990, 36, 961-1005.
    [31] Dong Wenjie, Bouchon, M., and Toksoz, M. N., Borehole seismic-source radiation in layered isotropic and anisotropic media: Boundary element modeling, Geophysics, 1995, 60, 735-747.
    [32] Dunkin, J. W., Computation of modalsolutions in layered elastic media at high frequencies, Bull. Seis. Soc. Am., 1965, 55(2),335-358.
    [33] Ellefsen, K. J., Cheng, C. H., and Toksoz, M. N., Application of perturbation theory to acoustic logging, J. Geophys. Res., 1991, 96, 537-549.
    [34] Ellis, D.V., Well Logging for Earth Scientists, Elsevier Science Publishing Co.,Inc.1987,张守谦等译,石油工业出版社,1993.
    [35] Engquist, B. and Majda, A., Absorbing boundary conditions for numerical simulation of waves: Proc. Natl. Acad. Sci., 1977, 74, 1765-1766.
    [36] Engquist, B. and Majda, A., Radiation boundary conditions for acoustic and elastic wave calculations, Commun. Pure Appl. Math., 1979, 32, 313-357.
    [37] Engquist, B., and Zhao H. K., Absorbing boundary conditions for domain decomposition, Applied Numerical Mathematics, 1998, 27, 341-365.
    [38] Ewing, W., Elastic waves in Layerd Media,刘光鼎译, 1966.
    [39] Fu, L. Y., and Wu, R. S., Infinite boundary element absorbing boundary for wave propagation simulations, Geophysics, 2000, 65(2), 596–602.
    [40] Gabor, D., Theory of communication, J. IEEE, 1946, 93(3), 429-457.
    [41] Gilbert, F., and Backus, G. E., Propagator matrices in elastic wave and vibration problems, Geophysics, 1966, 31(2), 326-332.
    [42] Grossmann, A. and Morlet J., Decomposion of Hardy function into square integrable wavelets of constant shape, SIAM J. Math., 1984, 15(4),723-726.
    [43] Haskell, N. A., The dispersion of surface waves on multilayered media, Bull. Seis. Soc. Am., 1953, 43, 17-34.
    [44] Hastings, F. D., Schneider, J. B., and Broschat, S. L., Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation: J. Acoust. Soc. Am.,1996, 100, 3061–3069.
    [45] Hlawatsch, F., and Kozek, W., Time-frequency projectin filters and time-frequency signal expansions, IEEE trans. Signal Processing, 1994, 42(12), 3321-3334.
    [46] Hou, A.N., He, Q.D., Study of a elastic wave high-order difference method and its stability in anisotropic media: Chinese Journal of Geophysics, 1995, 38, 243-251.
    [47] Kennett, B.L.N. and Kerry, N. J., Seismic waves in a stratified helf space, Geophys. J. R. astr. Soc., 1979, 57, 557-583.
    [48] Kennett, B.L.N., Reflections, rays, and reverberations, Bull. Seis. Soc. Am., 1974, 64(6),1685-1696.
    [49] Kennett, B.L.N., Seismic waves in a stratified helf space - II. Theoretical seismograms, Geophys. J. R. astr. Soc., 1980, 61, 1-10.
    [50] Kimball, C. V., Shear Slowness measurement by dispersive processing of the borehole flexual mode, Geophysics, 1998, 63,No.2, 337-346.
    [51] Kitsnuezaki, C., A new method for shear-wave logging, Geophysics, 1980, 45, 1489-1506.
    [52] Knopoff, L., A matrix method for elastic wave problems, Bull. Seis. Soc. Am., 1964, 54(1), 431-438.
    [53] Komatitsch, D. & Tromp, J., A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophys. J. Int., 2003, 154, 146–153.
    [54] Kosloff, R., and Kosloff, D., Absorbing boundary for wave propagation problems: J. Comp. Phys.,1986, 63, 363–376.
    [55] Kostek, S., and Randall, C. J., Modeling of a piezoelectric transducer and its application to full waveform acoustic logging, J. Acoust. Soc. Am. , 1994, 95(1), 109-122.
    [56] Kurkjian, A. L., and Chang S. K., Acoustic multipole sources in fluid-filled boreholes,Geophysics, 1986, 51(1), 148-163.
