改性山核桃壳吸附水中重金属的效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的迅速发展,产生了大量的有毒的重金属废水。这些废水对环境和人体健康及生态系统都造成了很大的危害。因此,去除废水中的重金属成为当今环境的重要问题之一。利用农林废弃物吸附剂是一种新的技术利用生物质去除水中的重金属,因其成本低廉,对环境无二次污染,取材来源广泛等特点,与其它传统的方法相比有较大的优势。
     本论文选用农林废弃物质山核桃壳为材料,对其进行化学改性后,得到改性后的山核桃壳(MCWS)。通过对水溶液中Cr6+、Cu2+、Hg2+、Cd2+单一金属溶液和混合金属溶液的吸附行为的研究,考察了山核桃壳吸附剂的吸附性能。采用红外光谱FTIR分析、比表面积分析仪、元素分析仪和扫描电镜等分析检测技术,对山核桃壳的结构、形貌进行了表征,通过对MCWS吸附重金属离子的最佳条件的研究,如金属溶液的pH、金属离子的初始浓度、MCWS投入量、溶液温度及不同吸附时间等,利用吸附动力学模型及吸附等温方程对实验数据进行分析,探讨MCWS吸附重金属的机理。
     利用FTIR对山核桃壳进行红外光谱分析,显示MCWS有很多化学基团或化学键。在波数3423.3cm-1处的峰值是羟基的振动,而在2937.5cm-1吸收峰处是亚甲基的C-H伸缩振动。1738.4cm-1是羧基上的羰基振动。1638.2cm-1为分子内部羧基上的羰基的伸缩振动,1513.7cm-1是芳香环上的C-C伸缩振动。1462.6cm-1是证明了芳香环上的C-C伸缩振动。1372.5到1046.2cm-1是酚基上的C-O键振动,不同的酚基上不同的C-O说明MCWS富含单宁。605.7cm-1是芳香化合物的振动。这些基团如-OH和-COOH可能与吸附重金属有关。
     MCWS吸附水溶液中的单一金属实验结果表明,Cr6+离子的去除率随着pH的增高而降低,最大去除率在pH=1时,可以达到82.88%;Cu2+离子的去除率随着pH值的升高增大,去除率最高时的pH5.0,去除率可以达到80.44%;Cd2+离子的去除率随着pH的增大而增加,pH7.0时候达到最大95.64%;MCWS吸附Hg2+的吸附量随着pH的增加而增加,pH5.0达到最大吸附率92.30%,然后吸附量开始下降。
     MCWS吸附水溶液中的单一Cr6+、Cu2+、Hg2+、Cd2+离子吸附的实验数据都符合Langmuir吸附模型,MCWS对Cr6+、Cu2+、Hg2+、Cd2+离子的最大吸附量分别为:41.7mg/L、15.87mg/L、8.06mg/L、37mg/L。MCWS对水溶液中的Cd6+、Cu2+、Hg2+、Cd2+的吸附过程都是符合拟二级动力学方程的快速吸附过程,30-45min内对四种金属的吸附均达到吸附平衡。
     利用解吸附实验、FTIR分析、SEM分析MCWS吸附机理,结果表明MCWS吸附Cd6+的机理的吸附过程属于化学吸附,-OH、-COOH的H+与Cr6+离子进行离子交换或者络合作用完成主要吸附过程。MCWS吸附Cu2+离子的吸附过程由化学吸附控制,是吸热反应。羟基在吸附过程中起主要作用,与Cu2+离子进行离子交换,新形成的化学键键能较低,容易被破坏。MCWS吸附Cd2+离子过程属于化学吸附,Cd2+离子与C=O进行吸热的化学反应,新生成的化学键较弱,容易解吸附。MCWS吸附Hg2+离子的机理可能是羟基的H+与Hg2+离子进行离子交换的结果,属于吸热反应,新形成的键能较低。
     MCWS吸附Cr6+、Cu2+、Hg2+、Cd2+混合离子的最适pH在5.0-7.0之间,相对于Cr6+、Cu2+、Hg2+、Cd2+单一金属存在的最大吸附率都有所下降。最佳吸附时间可为30-90min。随着金属离子初始浓度的增大,吸附率降低,Cr6+、Cu2+Hg2+、Cd2+离子的初始浓度为25mg/L时,吸附率最大。混合金属离子的吸附率随温度升高而增加,混合金属的最佳吸附温度为30℃。MCWS对混合金属溶液的吸附过程比较适合用Langmuir方程拟合,说明吸附过程为均匀的单层吸附。Cr6+、Cu2+、Hg2+、Cd2+最大吸附量分为18.24mg/L,12.8mg/L、7.12mg/L13.32mg/L,均小于单一金属吸附量过程。MCWS吸附Cr6+、Cu2+、Hg2+、Cd2+混合离子的机理涉及到多个化学基团或化学键如-COOH、-OH、C-H、C-O通过离子交换或络合作用完成吸附。
The rapid development of industry, produces large amounts of toxic heavy metalwastewater. These waste on the environment have caused great harm to human healthand ecosystems. Therefore, removal of heavy metals from wastewater has become oneof the important environmental problems. The use of agricultural and forestry wasteadsorbent is a kind of new technology and utilization of biomass for removal of heavymetals in the water, because of its low cost, no environmental pollution, abundantsources, it has an advantage over other traditional method.
