通带匹配数字侦察接收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带数字接收机已成为电子战侦察系统发展的必然趋势,其特征是利用靠近射频前端的高速ADC来实现宽开监视,利用数据率转换系统来降低后继数据率,实现无失真接收,后端利用DSP对所截获的低速率信号进行高精度信号特征提取。前端高速ADC与后端相对低速DSP之间的速率不匹配问题是宽带数字接收机面临的最大挑战。电子侦察中所面对的是参数完全未知的非合作信号,缺乏先验信息。由于匹配信号带宽的基带信号速率是在无失真条件下的最低数据率,因此,如何最大程度的降低数据率,缓解后继处理压力,实现对未知信号的无失真通带匹配接收已经成为目前数字侦察接收机的系统性关键技术和难点。本文围绕通带匹配数字侦察接收的理论基础、方案设计和系统架构,以及其中的关键技术和难点等问题展开深入研究,主要工作和贡献有:
     1、研究了电子战环境下通带匹配数字侦察接收的理论基础、体系架构和实现方案,提出了带通采样方案、数字下变频方案、数字信道化方案、引导式频谱融合方案、大时宽调频信号的频谱分时接收方案和频谱压缩方案等六种通带匹配接收的基本方案,分析优缺点,并指出了其中的关键技术和难点。研究了通带匹配接收中的快速频率估计技术和带宽参数估计技术,同时给出易于工程实现的相关快速算法。
     2、研究了基于带通采样的通带匹配数字接收方法。提出了可变速率直接ADC带通采样和可变速率直接带通抽取两种通带匹配接收结构,分别研究了系统性能恶化的解决方案,并分析了在硬件实现中所面临的困难,指出后者具有较强的工程可实现性。
     3、研究了基于数字下变频高效结构的通带匹配数字接收方法。提出了基于多级抽取比的可变带宽高效数字下变频方法,提出了基于有理数倍抽取比的高效带宽精匹配接收方法。这些方法以多相滤波结构为基础,有着较好的运算效率和工程可实现性。最后讨论了处理多个同时到达信号的通带匹配接收方案,并针对硬件实现中存在的问题提出了相应的解决方法。
     4、研究了基于可变带宽滤波器的通带匹配数字接收方法。提出了基于加权Minimax准则的可变带宽滤波器线性规划设计方法,提出了可变带宽FIR数字滤波器的高效WLS设计方法,提出了基于扩展傅里叶变换的可变带宽滤波器设计方法,以及基于EFT滤波器的通带匹配接收高效结构。应用这些可变带宽滤波器的优点在于只有一个直接决定带宽的可调谱参数,更新机制简单。最后讨论了基于可变带宽滤波器的多信号通带匹配接收方案。
     5、研究了基于频谱压缩的通带匹配数字接收方法。研究了频谱压缩与重构的基本原理,分析了Laguerre变换的频率卷绕特性,及其对LFM信号的频谱压缩特性,提出了基于Laguerre变换的宽带LFM信号频谱压缩数字接收方法。压缩信号可利用频谱恢复网络实现信号的重构,LFM信号的初始频率和调频斜率在频谱恢复后仍可较精确估计。
     6、研究了通带匹配数字侦察接收系统实验平台的设计和实现,其中包括实验平台的总体方案、高速A/D板、通带匹配接收处理板、PCI数据采集卡、高精度参数估计处理板和显控软件。测试结果显示实验平台具有较好的性能,能正确有效的实现信号通带匹配数字侦察接收。
Wideband digital receiver has been a trend of the development of Electronic Warfare (EW) reconnaissance system. Its characteristics are using high-speed ADC closing to RF front-end to cover a wide survey band, and using data rate converter to decrease data rate and implement distortionless receiving, and then using DSP to implement precisely parameters estimation for low-speed data. However, there is a great challenge that the speed mismatch between front-end high-speed ADC and back-end low-speed DSP for the realization of wideband digital receiver. In electronic reconnaissance, prior information of the target signals isn't provided in the complicated electromagnetic environment. The baseband signal rate of matching bandwidth is the lowest data rate in distortionless condition, so how to further decrease data rate and signal processing load, and implement distortionless bandwidth-matched receiving has been the key technique and difficulty for digital reconnaissance receiver. This dissertation focuses on the theoretic foundation, architecture and realization of bandwidth-matched digital reconnaissance receiving, and the interrelated key techniques and difficulties. The main contributions of this dissertation concentrate on a few aspects as follows:
     1. It is researched that the theoretic foundation, system design and realization of bandwidth-matched digital reconnaissance receiving in EW environment. It is proposed that six bandwidth-matched receiving schemes, such as bandpass sampling, digital downconversion (DDC), digital channelizer, leading spectral synthesis, spectrum time-sharing receiving for long pulse signals, and spectral compression. The advantage and disadvantage of them are analyzed while the key techniques and difficulties are discussed. Frequency and bandwidth estimation methods in bandwidth-matched receiving are also discussed, and some methods with good realizability are given.