    [57] Kurkjian, A. L., Coates, R. T., White, J. E., and Schmidt, H., Finite-difference and frequency wavenumber modeling of seismic monopole sources and receivers in fluid-filled boreholes, Geophysics, 1994, 59, 1053-1064.
    [58] Kurkjian, A. L., Numerical computation of individual far-field arrivals excited by an acoustic source in a borehole, Geophysics, 1985, 50, 852-866.
    [59] Leslie, H. D. and Randall, C. J., Multipole sources in boreholes penetrating anisotropic formations. J. Acoust. Soc. Am. , 1992, 91(1) , 12-27.
    [60] Leslie, H. D., and Randall, C. J., Eccentric dipole sources in fluid-filled boreholes: Numerical and experimental results, J. Acoust. Soc. Am., 1990, 87, 2405-2421.
    [61] Levander, A. R., Fourth-order finite-difference P-SV seismograms, Geophysics, 1988, 53(11), 1425-1436.
    [62] Liao, Z. P., Wong, H. L., Yang , B. P., and Yuan, Y. F., A transmitting boundary for transient wave analyses, Scientia Sinica(Series A), 1984, 27(10), 1063-1076.
    [63] Lindman, E. L., "Free-Space" boundary conditions for the time dependent wave equation, J. Comp. Phys., 1975, 18, 66-78.
    [64] Lindman, E. L., Generalized boundary conditions, The Physics of Fluid, 1970, 13(9), 2367-2371.
    [65] Liu, Q. H., and Sinha, B. K., A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations, Geophysics, 2003, 68(5 ), 1731–1743.
    [66] Liu, Q. H., et.al, A three-dimension finite difference simulation of sonic logging, J.acoust.Soc.Am.,1996, 100(1), 72-79.
    [67] Liu, Q. H., Perfectly matched layers for elastic waves in cylindrical and spherical coordinates, J. Acoust. Soc. Am., 1999, 105 (4), 2075-2084.
    [68] Lu, C. C., and Liu, Q. H., A three-dimension dyadic Green’s function for elastic waves in multilayer cylindrical structures, J. Acoust. Soc. Am., 1995, 98, 2825-2835.
    [69] Lysmer, J. and R.L.Kuhlemeyer, Finite dynamic model for infinite media: J. Eng. Mech. Div., ASCE, 1969, 95(EM4), 859-877.
    [70] Mallat, S. G., Multifrequency channel decompositions of image and wavelet models, IEEE trans. ASSP, 1989, 37(12), 2091-2110.
    [71] McGhee, B. F., and Vacca, H. L., Guidelines for improved monitoring of cementing operations, 21st Annual SPWLA Symposium, July, 1980.
    [72] Meredith, J. A. , Full Waveform Acoustic logging, Consortium Ann. Report, 1987, 339-364.
    [73] Oprsal, I., and Zahradn?k, J., Elastic finite-difference method for irregular grids, Geophysics, 1999, 64(1), 240–250.
    [74] Paillet,F.L.,and C.H.Cheng,Anumerical investigction of head waves and leaky modes in fluid—filled boreholes,Geophysics,1986, 51(7),1438-1449.
    [75] Paillet,F.L.,and White,J.E.,Acoustic modes of propagation in the borehole and their relationship to rock properties,Gcophysic,1982,47,1225-1228.
    [76] Peng, C. B., Toksoz, M. N., An optimal absorbing boundary condition for elastic wave modeling,Geophysics, 1995, 60(1), 296-301.
    [77] Petersion, E. W., Acoustic wave propagation along a fluid-filled cylinder, J. Appl. Phys., 1974, 45, 3340-3350.
    [78] Randall, C. J., Absorbing boundary condition for the elastic wave equation: Velocity-stress formulation, Geophysics, 1989, 54, 1141-1152.
    [79] Randall, C. J., Modes of noncircular fluid-filled boreholes in elastic formations, J. Acoust. Soc. Am., 1991, 89, 1002-1016.
    [80] Randall, C. J., Multipole acoustic wave forms in nonaxisymmetric boreholes and formations, J. Acoust. Soc. Am., 1991, 90, 1620-1631.
    [81] Reynolds, A. C., Boundary conditions for the numerical solution of wave propagation problems, Geophysics, 1978, 43(6), 1099-1110.