     This paper selects the agricultural and forestry waste material Chinese Walnutshell (MCWS) as raw material, through to the aqueous solutions of Cr~(6+), Cu~(2+), Hg~(2+),Cd~(2+)single metal solution and the mixed solution of metal adsorption behaviorresearch, examines the MCWS adsorbent adsorption properties. The structure,morphology of MCWS were characterized using Fourier Transform InfraredSpectroscop(FTIR), Specific Surface Area Analyzer, Elemental Analyzer and ScanningElectron Microscopy(SEM). The optimum sorption conditions such as a metal solutionpH, initial concentration of metal ions, MCWS dosage, solution temperature andadsorption time,were studied. Adsorption mechanism were analysis using the modelon the adsorption kinetics and adsorption isotherm equation to the experimental dataanalysis.
     The FTIR showed that MCWS has many chemical group or chemical bond. Inthe wave number3423.3cm~(-1)peak is hydroxyl vibration, while in2937.5cm~(-1)absorption peak is the C-H stretching vibration of methylene.1738.4cm~(-1)is carboxylgroups on the carbonyl vibration.1638.2cm~(-1)is molecules inside of carboxyl groupson the carbonyl stretching vibration,1513.7cm~(-1)is on the aromatic ring of the C-Cstretching vibration.1462.6cm~(-1)is proved on the aromatic ring of the C-C stretchingvibration.1372.5to1046.2cm~(-1)are phenolic groups on C-O bond vibration, differentphenol based on a different C-O MCWS rich in tannin.605.7cm~(-1)is aromaticcompound vibration. These groups such as-OH and-COOH may be related to theadsorption of heavy metals.
     The adsorption of MCWS in aqueous solution of single metal experimental resultsshow that, Cr~(6+)ion removal rate decrease with increased pH, the maximum removal rate in pH=1, can achieve82.88%; Cu~(2+)ion removal rate increase with the increase ofpH value, the highest removal rate of pH5, removal rate can reach80.44%; Cd~(2+)ionremoval rate increase with increasing of the pH, pH=7reaches the maximum95.64%; MCWS adsorption adsorption amount of Hg~(2+)with pH increased, pH=5reaches the maximum adsorption rate of92.30%, then the adsorbed began to decline.
     Experimental data of adsorption of MCWS in aqueous solution of single Cr~(6+),Cu~(2+), Hg~(2+), Cd~(2+)ion are consistent with the Langmuir adsorption model, Adsorptioncapacity of MCWS on Cr~(6+), Cu~(2+), Hg~(2+), Cd~(2+)ion are as follows:41.7mg/L,15.87mg/L,8.06mg/L,37mg/L.Adsorption process of MCWS on aqueous solutions of Cd~(6+), Cu~(2+),Hg~(2+), Cd~(2+)is consistent with the pseudo-second-order dynamic equation. Adsorptionprocess is quickly in the first short time, the adsorption equilibrium time is30-45min.
     Adsorption mechanism of MCWS were analysed using desorption experiment,FTIR, SEM.The results show that the adsorption mechanism of Cd~(6+)adsorptionprocess is chemical adsorption,-OH,-COOH,H+and Cr~(6+)ions by ion exchange andcomplexation in main adsorption process. Cu~(2+)adsorption ion adsorption process iscontroled by chemical adsorption, the reaction is endothermic. The hydroxyl groupplay the main role in adsorption process of Cu~(2+)ion through ion exchange, theformation of the new bond energy is low, easy to be destroyed. Cd~(2+)ion adsorptionprocess is chemical adsorption, Cd~(2+)ion and C=O undergo endothermic chemicalreaction, the new generation of chemical bonding is weak, easy desorption. Themechanism of Hg~(2+)ion adsorption may be the the H+and Hg~(2+)of hydroxyl groups ionby ion exchange, which belongs to the endothermic reaction, the newly formed key arelower.
     The optimum pH of adsorption of Cr~(6+), Cu~(2+), Hg~(2+), Cd~(2+)mixed ion using MCWSis between5.0-7.0, the maximum adsorption rate of mixed Cr~(6+), Cu~(2+), Hg~(2+), Cd~(2+)arelower than metal solution. The best time of adsorption is30-90min. As the metal ionconcentration increases, the adsorption rate decreased. The initial concentration of25mg/L can reach maximum adsorption rate. Mixed metal ion adsorption rate increaseswith the rise of temperature, mixed metal best adsorption temperature is30.MCWS on the adsorption process of mixed metal solutions for Langmuir equation, thedescription of the adsorption process for the uniform monolayer adsorption. Cr~(6+), Cu~(2+),Hg~(2+), Cd~(2+)maximum adsorption is18.24mg/L,12.8mg/L,7.12mg/L,13.32mg/L, wereless than single metal adsorption process. Mechanism ofadsorption of Cr~(6+), Cu~(2+), Hg~(2+), Cd~(2+)mixed ionic by MCWS involves a number of chemical groups such as-COOH,-OH or chemical bonding, C-H, C-O by ion exchange or complexation adsorption.
引文
[1]Wang JL, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae:A review[J]. Biotechnology Advances,2006,24(5):427-451.
    [2]Malik A. Metal bioremediation through growing cells[J]. Environment International,2004,30(2):261-278.
    [3]蔡卓平,段舜山.微藻对污水中重金属的生物吸附(英文)[J].生态科学,2008,(06):499-505.
    [4]Moore, Ramamoorthy. Heavy Metals in Natural Waters. New York Springer-Verlag.1984:28-57,77-99,182-184.
    [5]Volesky, Schiewer. Encyclopedia of Bioprocess Technology (Fermentation, Biocatalysis and Bioseparation)[M].2000:433-453.
