山区高速公路连续梁桥智能磁流变阻尼器减震控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力钢筋混凝土连续梁桥是山区高速公路上常见的一种桥型,作为山区与外界联系的交通枢纽和生命线工程,其抗震性能一直是工程界关注的焦点。5.12汶川大地震的灾难性后果表明,山区高速公路桥梁的抗震性能关系到灾区抗震抢险能否顺利开展和灾后重建能否顺利进行,其重要性不言而喻。本文以山区高速公路上一座预应力钢筋混凝土连续梁桥—七方桥为工程背景,在桥梁结构纵向地震反应控制和各种算法减震控制效果的比较等方面做了一些工作,主要包括以下几个方面:
     1.综述国内外结构振动控制现状,详细介绍结构振动控制的发展历史、基本概念、研究应用情况,特别是桥梁工程中振动控制的现状。比较各类控制方法的优缺点,阐述采用智能磁流变阻尼器的半主动减震控制的优越性。
     2.为了更精确更方便地模拟磁流变阻尼器在桥梁上的减震效果,必须建立或寻求一个能较好地反映磁流变阻尼器强非线性特性的力学模型。总结前人对磁流变阻尼器力学性能和基于实验提出的力学模型的研究,选择介绍了具有代表性的Bingham模型、修正的Bingham模型、Bouc-Wen模型、现象模型,并用SIMULINK对Bingham模型进行了仿真分析,为合理选取本文采用的模型提供依据。
     3.对于超长联连续梁桥的地震反应,基于一致地面激励建立经典的运动方程已不再适用。本文建立并推导了地震动多点输入下的桥梁结构半主动控制系统运动方程,通过引入状态向量,推导了控制系统的状态方程。与此同时,讨论了质量矩阵、阻尼矩阵和刚度矩阵的选取,地震动的输入;介绍了结构主动最优控制算法以及磁流变半主动控制算法。为后续工作奠定理论基础。
     4.为探讨高速公路桥梁地震反应智能磁流变控制效果,将无控与被动控制(passive-off控制及passive-on控制)、智能磁流变半主动控制、主动控制的减震控制效果进行对比分析,得出智能磁流变半主动控制的特点和优越性。
Prestressed reinforced concrete (PC) continuous beam bridge is a common type in expressway in the mountain area. As the transport junction and crucial engineering between the mountain area and the outside, its aseismatic capability attracts the engineers' attention all the time. The disastrous consequences of Wen Chuan earthquakes on 5.12 showed that the aseismatic capability of expressway bridge in mountain area affects whether the rescue work in the disaster area can carry out smoothly and whether the reconstruction can proceed successfully after earthquake, the importance is self-evident. Based on the case of a PC continuous beam bridge, Qi Fang Bridge, this paper analyzed the seismic response control on the bridge structure lengthways and compared the efforts of various algorithms, and etc, including mainly the follows:
     1. This paper summarized the status quo of vibration control at home and abroad, introduced detailedly its development history, basic notions, the ways of researching and applying in the structure vibration control, especially in bridge engineering. The superiority of the control performance of intelligent Magnetorheological(MR) damper was expounded by means of comparing the merits and demerits of various methods in vibration control.
     2. In order to simulate the damping effect more accurately and conveniently in bridges with MR dampers, the mechanical model must be sought or established, which can reflect the strongly non-liner characteristic better. After generalized the predecessors' study on the mechanical property and mechanical model of MR damper based on the experiments, introduced a set of representative models such as Bingham model, revised Bingham model, Bouc-Wen model and phenomenon model and simulated the Bingham model in SIMULINK, the basis of the reasonable selection of MR damper model is provided.
     3. As to the earthquake responses of the long span continuous beam bridges, the classic motion equation based on the identical ground motion, cannot be applied any more. This paper establishes and deduces the motion equation of the semi-active control system, which is subjected to seismic multi-support import, and deduces the state equation of the control system by introducing the state vector. At the same time, it discusses about the selection of mass matrix, damping matrix, stiffness matrix, the input of the seismic waves and introduces the optimal control algorithm method for the active structural control and of semi-active control of MR dampers, laying the theoretical foundation for the future study.