    [82] Roever, W. L., Rosenbaum, J. H., and Vining, T. F., Acoustic waves from an impulsive source in a fluid-filled borehole, J. Acoust. Soc. Am., 1974, 55, 1144-1157.
    [83] Rosenbaum, J. H., Synthetic microseismograms:Logging in porous formations, Geophysics, 1974, 39(1), 14-32,
    [84] Rune Mittet and Lasse Renlie, High-order, finite-difference modeling of multipole logging in formations with anisotropic attenuation and elasticity, Geophysics, 1996, 61(1), 21-33.
    [85] Schmitt, D. P. and Bouchon, M., Full –wave acoustic logging:synthetic micro- seismograms and frequency-wavenumber analysis, Geophysics,1985, 50(11), 1756-1778.
    [86] Schmitt, D. P., Acoustic multipole logging in transversely isotropic poroelastic formations, J. Acoust. Soc. Am., 1989, 86, 2397-2421.
    [87] Scmitt, D. P., Dipole logging in cased borehole, J. Acoust. Soc. Am., 1993, 93, 640-657.
    [88] Sinha, B. K., Simsek, E., and Liu,Q. H., Elastic wave propagation in deviated wells in anisotropic formations, SEG 2006 Annual Meeting, 324-328.
    [89] Smith, W.D., A nonreflecting plane boundary for wave propagation problem: J. Computational Phys.,1974, 15, 492-503.
    [90] Smolen, J., Cased hole and production log evaluation, Pennwell Publishing Com., 1996, 161-191.
    [91] Song Ruolong, Ma Jun, and Wang Kexie, The application of the nonsplitting perfectly matched layer in numerical modeling of wave propagation in poroelastic media,Applied Geophysics, 2005, 2(4), 216-222.
    [92] Song Ruolong, Wang Kexie, Zhang Hongbing, Han Wei, A new method for calculation of single seismic phase of cylindrically multilayered media including liquid interlayer, Chinese Physics Letters, 2007, 24(5), 1309-1312.
    [93] Spencer, T.W., The method of generalized reflections and transmission coefficients, Geophysics, 1960, 25(3), 625-641.
    [94] Stephen, R. A., Cardo Casas, F., and Cheng, C. H., Finite-difference synthetic acoustic logs, Geophysics, 1985, 50(10), 1588-1609.
    [95] Stonely R., Elastic waves at the surface of separation of two solids. Proc. Roy. Soc. London, A, 1924, 106, 416.
    [96] Taflove, A., Computational Electromagnetics: The Finite-Difference Time-Domain Method , Artech House, Boston,1995, 36-38.
    [97] Tang, X. M., Reiter, E. C. and Burns, D. R., A dispersive-wave processing technique for estimating formation shear wave velocity from dipole and Stoneley waveforms, Geophysics, 1995, 60, 19-28.
    [98] Teixeira, F. L., and Chew, W. C., PML-FDTD in cylindrical and spherical grids: IEEE Microwave and Guided Wave Lett.,1997, 7, 285–287.
    [99] Tsang, L., and Kong, J. A., ,Asymptotic methods for the first compressional head wave arrival in a filled borehole ,J. Acoust. Soc. Am., 1979, 63, 647-654.
    [100] Tsang, L., Transient acoustic waves in a fluid-filled borehole with a horizontal bed boundary separating two solid formations, J. Acoust. Soc. Am., 1986, 81, 844.
    [101] Tsynkov, S.V., Artificial boundary conditions for the numerical simulation of unsteady acoustic waves, J. Comp. Phys., 2003, 189, 626-650.
    [102] Tubman, K.M., Cheng, C.H. and Toks?z, M.N., Synthetic full waveform acoustic logs in cased boreholes, Geophysics, 1984, 49(7), 1051-1059.
    [103] Turkel, E., On the practical use of high-order methods for hyperbolic system: J. Computational Phys., 1980, 35, 319-340.
    [104] Ville, J., Theorie et applications de la notion de signal analytique, Cables et Transmissin, 1948, 2A, 61-74.
    [105] Virieux, J., P-SH wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 1984, 49, 1933-1957.