    [6]杨晶.柠檬酸杆菌吸附重金属镉的研究[J].水处理技术,2009,(05):64-66+94.
    [7]Chen JM, Hao OJ. Microbial chromium(VI) reduction[J]. Critical Reviews in Environmental Sciences and Technology,1998,28(3):219-251.
    [8]夏金兰,申丽,何环,等.游离和固定化Synechococcus sp细胞对铬(Ⅵ)生物吸附性能的比较研究[J].中南大学学报(自然科学版),2006,(02):241-246.
    [9]Gray. Water Technology[M]. New York John Wiley&Sons.1999:473-474.
    [10]Carrott P, Carrott M, Nabais J. Influence of surface ionization on the adsorption of aqueous mercury chlorocomplexes by activated carbons[J]. Carbon,1998,36(1-2):11-17.
    [11]Gabaldon C, Marzal P, Seco A, et al. Cadmium and copper removal by a granular activated carbon in laboratory column systems[J]. Separation Science and Technology,2000,35(7):1039-1053.
    [12]Smaiesek M, eCernay S. Active carbon:manufacture, properties and applications[M]. Elsevier Pub. Co.(Amsterdam and New York),1970.
    [13]Jha IN, Iyengar L, Rao AVSP. Removal of Cadmium Using Chitosan[J]. Journal of Environmental Engineering-Asce,1988,114(4):962-974.
    [14]Mckay G, Blair HS, Findon A. Equilibrium Studies for the Sorption of Metal-Ions onto Chitosan[J]. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical&Analytical Chemistry,1989,28(5):356-360.
    [15]Peniche-Covas C, Alvarez L, Arguelles-Monal W. The adsorption of mercuric ions by chitosan[J]. Journal of Applied Polymer Science,1992,46(7):1147-1150.
    [16]Udaybhaskar P, Iyengar L, Rao A. Hexavalent chromium interaction with chitosan[J]. Journal of Applied Polymer Science,1990,39(3):739-747.
    [17]Guibal E, Saucedo I, Jansson-Charrier M, et al. Uranium and vanadium sorption by chitosan and derivatives[J]. Water Science and Technology,1994,30(9):183-190.
    [18]Wan Ngah W, Endud C, Mayanar R. Removal of copper (Ⅱ) ions from aqueous solution onto chitosan and cross-linked chitosan beads[J]. Reactive and Functional Polymers,2002,50(2):181-190.
    [19]Grant D, Skriba M, Saha AK. Removal of radioactive contaminants from West Valley waste streams using natural zeolites[J]. Environmental Progress,1987,6(2):104-109.
    [20]Zamzow M, Eichbaum B, Sandgren K, et al. Removal of heavy metals and other cations from wastewater using zeolites[J]. Separation Science and Technology,1990,25(13-15):1555-1569.
    [21]Malliou E, Loizidou M, Spyrellis N. Uptake of lead and cadmium by clinoptilolite[J]. Science of the Total Environment,1994,149(3):139-144.
    [22]刘伟.自絮凝酵母SPSC01对于Cr(Ⅵ)吸附的研究[D]:大连理工大学,2009.
    [23]Ouki SK, Kavannagh M. Performance of natural zeolites for the treatment of mixed metal-contaminated effluents[J]. Waste Management&Research,1997,15(4):383-394.
    [24]Vaca Mier M, Lopez Callejas R, Gehr R, et al. Heavy metal removal with mexican clinoptilolite:: multi-component ionic exchange[J]. Water Research,2001,35(2):373-378.
    [25]Bhattacharya A, Nix W. Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates[J]. International Journal of Solids and Structures,1988,24(12):1287-1298.
    [26]Karthikeyan J, Chaudhuri M. Enhancement of mercury (Ⅱ) sorption from water by coal through chemical pretreatment[J]. Water Research,1986,20(4):449-452.
    [27]Gupta G, Prasad G, Singh V. Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal[J]. Water Research,1990,24(1):45-50.
    [28]Mittal AK, Venkobachar C. Sorption and desorption of dyes by sulfonated coal[J]. Journal of Environmental Engineering,1993,119:366.
    [29]Venkata Mohan S, Chandrasekhar Rao N, Karthikeyan J. Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents:a kinetic and mechanistic study[J]. Journal of hazardous materials,2002,90(2):189-204.
    [30]Pehlivan E, Arslan G. Removal of metal ions using lignite in aqueous solution—Low cost biosorbents[J]. Fuel Processing Technology,2007,88(1):99-106.
    [31]Brigatti MF, Guggenheim S. Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models[J]. Reviews in mineralogy and geochemistry,2002,46(1):1-97.
    [32]Staunton S, Roubaud M. Adsorption of137Cs on montmorillonite and illite:Effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid[J]. Clays and Clay Minerals,1997,45(2):251-260.
    [33]Srivastava SK. Green supply-chain management:a state-of-the-art literature review[J]. International journal of management reviews,2007,9(1):53-80.
    [34]Yadava K, Tyagi B, Singh V. Effect of temperature on the removal of lead (Ⅱ) by adsorption on china clay and wollastonite[J]. Journal of Chemical Technology and Biotechnology,1991,51(1):47-60.
    [35]Do DD. Adsorption analysis:equilibria and kinetics[M]. Imperial College Press London,1998.
    [36]Panday K, Prasad G, Singh V. Copper (Ⅱ) removal from aqueous solutions by fly ash[J]. Water Research,1985,19(7):869-873.