     4. By investigating control effort of the intelligent MR damper of the expressway bridge seismic response, comparing the damping control effort of uncontrolled strategy with the efforts of passive-off and passive-on control strategies, semi-active control and active control of intelligent MR damper, then analyzing them, we can obtain the characteristics and its superiority of semi-active control of the intelligent MR damper.
引文
[1]胡聿贤.地震工程学[M].北京:地震出版社,2006
    [2]中华人民共和国铁道部.铁路工程抗震设计规范(GBJ111-87)[S].北京:中国计划出版社,1989
    [3]中华人民共和国交通部.公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,1990
    [4]范立础,王君杰.桥梁抗震设计规范的现状与发展趋势[J].地震工程与工程振动,2001,21(2):70-77
    [5]范立础.现代化城市桥梁抗震设计若干问题[J].同济大学学报,1997,25(2):147-153
    [6]周福霖.工程结构减震控制[M].北京:地震出版社,1997
    [7]欧进萍.结构振动控制-主动、半主动和智能控制[M].北京:科学出版社,2003
    [8]李宏男,李忠献等.结构振动与控制[M].北京:中国建筑工业出版社,2005
    [9]杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究[D].中南大学博士学位论文,2004
    [10]邹立华.工程结构减震控制中若干问题的研究[D].西南交通大学博士学位论文,2004
    [11]罗小宝.基于振动控制理论的斜拉桥抗震仿真研究[D].东南大学硕士学位论文,2006
    [12]J.T.P.Yao.Concept of Structure Control[J].Journal of Structure Division ASCE.1972,(98):1567-1574
    [13]Housner G.W,Bergman L A,Caughey T K et al.Structural Control:Past Present and Future[J1.Journal of Engineering Mechanics,ASCE,1997,123(9):897-971
    [14]M.P.Singh.Active and Semi-Active Control of Structures Under Seismic Excitation[J].Earthquake Engineering and Structural Dynamics,1997,26:193-213
    [15]亓兴军.桥梁减震半主动控制研究[D].中国地震局地球物理研究所博士学位论文,2006
    [16]史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津大学博士学位论文,2003
    [17]唐家祥,刘再华.建筑结构基础隔震[M].武汉:华中理工大学出版社,1993.
    [18] Pall. A. S. and Marsh. C. Response of friction damped braced frames [J]. Journal of Structure. Div, ASCE, 1982,108(6): 1313-1323
    [19] Aiken, I.D. and Kelly, J. M. Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures[M]. No. CB/EERC-90-03, Univ. of California, Berkeley, Calif. 1990
    [20] Kelly, J. M. , Skinner, R L. , et al. Mechanisms of energy absorption in apical devices for use in earthquake resistant structures [J] Bull. N. Z. Nat. Soc. For earthquake Engrg., 1972, 5: 63-88
    [21] Whittaker, A. S. et al. Seismic testing of steel plate energy dissipation devices [J]. Earthquake Spectra, 1991, 7(4):563-604
    [22] Susumu Otsuka et al. Development and Verification of Active/Passive Mass Damper,First World Conference on Structural Control: 3-5 August 1994, Los Angeles, California, USA
    [23] Chaiseri, P. , et al. Interaction of Tuned Liquid damper and Structure: Theory, Experimental Verification and Application, Structural Engineering/Earthquake Engineering[J]. JSCE, 1988, 6(2)
    [24] Clark A. J. Multiple Passive Tuned Mass Damper For Reducing Earthquake Induced Building Motion[J]. Proceeding of the 9~(th) World Conference Earthquake Engineering, Japan, 1988 Vol.5.
    [25] Ou JinPing, and Wu Bo, Recent Advances in Research on and Application of Passive Energy Dissipation Systems[J]. Earthquake Engineering and Engineering vibration, 1996, 16(3)
    