    [106] Virieux, J., P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 1986, 51, 889-901. 131
    [107] Walker, T., Utility of the micro-seismogram bond log, Paper SPE 1751, SPE Regional Meeting on Mechanical Engineering Aspects of Drilling and Production, Fort Worth, Texas, 1967.
    [108] Wang Yue, Variable grid-size and time-step finite difference method for seismic forward modeling and reverse-time migration, Dissertation of Doctor of Philosophy, The University of Utah, 2000.
    [109] Wang, Tsili and Tang Xiaoming, Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach: Geophysics, 2003, 68, 1749-1755.
    [110] White, J. E. and Zechman, R. E., Computed responses of an acoustic logging tool, Geophysics, 1968, 33, 302-310.
    [111] Wigner, E. P., On the quantum correctin for thermodynamic equilibrium, Phys. Rev., 1932, 40, 749-759.
    [112] Winbow, G. A., A theoretical study of acoustic S-wave and P–wave velocity logging with conventional and dipole sources in soft formations, Geophysics, 1988, 53, 1334-1342.
    [113] Winbow, G. A., Compresional and shear arrivals in a multipole sonic log, Geophysics, 1985, 50, 1119-1126.
    [114] Wu Xianyun ,Wang Kexie, Estimation of permeability from attenuation of the Stoneley wave in a borehole, SEG, 1995.
    [115] Yao, Z. X. and Harkrider, D. G., A generalized reflection-tranmission coefficient matrix and discrete wavenumber method for synthetic seismograms, Bull. Seis. Soc. Am., 1983, 73(6),1685-1699.
    [116] Yoon, K. H., and McMechan, G. A., 3-D finite-difference modeling of elastic waves in borehole environments, Geophysics, 1992, 57, 793-804.
    [117] Zemanck, J. , Angona, F.A., Williams, D.M. and Caldwell, R.L., Continuous acoustic shear wave logging, SPWLA., 1985, 25th Log. Symposium.
    [118] Zhang Bixing, Dong hefeng,and Wang Kexie, Multipole sources in a fluid-filled borehole surrounded by a transversely isotropic elastic solid,J. Acoust. Soc. Am.,1994, 96, 2546-2555.
    [119] Zhang Bixing, Wang Kexie, and Dong Qingde, Acoustic multipole logging in transversely isotropic two-phase medium, J. Acoust. Soc. Am., 1995, 97, 3462-3472.
    [120] 布列霍夫斯基赫 L. M.,多层介质中的波, 杨训仁译,科学出版社, 1985.
    [121] 陈伟,起伏地表条件下二维地震波场的数值模拟,勘探地球物理进展, 2005, 28(1), 25-31.
    [122] 陈晓华,声波测井固井质量评价研究,地球物理测井,1991,15(3), 191-196.
    [123] 楚泽涵,白鹏飞,彭玉辉,水泥抗压强度与养护条件及声阻抗间关系的实验研究,测井技术,1992, 16(6), 424-431.
    [124] 楚泽涵,刘祝萍,声波水泥胶结测井解释方法评述,地球物理测井,1991, 15(5), 348-354.
    [125] 楚泽涵编, 声波测井原理, 石油工业出版社, 1987.
    [126] 董和风, 吉林大学博士学位论文, 1994.
    [127] 董和风,王克协, 弹性固体地层—流体井孔弹性波场的有限差分数值模拟, 地球物理学报, 1995, 38, 205—215.
    [128] 董和风,王克协, 李荣华, 声测井中的声压—速度有限差分方法, 计算物理, 1998, 15(1), 77-82.
    [129] 董和风,王克协,董庆德, 水平薄层包围的流体井孔中声波场数值模拟,计算物理, 1995, 12, 449-456.
    [130] 董庆德,王克协,罗朝盛,欧维义,钻井中首波的共振与衰减,地球物理学报,1991, 34, 228-239.
    [131] 董庆德,王克协,柱状多层准弹性介质中声压波形的数值计算和分析—声法测井理论研究(II)地球物理学报, 1985, 28(2), 208-217.
    [132] 都志辉,高性能计算并行编程技术-MPI 并行程序设计, 清华大学出版社, 2001.
    [133] 法林, 从常喜, 声波水泥胶结测井的定量分析,地球物理测井,1991, 15(5), 341-347.