    [37]Panday K, Prasad G, Singh V. Removal of Cr (Ⅵ) from aqueous solutions by adsorption on fly ash-wollastonite[J]. Journal of Chemical Technology and Biotechnology Chemical Technology,1984,34(7):367-374.
    [38]Volesky. Biosorption by fungal biomass[M]. Biosorption of heavy metals. Florida; CRC press.1990a:139-171.
    [39]Volesky. Biosorption of heavy metals[M]. Boca Raton:CRC press,1990b.
    [40]Volesky. Removal and recovery of heavy metals by biosorption[M]. Biosorption of heavy metals. Florida; CRC press.1990c:8-43.
    [41]Volesky B, Holan ZR. Biosorption of Heavy-Metals[J]. Biotechnology Progress,1995,11(3):235-250.
    [42]Vijayaraghavan K, Yun Y-S. Bacterial biosorbents and biosorption[J]. Biotechnology Advances,2008,26(3):266-291.
    [43]Mo BB, Lian B. Hg(Ⅱ) adsorption by Bacillus mucilaginosus:mechanism and equilibrium parameters[J]. World Journal of Microbiology&Biotechnology,2011,27(5):1063-1070.
    [44]Shevchuk IA, Klimenko NA. The change of the electrokinetic potential of Bacillus polymyxa IMV8910cells in interaction with ions of U(Ⅵ) and strontium[J]. Journal of Water Chemistry and Technology,2010,32(1):56-60.
    [45]Ho YW, Ramasamy K, Abdullah N, et al. Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens[J]. Journal of the Science of Food and Agriculture,2010,90(1):65-69.
    [46]Guo HJ, Luo SL, Chen LA, et al. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp L14[J]. Bioresource Technology,2010,101(22):8599-8605.
    [47]杜磊.苹果渣吸附水体中Pb-(2+)的研究[J].河南工业大学学报(自然科学版),2012,v.33;No.145(01):45-49+56.
    [48]杜磊.胡萝卜渣吸附Pb-(2+)的试验研究[J].食品工业,2012,v.33;No.186(03):91-94.
    [49]曹玉娟,张扬,夏军,等.ε-聚赖氨酸生产废菌体对六价铬吸附影响的研究[J].环境科学,2012,v.33(02):499-504.
    [50]周艾平,尹华,叶锦韶,等.酵母融合菌对Cr的吸附性能及机理分析[J].环境科学与技术,2011,v.34(06):37-42.
    [51]叶佩青,檀笑,詹志薇.解脂假丝酵母对重金属工业废水的吸附特性[J].生态科学,2011,v.30;No.95(05):541-546.
    [52]叶锦韶,赵时真,尹华,等.氧化节杆菌对铜溶液的吸附特性[J].环境工程学报,2011,v.5(10):2221-2225.
    [53]郑晓丹.变形假单胞菌吸附镉的机制及其吸附条件的研究[D]:福建师范大学,2010.
    [54]Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Research,2003,37(18):4311-4330.
    [55]Volesky B. Biosorbents for metal recovery[J]. Trends in Biotechnology,1987,5(4):96-101.
    [56]Veglio F, Beolchini F. Removal of metals by biosorption:a review[J]. Hydrometallurgy,1997,44(3):301-316.
    [57]Volesky B. Advances in biosorption of metals:selection of biomass types[J]. Fems Microbiology Reviews,1994,14(4):291-302.
    [58]Mann. Biosorption of heavy metals[M]//VOLESKY. Removal and recovery of heavy metals by biosorption. Boca Raton; CRC Press.1990:93-137.
    [59]Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption[J]. Biotechnology Advances,2008,26(3):266-291.
    [60]臧运波.啤酒酵母对重金属离子生物吸附的研究进展[J].广东化工,2010,v.37;No.204(04):22-23+51.
    [61]咎逢宇,霍守亮,席北斗,等.啤酒酵母吸附去除水中Cd-(2+)的影响因素[J].化工进展, 2010,v.29;No.221(02):365-369+374.
    [62]武运,刘永建,葛风,等.固定化啤酒废酵母吸附Cr-(6+)的特性研究[J].食品科学,2010,v.31;No.392(19):194-196.
    [63]陈灿,周芸,胡翔,et a1.啤酒酵母对废水中Cu-(2+)的生物吸附特性[J].清华大学学报(自然科学版)网络预览,2008,(12):2093-2095.
    [64]陈灿,王建龙.酿酒酵母吸附Zn-(2+)、Pb(2+)、Ag-+、Cr~(2+)的动力学特性研究[J].环境科学学报,2007,(04):544-553.
    [65]张亚娟.黑根霉菌对重金属废水的生物吸附及其固定化技术[J].环保科技,2009,v.15;No.v.15(03):30-34+42.
    [66]顾超,何池全,李蕾.黑根霉菌自由细胞和固定化细胞对重金属铅的生物吸附[J].污染防治技术,2004,(03):1-4.
    [67]姜烛,张宝善,胡海霞.霉菌吸附重金属离子的研究进展[J].微生物学通报,2008,(07):1129-1135.
    [68]李慧芬.重金属抗性放线菌的筛选鉴定及其锌离子吸附研究[D]:西北农林科技大学,2010.
    [69]Muraleedharan, Venkobachar. Mechanism of Biosorption of copper (Ⅱ) by Ganoderma lucidium[J].1990,35(3):320-325.
    [70]Luef E, Prey T, Kubicek CP. Biosorption of zinc by fungal mycelial wastes[J]. Applied Microbiology and Biotechnology,1991,34(5):688-692.