     2. Bandwidth-matched digital receiving methods based on bandpass sampling are studied. Two bandwidth-matched digital receiving structures, variable-speed direct ADC bandpass sampling and variable-speed direct bandpass decimation, are proposed. However, these structures suffer from system performance worsening. To overcome these problems, some modified ways are presented. Meanwhile, the difficulties in hardware implementation are also analyzed, and some results show that the latter structure has better realizability.
     3. Bandwidth-matched digital receiving methods based on the efficient structure of DDC are studied. Based on multistage decimation ratio and rational decimation ratio, an efficient variable-bandwidth DDC and an efficient bandwidth-matched receiving method are proposed, respectively. Based on polyphase filtering structure, they achieve a significant reduction in complexity and computational cost. Finally, bandwidth-matched receiving methods are discussed for multiple simultaneous signals, and solutions for hardware implementation are given.
     4. Bandwidth-matched digital receiving methods based on variable-bandwidth filters (VBF) are studied. Firstly, a linear programming design technique is proposed for designing the variable-bandwidth linear-phase FIR filters in the weighted minimax sense. Then, it is presented that an efficient weighted-least-square (WLS) design method for FIR digital filters with variable bandwidth whereas the phase response is stable. Furthermore, a design technique of VBF based on the extended Fourier transform (EFT) and an efficient bandwidth-matched receiving structure based on EFT filters are proposed, respectively. The above VBFs are implemented with the aids of only one variable spectral parameter that determines the bandwidth and a simple updating routine. Finally, bandwidth-matched receiving methods based on VBF are discussed for multiple simultaneous signals.
     5. Bandwidth-matched digital receiving methods based on spectral compression are studied. Firstly, it is introduced that the foundation of spectral compression and reconstruction. Then, the frequency-warped characteristic of Laguerre transformation and its spectrum-compressed characteristic for LFM signal are analyzed. A novel spectrum-compressed digital receiving method using Laguerre transformation for LFM signal is proposed. The spectrum-compressed signal can be reconstructed by using the spectrum-reconstructed network. The modulation rate and initial frequency of the spectrum-reconstructed LFM signal can be estimated precisely.
     6. Design and Implementation of the bandwidth-matched digital receiving experimental systems, including the total scheme, high-speed A/D board, bandwidth-matched receiving processing board, PCI data acquisition card, parameters estimation processing board, and display and control software, are introduced. The test results show the experimental system has better performance and can validly implement signal bandwidth-matched digital receiving.
引文
[1]国际电子战编辑部.站在世界电子战最前沿.成都:电子科技大学出版社,2004
    [2]James Tusi.宽带数字接收机.北京:电子工业出版社,2002
    [3]赵国庆.电子对抗原理.西安:西安电子科技大学出版社,1999
    [4]D D Vaccaro.Electronic Warfare Receiving System.Artech House Inc,1993
    [5]肖先赐.电子侦察中的信号处理技术.中国电子学会电子对抗分会第十界学术年会,1997,654-659
    [6]肖先赐,黄勇,林云松.雷达信号侦察全概率数字式接收机.电子对抗国防科技重点实验室论文集,1998,200-208
    [7]Tsui J B Y,Stephens J P.Digital microwave receiver technology.IEEE Transaction on Microwave Theory and Techniques,2002,50(3):699-705
    [8]电子战技术文献选集.电子工业部第29所情报室,1995
    [9]杨小牛等,楼才义,徐建良.软件无线电原理与应用.电子工业出版社,2001
    [10]Patel M,Darwazeh I,O'Reilly J J.Bandpass sampling for software radio receivers,and the effect of oversampling on aperture jitter.IEEE 55th Vehicular Technology Conference,2002,Vol.4:1901-1905
    [11]Zangi K C,Koipillai R D.Efficient filterbank channelizers for software radio receivers.1998IEEE International Conference on Acoustics,Speech and Signal Processing.1998,Vol.6:3497-3500
    [12]Hentschel T,Fettweis G.Sample Rate Conversion for Software Radio.IEEE Communication Magazine,2000,38(8):142-150
    [13]Srikathyayani S,Reed J H,Athanas P,et al.A Soft Radio Architecture for Reconfigurable Platforms.IEEE Communications Magazine,2000,38(2):140-147
    [14]Mitola J.Technical challenges in the globalization of software radio.IEEE Communications Magazine,1999,96-101