    [26] 赵光恒.土建结构振动控制进展[J].地震学刊,1999,3:35—42
    
    [27] Yang J. N. Application of optimal control theory to civil engineering structures [J]. Journal of the Engineering Mechanics Division. ASCE, 1975,1(11) No. EM6
    
    [28] Kobori T., Kamagata S. Active Variable Stiffness System- Active Seismic Response Control [C]. Proceedings of US-Italy-Japan workshop/symposium on Structures Control and Intelligent System, Italy, 1992,140-153
    
    [29] Feng Q., Shinozuka . M. Use of a Variable Damper for Hybrid Control of Bridge Response under Earthquake. Proc. U. S. National Workshop on Struct. Control Research. USC Publication, 1990, no. CE-9013
    
    [30] Dyke S. J., Spencer Jr B. F. et al. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction[J].Smart Materials and Structures,1996,5:565-575
    [31]何旭辉,陈政清,黄方林等.洞庭湖大桥斜拉索减震试验研究[J].振动工程学报,2002,15(4):447-450
    [32]张晶.磁流变阻尼器在大跨度斜拉桥上的减震控制研究[D].浙江大学硕士学位论文,2007
    [33]Dyke S.J.,Turan G,Caicedo J.M.et al.Summary of the Benchmark Control Problem for Seismic Response of Cable-Stayed Bridges[C].Proceedings of Second European Conference on Structural Control,Paris,France,2000
    [34]瞿伟廉,刘嘉,涂建维等.500kN足尺磁流变阻尼器设计的关键技术[J].地震工程与工程振动,2007,27(2):124-130
    [35]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150
    [36]李宏男,杨浩,李秀领.磁流变阻尼器参数化动力学模型研究进展[J].大连理工大学学报,2004,44(4):616-624
    [37]张春巍,欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真分析[J].世界地震工程,2003,19(1):37-43
    [38]欧进萍,关新春.磁流变耗能器及其性能[J].地震工程与工程振动,1998,18(3):74-81
    [39]徐赵东,郭迎庆.Matlab语言在建筑抗震工程中的应用[M].北京:科学出版社,2004
    [40]瞿伟廉,刘嘉.MR阻尼器力学模型的性能试验研究[J].武汉理工大学学报,2004,26(12):41-44
    [41]B.F.Spencer Jr.,S.J.Dyke,M.K.Sain,et al..Phenomenological model of a magnetorheological damper.Journal of Engineering Mechanics,ASCE,1997,123(3):230-238
    [42]刘晶波,杜修力.结构动力学[M],北京:机械工业出版社,2005
    [43]R.W.克拉夫,J.彭津.结构动力学[M],北京:科学出版社,1981
    [44]范立础.桥梁抗震[M].上海:同济大学出版社,1997
    [45]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001
    [46]李廉锟.结构力学[M].北京:高等教育出版社,1996
    [47]徐铭陶,肖明葵.工程动力学振动与控制[M].机械工业出版社,2004:406-411
    [48]谭平.高速公路跨线桥地震反应的智能磁流变控制[J].自然灾害学报,2007,16(3):137-144
    [49]李正英,李正良.大跨度拱桥磁流变阻尼器减震控制[J].振动与冲击,2007,Vol 26:141-147
    [50]王克海,朱唏.斜拉桥结构基于模态分析的线性二次最优减震控制的研究[J].铁道学报,2000,22(1):67-71
    [51]北京迈达斯技术有限公司.MIDAS用户手册[DB/OL].北京http://www/MidasUser/com,2006
    [52]谢礼立,翟长海.最不利设计地震动研究[J].地震学报,2003(5):250-261
    [53]翟长海,谢礼立.抗震结构最不利设计地震动研究[J].土木工程学报,2005(12):52-58
    [54]龙刚.山区高速公路连续梁桥桥墩抗震性能评估方法研究[D].中南大学硕士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700