    [71]Volesky B, May-Phillips H. Biosorption of heavy metals by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,1995,42(5):797-806.
    [72]A. Ozer EHI, D. Ozer, T. Kutsul, A. Caglar. A comparative study of the biosorption of cadmium(II) ions to S. leibleinil and R. arrhizis[J]. Chimica Acta Ture,1997,25(1):63-67.
    [73]Puranik P, Paknikar KM. Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneun waste biomass[J]. Journal of Biotechnology,1997,55(2):113-124.
    [74]Kogej A, Likozar B, Pavko A. Lead Biosorption by Self-Immobilized Rhizopus nigricans Pellets in a Laboratory Scale Packed Bed Column:Mathematical Model and Experiment[J]. Food Technology and Biotechnology,2010,48(3):344-351.
    [75]Zhang L, Zhao L, Yu Y, et al. Removal of lead from aqueous solution by non-living Rhizopus nigricans[J]. Water Research,1998,32(5):1437-1444.
    [76]Khambhaty Y, Mody K, Basha S, et al. Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger[J]. Chemical Engineering Journal,2009,145(3):489-495.
    [77]Srivastava P, Hasan SH. Biomass of Mucor Heimalis for the Biosorption of Cadmium from Aqueous Solutions:Equilibrium and Kinetic Studies[J]. Bioresources,2011,6(4):3656-3675.
    [78]Prakasham R, Merrie JS, Sheela R, et al. Biosorption of chromium VI by free and immobilized Rhizopus arrhizus[J]. Environmental Pollution,1999,104(3):421-427.
    [79]Bai R S, Abraham TE. Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans[J]. Bioresource Technology,2001,79(1):73-81.
    [80]Yuce M, Nazir H, Donmez G. Using of Rhizopus arrhizus as a sensor modifying component for determination of Pb(Ⅱ) in aqueous media by voltammetry[J]. Bioresource Technology,2010,101(19):7551-7555.
    [81]Volesky B. Biosorption by fungal biomass[J]. Biosorption of heavy metals(B Volesky, Ed), CRC Press, Boca Raton,1990,140:171.
    [82]Rincon J, Gonzalez F, Ballester A, et al. Biosorption of heavy metals by chemically-activated alga Fucus vesiculosus[J]. Journal of Chemical Technology&Biotechnology,2005,80(12):1403-1407.
    [83]黄灵芝,曾光明,黄国和,等.黑藻对镉离子的生物吸附研究[J].水处理技术,2009,v.35;No.200(02):62-64.
    [84]黄灵芝,曾光明,黄丹莲,等.黑藻对铜离子和镍离子的生物吸附性能[J].材料保护,2010,v.43;No.374(03):72-74+81.
    [85]李国新,张丹丹,颜昌宙,等.轮叶黑藻对铅的吸附特征及生物吸附机理研究[J].中国环境科学,2011,v_31(08):1327-1333.
    [86]Romera E, Gonzalez F, Ballester A, et al. Biosorption with algae:a statistical review[J]. Critical Reviews in Biotechnology,2006,26(4):223-235.
    [87]Brinza L, Dring MJ, Gavrilescu M. Marine micro and macro algal species as biosorbents for heavy metals[J]. Environmental Engineering and Management Journal,2007,6:237-251.
    [88]邓莉萍.藻体对水环境中N、P及重金属Cu-(2+)、Pb-(2+)、Cd-(2+)、Cr~(6+)的吸附特征研究[D]:中国科学院研究生院(海洋研究所),2008.
    [89]Davis TA, El Cheikh Ali F, Giannitti E, et al. Cadmium biosorption by S. fluitans:treatment, resilience and uptake relative to other Sargassum spp. and brown algae[J]. Water Quality Research Journal of Canada,2004,39(3):183-189.
    [90]Davis TA, Llanes F, Volesky B, et al.1H-NMR study of Na alginates extracted from Sargassum spp. in relation to metal biosorption[J]. Applied Biochemistry and Biotechnology,2003,110(2):75-90.
    [91]Diniz V, Volesky B. Biosorption of La, Eu and Yb using sargassum biomass[J]. Water Research,2005,39(1):239-247.
    [92]Volesky B, Weber J, Park J. Continuous-flow metal biosorption in a regenerable Sargassum column[J]. Water Research,2003,37(2):297-306.
    [93]Yun YS, Volesky B. Modeling of lithium interference in cadmium biosorption[J]. Environmental Science&Technology,2003,37(16):3601-3608.
    [94]Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+and Cu2+ions by blue-green algae Spirulina sp.:kinetics, equilibrium and the mechanism of the process[J]. Chemosphere,2005,59(1):75-84.
    [95]Nayak D, Lahiri S, Mukhopadhyay A, et al. Application of tracer packet technique to the study of the bio-sorption of heavy and toxic metal radionuclides by algae[J]. Journal of Radioanalytical and Nuclear Chemistry,2003,256(3):535-539.
    [96]Klimmek S, Stan HJ, Wilke A, et al. Comparative Analysis of the Biosorption of Cadmium, Lead, Nickel, and Zinc by Algae[J]. Environmental Science&Technology,2001,35(21):4283-4288.
    [97]Zhou J, Huang P, Lin R. Sorption and desorption of Cu and Cd by macroalgae and microalgae[J]. Environmental Pollution,1998,101(1):67-75.
    [98]Lee DC, Park CJ, Yang JE, et al. Screening of hexavalent chromium biosorbent from marine algae[J]. Applied Microbiology and Biotechnology,2000,54(4):597-600.