    [134] 高伟勤等,分区水泥胶结测井(SBT) 的解释方法研究及应用,石油仪器, 2005, 19(3), 56-57.
    [135] 弓玉杰,吴广兴,万发明,李波,固井二界面问题的初步分析与试验研究,石油钻采工艺, 1998, 20(6), 38-43.
    [136] 官波等,用声波全波列测井资料定量评价固井质量的方法,测井技术,2002,26(5), 383-386.
    [137] 何峰江, 陶果, 声波测井三维交错网格有限差分模拟的漂移失稳及改进方案, 测井技术, 2003, 27(5), 360-363.
    [138] 胡昌华等,基于 MATLAB 的系统分析与设计—时频分析,西安:西安电子科技大学出版社,2002.
    [139] 黄文新, 张忠明, 用斯通利波评价套管井水泥胶结质量, 江汉石油学院学报, 1994, 16(增), 32-36.
    [140] 黄文新, 章成广, 低密度水泥套管井中声波全波形分析, 江汉石油学院学报, 1991, 13(3), 37-44.
    [141] 黄文新, 章成广, 双层套管井中声波波形分析, 测井技术,1993,17(3), 190-196.
    [142] 江万哲,章成广,李维彦,快速地层固井质量评价技术研究,工程地球物理学报,2007,4(3), 175-179.
    [143] 焦翠华,李洪奇,李冰,张洪洲,小波分析在提高声波测井曲线纵向分辨率中的应用,测井技术,1999,23(1),15-18. 133
    [144] 焦勇,水泥气侵的根源及现行解决方法的评析,钻采工艺,2000, 23(3), 19-25.
    [145] 金剑铮,套管井声波变密度测井全波利用的数值与实验研究和水平多层孔隙介质地震波场的理论计算,吉林大学硕士学位论文,2000.
    [146] 科恩, L., 时—频分析:理论与应用,白居宪译,西安:西安交通大学出版社,1998.
    [147] 李维彦等,SBT 资料评价固井质量的应用研究,石油天然气学报,2005,27(3), 345-347.
    [148] 李增录, 彭文军, 黄道开, 水泥胶结测井与微环空加压测试, 国外测井技术,1992, 7(2), 97-101.
    [149] 李哲等, 外加厚套管固井质量评价技术, 特种油气藏, 2005, 12(6), 78-81.
    [150] 林盛,刘业新,李衍达,基于时—频分解技术的全波列声波测井信号处理,清华大学学报(自然科学版),1997,37(3),63-66.
    [151] 林伟军,带扇形窜槽的非轴对称固井声场研究,中国科学院声学研究所博士学位论文,2003.
    [152] 林伟军 ,王秀明 ,张海澜,倾斜地层中的井孔声场研究,地球物理学报,2006,49(1),284-294.
    [153] 刘爱平, 中国石油固井技术现状及发展趋势, 测井技术,2004, 28(增), 23-26.
    [154] 刘继生,声幅测井检测一界面微环的理论与数值分析,生产测井技术应用与进展,石油工业出版社,1998.
    [155] 刘继生,吕秀梅,刘言,谢荣华,利用水泥环密度和地层波资料综合评价固井II 界面,中国地球物理学会年刊,1999.
    [156] 刘继生,王克协,赵雅峰,曾桂红,水泥胶结指数与水泥环缺失角度关系实验研究,CNPC 测井重点实验室学术报告会论文集,西安地图出版社,1999.
    [157] 刘继生,王克协,吕秀梅等,水泥-地层界面胶结状况综合解释方法及应用,测井技术,2000,24(5),340-344.
    [158] 刘继生,套管井轴对称与非轴对称声场数值模拟及固井质量综合评价方法研究,吉林大学博士学文论文,2000.
    [159] 刘文军等, 中原油田水平井固井技术, 断块油气田, 2004, 11(6), 59-62.
    [160] 刘银斌,余寿绵,低速地层裸眼井中弹性波的传播,地球物理学报,1986, 29(3),292-301.
    [161] 马俊, 井孔声波理论分析与复杂储层单多极声波测井正反演研究, 吉林大学博士学位论文, 1998.
    [162] 马俊,王克协,声波测井复模式波求取方法的改进与算例,计算物理,1998,15(2), 147-152.