    [99]Matsunaga T, Takeyama H, Nakao T, et al. Screening of marine microalgae for bioremediation of cadmium-polluted seawater[J]. Progress in Industrial Microbiology,1999,35:33-38.
    [100]Bailey SE, Olin TJ, Bricka RM, et al. A review of potentially low-cost sorbents for heavy metals[J]. Water Research,1999,33(11):2469-2479.
    [101]邹婷,孙亚兵,付玉玲,等.松树皮吸附水溶液中铜离子的性能研究[J].河南科学,2011,v.29;No.150(05):529-533.
    [102]张瑾,王福禄.杨树落叶对Cd-(2+)的吸附等温线和动力学研究[J].安徽农业科学,2011,v.39;No.347(22):13484-13488.
    [103]李嘉,陈恩赞,苏海佳,等.改性大豆笑皮吸附剂对Pb-(2+)的生物吸附性能研究(英文)[J]Chinese Journal of Chemical Engineering,2011,v.19(02):334-339.
    [104]杜磊.芹菜渣对Pb-(2+)的吸附[J].食品与发酵工业,2011,v.37;No.286(10):100-104.
    [105]Southichak B, Nakano K, Nomura M, et al. Phragmites australis:a novel biosorbent for the removal of heavy metals from aqueous solution[J]. Water Research,2006,40(12):2295-2302.
    [106]Ho YS. Effect of pH on lead removal from water using tree fern as the sorbent[J]. Bioresource Technology,2005,96(11):1292-1296.
    [107]沈士德,徐娟.改性桑枝粉对水中Cu(Ⅱ)的吸附及动力学[J].环境科学与技术,2011,v.34(04):39-43.
    [108]Suharso, Buhani. Biosorption of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) from Aqueous Solution Using Cassava Peel Waste Biomass[J]. Asian Journal of Chemistry,2011,23(3):1112-1116.
    [109]Demirbas A. Biomass resources for energy and chemical industry[J]. Energy Edu Sci Technol,2000,5(1):21-45.
    [110]Demirbas A. Recent advances in biomass conversion technologies[J]. Energy Edu Sci Technol,2000,6:19-40.
    [111]Garg UK, Kaur M, Garg V, et al. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass[J]. Journal of hazardous materials,2007,140(1-2):60-68.
    [112]Beveridge T, Murray R. Sites of metal deposition in the cell wall of Bacillus subtilis[J]. Journal of Bacteriology,1980,141(2):876.
    [113]Ahluwalia S, Goyal D. Removal of heavy metals by waste tea leaves from aqueous solution[J]. Engineering in Life Sciences,2005,5(2):158-162.
    [114]Teixeira Tarley CR, Zezzi Arruda MA. Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents[J]. Chemosphere,2004,54(7):987-995.
    [115]Muraleedharan T, Venkobachar C. Mechanism of biosorption of copper (Ⅱ) by Ganoderma iucidum[J]. Biotechnology and Bioengineering,1990,35(3):320-325.
    [116]Basso M, Cerrella E, Cukierman A. Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater[J]. Industrial&Engineering Chemistry Research,2002,41(15):3580-3585.
    [117]Sarkanen KV, Ludwig CH. Lignins:occurrence, formation, structure and reactions[M]. Wiley-Interscience New York,1971.
    [118]Qaiser S, Saleemi AR, Mahmood Ahmad M. Heavy metal uptake by agro based waste materials[J]. Electronic Journal of Biotechnology,2007,10(3):409-416.
    [119]韩喜江,郝素娥.黑龙江省山核桃仁的营养成分分析[J].东北农业大学学报,1996,27(1):87-90.
    [120]王冀平,李亚南.山核桃仁中主要营养成分的研究[J].食品科学,1998,19(4):44-46.
    [121]余筱洁,周存山,王允祥,庞林江.山核桃壳活性炭制备及其吸附苯胺特性[J].过程工程学报,2010,10(1):65-68.
    [122]丁之恩,周学辉,石苏华,高慧.微波-催化剂法制取山核桃壳活性炭的研究[J].经济林研究,2003,21(4):47-50.
    [123]郑志锋,邹局春,花勃,张宏健,汪蓉.核桃壳化学组分的研究[J].西南林业学院学报2006,26(2):33-36.
    [124]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [125]Goel J, Kadirvelu K, Rajagopal C, et al. Removal of lead (Ⅱ) by adsorption using treated granular activated carbon:batch and column studies[J]. Journal of hazardous materials,2005,125(1):211-220.
    [126]Zolgharnein J, Shahmoradi A. Adsorption of Cr(Ⅵ) onto Elaeagnus Tree Leaves:Statistical Optimization, Equilibrium Modeling, and Kinetic Studies[J]. Journal of Chemical and Engineering Data,2010,55(9):3428-3437.
    [127]Chen YR, Tang G, Yu QJ, et al. Biosorption properties of hexavalent chromium on to biomass of tobacco-leaf residues[J]. Environmental Technology,2009,30(10):1003-1010.
    [128]Bansal M, Singh D, Garg VK. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes'carbons[J]. Journal of hazardous materials,2009,171(1-3):83-92.
    [129]Weng CH, Wang JH, Huang CP. Adsorption of Cr(Ⅵ) onto TiO2from dilute aqueous solutions[J]. Water Science and Technology,1997,35(7):55-62.
    [130]Park D, Lim SR, Yun YS, et al. Development of a new Cr(Ⅵ)-biosorbent from agricultural biowaste[J]. Bioresource Technology,2008,99(18):8810-8818.
    [131]Gala A, Sanak-Rydlewska S. Sorption of Pb(2+) metal ions from aqueous solution onto walnut shells[J]. Przemysl Chemiczny,2010,89(9):1225-1229.
    [132]Saadat S, Karimi-Jashni A. Optimization of Pb(Ⅱ) adsorption onto modified walnut shells using factorial design and simplex methodologies[J]. Chemical Engineering Journal,2011,173(3):743-749.
    [133]Ho YS, McKay G. A kinetic study of dye sorption by biosorbent waste product pith[J]. Resources Conservation and Recycling,1999,25(3-4):171-193.
    [134]Chojnacka K. Equilibrium and kinetic modelling of chromium(Ⅲ) sorption by animal bones[J]. Chemosphere,2005,59(3):315-320.
    [135]Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:A summary of recent studies[J]. Journal of hazardous materials,2009,162(2-3):616-645.
    [136]Wang XS, Lu ZP, Miao HH, et al. Kinetics of Pb (Ⅱ) adsorption on black carbon derived from wheat residue[J]. Chemical Engineering Journal,2011,166(3):986-993.
    [137]Subbaiah MV, Yuvaraja G, Vijaya Y, et al. Equilibrium, kinetic and thermodynamic studies on biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by fungus (Trametes versicolor) biomass[J]. Journal of the Taiwan Institute of Chemical Engineers,2011,42(6):965-971.
    [138]Ho Y, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34(5):451-465.
    [139]Sengil IA. Adsorption of reactive dyes on calcined alunite from aqueous solutions[J]. Journal of hazardous materials,2003,98(1-3):211-224.
    [140]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40(9):1361-1403.
    [141]李荣华,张增强,孟昭福,等.玉米秸秆对Cr(Ⅵ)的生物吸附及热力学特征研究[J].环境科学学报,2009,v.29(07):1434-1441.
    [142]贾娜娜,方为茂,赵红卫,等.谷壳对水中Cr(Ⅵ)离子的生物吸附研究[J].离子交换与吸附,2011,v.27(02):110-120.
    [143]El Nemr A. Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater[J]. Chemistry and Ecology,2007,23(5):409-425.
    [144]Freundlich HMF. Over the adsorption in solution[J]. J Phys Chem,1906,57:384.
    [145]Demiral H, Demiral I, Tumsek F, et al. Adsorption of chromium(Ⅵ) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models[J]. Chemical Engineering Journal,2008,144(2):188-196.
    [146]朱琳.环境毒理学[M].北京:高等教育出版社,2007.
    [147]Ngah WSW, Hanafiah M. Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies[J]. Biochemical Engineering Journal,2008,39(3):521-530.
    [148]Rocha CG, Zaia DAM, Alfaya RVD, et al. Use of rice straw as biosorbent for removal of Cu(II), Zn(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) ions in industrial effluents[J]. Journal of hazardous materials,2009,166(1):383-388.
    [149]Ngah W, Musa A. Adsorption of humic acid onto chitin and chitosan[J]. Journal of Applied Polymer Science,1998,69(12):2305-2310.
    [150]廖国礼,吴超.资源开发环境重金属污染与控制[M].长沙:中南大学出版社,2006.
    [151]杨肖娥,杨明杰.福从农业土壤向人类食物的迁移[J].广东微量元素科学,1996,3(7):1-17.
    [152]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [153]Zan FY, Huo SL, Xi BD, et al. Biosorption of Cd(2+) and Cu(2+) on immobilized Saccharomyces cerevisiae[J]. Frontiers of Environmental Science&Engineering in China,2012,6(1):51-58.
    [154]Reddy DHK, Seshaiah K, Reddy AVR, et al. Optimization of Cd(Ⅱ), Cu(Ⅱ) and Ni(Ⅱ)
    biosorption by chemically modified Moringa oleifera leaves powder[J]. Carbohydrate Polymers,2012,88(3):1077-1086.
    [155]窦敏娜,呼庆,齐鸿雁,等重金属抗性菌HQ-1生物吸附镉与银的比较研究[J].微生物学通报,2007,(06):1097-1103.
    [156]曾晓希.抗重金属微生物的筛选及其抗镉机理和镉吸附特性研究[D]:中南大学,2010.
    [157]Saeed A, Iqbal M. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum)[J]. Water Research,2003,37(14):3472-3480.
    [158]Mameri N, Boudries N, Addour L, et al. Batch zinc biosorption by a bacterial nonlivingStreptomyces rimosus biomass[J]. Water Research,1999,33(6):1347-1354.
    [159] Kumar U. Agricultural products and by-products as a low cost adsorbent for heavy metalremoval from water and wastewater: A review[J]. Scientific Research and Essays,2006,1(2):33-37.
    [160] Singh KK, Talat M, Hasan SH. Removal of lead from aqueous solutions by agricultural wastemaize bran[J]. Bioresource Technology,2006,97(16):2124-2130.
    [161] Chakravarty P, Sarma N, Sarma H. Removal of lead (II) from aqueous solution usingheartwood of Areca catechu powder[J]. Desalination,2010,256(1-3):16-21.
    [162] Puranik PR, Paknikar KM. Biosorption of lead, cadmium, and zinc by Citrobacter strainMCM B-181: Characterization studies[J]. Biotechnology Progress,1999,15(2):228-237.