    [163] 马俊等,改进的 PV—FD 方法与沿井孔传播声波通过层的精细描述,《高科技研究中的数值计算》,科学与工程计算丛书编辑部,1998.
    [164] 马世伟,非平稳信号的参数自适应时频表示及其应用的研究,上海大学博士论文,2000.
    [165] 穆蒂尔编, 声波测井, 石油工业出版社,1987
    [166] 乔文孝, 周家惠, 超声脉冲反射法评价第Ⅱ界面的模拟实验, 测井技术,1996,20(3), 192-196.
    [167] 秦忠国,姜弘道,消息传递界面PVM和MPI的现状和发展趋势,计算机研究与发展,1998,35(6),496-499.
    [168] 沈建国, 肖玮, 长源距声波测井小波处理系统, 测井技术,1995,19(6), 439-446.
    [169] 石油钻井工程专业标准化委员会秘书处, 《固井质量评价方法》释义, 2005.
    [170] 宋治, 声波幅度测井检查固井封固质量标准及其可靠性论证, 石油钻采工艺, 1988, 10(2), 7-12.
    [171] 苏远大等,地层声速对固井质量评价的影响及消除方法,石油钻探技术,2005,33(4), 39-41.
    [172] 苏远大等,裸眼时差与变密度测井地层波能量相结合改进固井Ⅱ界面评价,中国石油大学学报(自然科学版), 2006, 30(4), 38-41.
    [173] 孙建孟等,定量评价固井Ⅱ界面胶结质量的方法研究,测井技术,2004, 28(3),199-202.
    [174] 唐晓明, 郑传汉, 论裸眼井中的“共振纵波”和“共振横波”, 地球物理学报, 1991, 34(1) .
    [175] 唐晓明,郑传汉,定量测井声学,赵晓敏译,石油工业出版社,2004.
    [176] 陶宏根, 张宏兵, 侯春会, 张彦君,发展固井质量检测技术满足油田勘探开发需求,测井技术, 2004, 28(增), 9-12.
    [177] 王爱民,扇区水泥胶结测井仪及在套管井的应用, 测井技术,2003,27(增),56-58.
    [178] 王德利,三维粘弹介质地震波场有限差分并行模拟,西北地震学报,2007,29(1),30-34.
    [179] 王俊德, 双层套管内层水泥环胶结质量解释方法, 石油钻探技术, 1992,20(3),16-21.
    [180] 王克协, 董庆德, 渗透性地层油井中声场的理论分析与计算, 石油学报,1986, 7, 59-70.
    [181] 王克协, 董庆德, 许吉庆, 柱状多层准弹性介质中声辐射场的理论分析,地球物理学报,1985, 28, 208-216.
    [182] 王克协, 董庆德, 柱状双层准弹性介质中声辐射场的理论分析:声波测井理论研究(Ⅰ), 吉林大学自然科学学报,1979, 47-55.
    [183] 王克协,董庆德,井孔声波理论研究,吉林大学自然科学学报,1992, 106-112.
    [184] 王克协,马俊,刘继生,张碧星,对声波测井中软地层也存在滑行波的诠释,测井技术,1998,22,
    [185] 王立平,郭玺,对低密度水泥固井质量评价的探讨,钻井液与完井液, 1988, 3, 44-47.
    [186] 王连起,碳酸盐岩快速地层固井质量评价方法研究,测井技术, 2005, 29(2),153-155.
    [187] 王朔中, 声学中用于时域有限差分的一种高效吸收边界,声学学报,1997,22(1),11-21.
    [188] 王天波等,声幅—变密度测井定量评价固井质量的研究,测井技术,2002,26(1),55-59.
    [189] 王秀明,张海澜,应崇福,井孔声场本征模及其在分层介质井孔声场计算中的应用,地球物理学报,1998, 41(2), 261-270.
    [190] 王秀明等, 裸眼井软地层中由多极子声源激发的弹性波的传播, 地球物理学报,1992, 35 , 510-520.
    [191] 王秀明等, 声波测井中首波与次首波的理论研究, 地球物理学报,1990, 33 , 23-733.
    [192] 王正付, 用环形声波理论证明套管传播的波近似为板波, 江汉石油学院学报, 1988, 10(2), 20-23.