    [163] Fourest E, Roux JC. Heavy-Metal Biosorption by Fungal Mycelial by-Products-Mechanismsand Influence of Ph[J]. Applied Microbiology and Biotechnology,1992,37(3):399-403.
    [164] Volesky B. Biosorption and me[J]. Water Research,2007,41(18):4017-4029.
    [165] Namasivayam C, Kadirvelu K. Uptake of mercury (II) from wastewater by activated carbonfrom an unwanted agricultural solid by-product: coirpith[J]. Carbon,1999,37(1):79-84.
    [166] Inbaraj BS, Wang J, Lu J, et al. Adsorption of toxic mercury (II) by an extracellularbiopolymer poly ([gamma]-glutamic acid)[J]. Bioresource Technology,2009,100(1):200-207.
    [167] Basha S, Murthy ZVP, Jha B. Kinetics, Isotherms, and Thermodynamics of Hg(II)Biosorption onto Carica papaya[J]. Bioremediation Journal,2011,15(1):26-34.
    [168] Basha S, Murthy ZVP, Jha B. Sorption of Hg(II) onto Carica papaya: Experimental studiesand design of batch sorber[J]. Chemical Engineering Journal,2009,147(2-3):226-234.
    [169] El-Shafey EI. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbentchemically prepared from rice husk[J]. Journal of hazardous materials,2010,175(1-3):319-327.
    [170] Krishnani KK, Meng XG, Christodoulatos C, et al. Biosorption mechanism of nine differentheavy metals onto biomatrix from rice husk[J]. Journal of hazardous materials,2008,153(3):1222-1234.
    [171] Jamil N, Munawar MA, Badar S, et al. Biosorption of Hg (II) and Cd (II) from Waste Waterby using Zea Mays Waste[J]. Journal of the Chemical Society of Pakistan,2009,31(3):362-369.
    [172] Al Rmalli SW, Dahmani AA, Abuein MM, et al. Biosorption of mercury from aqueoussolutions by powdered leaves of castor tree (Ricinus communis L.)[J]. Journal of hazardous materials,2008,152(3):955-959.
    [173] Yuan XL, Lu CM, Zhu WC, et al. Adsorption Performance of Hg(II) Ions on Amine-ModifiedNanoporous Carbon Materials[J]. Acta Physico-Chimica Sinica,2011,27(5):1181-1187.
    [174] Sen TK, Afroze S, Ang HM. Equilibrium, Kinetics and Mechanism of Removal of MethyleneBlue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata[J]. Water Air andSoil Pollution,2011,218(1-4):499-515.
    [175] Bae W, Wu CH, Kostal J, et al. Enhanced mercury biosorption by bacterial cells withsurface-displayed MerR[J]. Applied and Environmental Microbiology,2003,69(6):3176-3180.
    [176] Sheng PX, Ting YP, Chen JP, et al. Sorption of lead, copper, cadmium, zinc, and nickel bymarine algal biomass: characterization of biosorptive capacity and investigation of mechanisms[J].Journal of Colloid and Interface Science,2004,275(1):131-141.
    [177] Tiller K, Hodgson J, Fellows M. The role of hydrolysis in the reaction of heavy metals withsoil-forming materials[J]. Soil Science Society of America Journal,1964,28(1):42-46.
    [178]Barrow NJ, Cox VC. The Effects of Ph and Chloride Concentration on Mercury Sorption.1. By Goethite[J]. Journal of Soil Science,1992,43(2):295-304.
    [179]Khambhaty Y, Mody K, Basha S, et al. Hg(II) removal from aqueous solution by dead fungal biomass of marine Aspergillus niger:Kinetic studies[J]. Separation Science and Technology,2008,43(5):1221-1238.
    [180]Svecova L, Spanelova M, Kubal M, et al. Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry.1. Equilibrium studies[J]. Separation and Purification Technology,2006,52(1):142-153.
    [181]Mohan D, Gupta VK, Srivastava SK, et al. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2001,177(2-3):169-181.
    [182]Khambhaty Y, Mody K, Basha S, et al. Pseudo-second-order kinetic models for the sorption of Hg(II) onto dead biomass of marine Aspergillus niger:Comparison of linear and non-linear methods[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008,328(1-3):40-43.
    [183]Tuzen M, Sari A, Mendil D, et al. Biosorptive removal of mercury(Ⅱ) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass:Kinetic and equilibrium studies[J]. Journal of hazardous materials,2009,169(1-3):263-270.
    [184]Farajzadeh MA, Monji AB. Adsorption characteristics of wheat bran towards heavy metal cations[J]. Separation and Purification Technology,2004,38(3):197-207.
    [185]Karunasagar D, Krishna MVB, Rao SV, et al. Removal and preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum[J]. Journal of hazardous materials,2005,118(1-3):133-139.
    [186]支田田,程丽华,徐新华,等.藻类去除水体中重金属的机理及应用[J].化学进展,2011,(08):1782-1794.
    [187]陈文宾.微生物固定化技术在室内养殖海水净化中的应用研究[D]:中国矿业大学,2010.
    [188]Tamilselvan N, Saurav K, Kannabiran K. Biosorption of Cr (Ⅵ), Cr (Ⅲ), Pb (Ⅱ) and Cd (Ⅱ) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass[J]. Journal of Ocean University of China,2012,11(1):52-58.
    [189]Panayotova M, Velikov B. Influence of zeolite transformation in a homoionic form on the removal of some heavy metal ions from wastewater[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances&Environmental Engineering,2003,38(3):545-554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700