    [193] 魏涛, 瞿亦斌, 扇区水泥胶结测井仪及其检查固井质量的效果, 测井在石油工程中的应用论文集, 1996, 139-140
    [194] 吴正国等,现代信号处理技术:高阶谱、时频分析与小波变换,武汉:武汉大学出版社,2003.
    [195] 夏凡,董良国,马在田,三维弹性波数值模拟中的吸收边界条件,地球物理学报,2004,47(1),132-136.
    [196] 夏克文, 胡兴卫, 用神经网络识别水泥胶结质量, 测井技术,1996,20(3), 207-209.
    [197] 谢桂生,刘洪 ,李幼铭 ,胡润苗,界面起伏条件下反射/ 透射算子+单程波方程的地震波模拟方法, 地球物理学报, 2005, 48 (5) , 1172~1178.
    [198] 徐守时,信号与系统 理论、方法和应用,合肥:中国科技大学出版社,1999.
    [199] 阎树汶, 关于固井质量解释中微环隙的问题, 地球物理测井, 1990, 14(1), 60-66.
    [200] 阎向宏,乔文孝,张亚萍,套管井不同胶结状况下声波测井响应及其时频特征,石油大学学报(自然科学版),2004,28(4),34-38.
    [201] 杨楚良, 余寿绵, 声波测井时裸眼井中弹性波的传播, 地球物理学报, 1980, 23, 427-437.
    [202] 姚振兴,郑天愉, 声波测井中的广义反射、透射系数方法, 地球物理学报, 1985, 28(5),510-518.
    [203] 于成金, 李成林, 套管与水泥环微间隙的计算, 石油钻探技术,1996,24(4), 31-32.
    [204] 余厚全, 黄载禄, 不同固井质量条件下超声回波信号的频谱分析, 测井技术,1993,17(5), 357-363.
    [205] 余厚全, 黄载禄, 超声固井质量检测—小波变换对回波的分析识别, 测井技术, 1994,18(1), 8-15.
    [206] 余寿绵, 声波测井时裸眼井中弹性波的共振模式, 地球物理学报, 1984, 27,94-102.
    [207] 张碧星, 各向异性介质地层流体井孔中多极源声测井理论与数值研究, 吉林大学博士学位论文, 1994.
    [208] 张碧星, 王克协, 董庆德, 双相介质井孔多极源声测井理论及分波分析与全波计算, 地球物理学报, ,1995, 38(增), 178-192.
    [209] 张碧星, 柱状及柱状分层双相介质井孔中多极源声测井理论与数值研究, 吉林大学硕士学位论文, 1991.
    [210] 张海澜, 王秀明 ,应崇福, 弹性介质中充液井孔的漏模和井孔声场中的分波计算, 中国科学 A 辑,1995, 7, 742-752.
    [211] 张海澜,王秀明,张碧星,井孔中的声场和波,科学出版社,2004.
    [212] 张金钟, 郑传汉, 裸眼井中弹性波传播的非对称模式的数值研究,地球物理学报,1988, 31, 464-469.
    [213] 张维平编, 俄罗斯固井质量测井仪及解释方法, 石油工业出版社,1997.
    [214] 张秀梅, 孙建孟, 陈雪莲,扇区水泥胶结测井( SBT) 响应的数值模拟,测井技术,2004,28(6),515-517.
    [215] 张玉,李斌,梁昌洪,PC 集群系统中 MPI 并行 FDTD 性能研究,电子学报, 2005, 33(9), 1694-1397.
    [216] 章成广, 王冠贵, 全波列声波测井评价低比重水泥固井质量, 地球物理测井,1990,14(4), 259-266.
    [217] 章成广,李维彦,低密度固井质量声波测井评价方法研究,石油天然气学报,2005,27(4),450-454.
    [218] 赵晨等,网络环境中 MPI 与 PVM 的分析与比较,计算机工程与应用,2003,181-183.
    [219] 赵军编译, CBL,RBT 和 PET 方法在带有人工窜槽的试验井中的测井对比, 国外测井技术, 1989,4(5), 75-81.
    [220] 周锦清, 水泥抗压强度与声波测井响应关系的实验研究, 江汉石油科技,1996,6(2), 29-33.
    [221] 周锦清,郑侠光,超声反射波频谱分析的模拟和实验研究,测井技术, 1995,19(2), 97-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700