    [15]Lacky R J,Upmal D W.Speakeasy:The Military Software Radio.IEEE Communication Magazine,May 1995,33(5):56-61
    [16]Rupert B.The DSP Bottleneck.IEEE Communication Magazine,1995,33(5):46-54
    [17]Mitola J.The Software Radio Architecture.IEEE Communication Magazine,1995,33(5):26-38
    [18]Hentschel T,Henker M,Fettweis G.The digital front-end of software radio terminals.IEEE Personal Communications,1999,6(4):40-46
    [19]Li Weidong,Yan yao.Software Radio:Technology & Implementation.ICCT'98.Beijing,China.1998,22-24
    [20]Jain V K.Very High SFDR Interpolation Filters For Software Radio.2000 IEEE Workshop on Signal Processing Systems,2000,397-406
    [21]Fung C Y,Chan S C.A multistage filterbank-based channelizer for software radio base stations.IEEE ISCAS'2002,2002,Vol.3:429-432
    [22]Walden R H.Performance Trends for Analog to Digital Converters.IEEE Communications Magazine,1999,37(2):96-101
    [23]黄勇.宽带接收机数字技术研究:[博士学位论文].成都:电子科技大学,1999
    [24]林云松.新型宽带数字接收机-高速测频及信号处理方法研究:[博士学位论文].成都:电子科技大学,1999
    [25]高志成.电子侦察中的信号采集技术研究:[博士学位论文].成都:电子科技大学,2000
    [26]张嵘.宽带高灵敏度数字接收机:[博士学位论文].成都:电子科技大学,2003
    [27]Jugdutt S.High Speed Analog-to-Digital Converter for Software radio Application.The 11th IEEE International Symposium on Personal,Indoor and Mobile Radio Communications,2000,Vol,1:39-42
    [28]吴伟,唐斌,张鹏.基于多相滤波高效结构的宽带DDC及其FPGA实现.数据采集与处理,2004,19(2):210-214
    [29]Yongtao Wang,Mahmoodi,H.,Lih-Yih Chiou,et al.Hardware Architecture and VLSI Implementation of a Low-Power High-Performance Polyphase Channelizer with Applications to Subband Adaptive Filtering.2004 ICASSP,Vol,5:97-100
    [30]吴伟,唐斌.数字信号高效带宽匹配接收技术.中国电子学会电子对抗分会第14届学术会议论文集,2005:389-394.
    [31]Cummings M,Haruyama S.FPGA in the Software Radio.IEEE Communication Magazine,1999,108-12
    [32]宗孔德.多抽样率信号处理.北京:清华大学出版社,1996.
    [33]Vinod A P,Lai E M.Low-Complexity Filter Bank Channelizer for Wideband Receivers Using Minimum Adder Multiplier Blocks.2004 IEEE ISCAS,Vol.5:2699-2703
    [34]Vinod A P,Lai E M.Optimization Method for Designing Filter Bank Channelizer of a Software Defined Radio Using Vertical Common Subexpression Elimination.2004 IEEE ISCAS,2004,Vol.4:437-40
    [35]Wu Wei,Tang Bin,Zhang Chang Ju,et al.An Efficient Digital Downconversion Structure with Bandwidth Matched Receiving.IEEE ISCIT 2005,vol.Ⅱ:131-134
    [36]张嵘,肖先赐.任意中频带通信号多相数字下变频方法.电子与信息学报,2003,25(9):1285-1289
    [37]Lee J H,Young T T.New Polyphase Filter Bank-based Analysis/Synthesis Systems.IEEE Trans.on Signal Processing,1990,38(5):876-880
    [38]蒋宗明,唐斌,吴伟.基于DFT滤波器组的多信号高效数字下变频.电子科技大学学报,2005,34(6):743-746.
    [39]Dick C,Harris F.FPGA interpolators using polynomial filter.1998 ICSPAT,Toronto:1998,684-688
    [40]顾耀平译.宽带接收机数字技术.电子战文库15,1996
    [41]Stephens J P.Advances in Signal Processing Technology for Electronic Warfare.IEEE AES Systems Magazine,1996,31-38
    [42]Spezio A E.Electronic Warfare Systems.IEEE Trans.on Microware Theory and Techniques.2002,50(3):633-644
    [43]Jesus G,Raul B.Monobit receiver for electronic warfare.Statistical Signal Processing Proceedings of the 11th IEEE Signal Processing,2001,138-141
    [44]Qi R,Coakley F P.VLSI Implementation of Digital Channeliser Using Distributed Arithmetic.Electronics Letters,1992,28(11):973-974
    [45]Salkintzis A K,Hong N,Mathiopoulos P T.ADC and DSP challenges in the development of software radio base stations.IEEE Personal Communications,1999,6(4):47-55
    [46]Wepman J A.Analog-go-digital Converts and Their Applications in Radio Receivers.IEEE Communications Magazine,1995,May:39-45
    [47]肖维民,许希斌,朱健等.软件无线电综述.电子学报,1998,26(2):65-70
    [48]Fudge J,Legako M,Sehreiner C.An approach to efficient wideband digital downconvertion.ICSPAT 1998,Toronto,Canada:1998,713-717.
    [49]Coulson A J,Vaughan R G.,Poletti M A.Frequency-Shifting Using Bandpass Sampling.IEEE Trans.on SP,1994,42(6):1556-1559
    [50] Vaidyanathan P P. Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications: A Tutorial. Proceedings of the IEEE, 1990,78(1): 56-93
    [51] Weiss A J, Friendlander B. Simultaneous signals in IFM receivers. IEE proceedings on Radar, Sonar and Navigation. 1997,144(4): 181-185
    [52] Fields T W, Sharpin D L, Tsui J B. Digital Channelized IFM receiver. IEEE MTT-S International Microwave Symposium Digest, 1994, Vol.3:1667 -1670
    [53] Zahirniak D R, Sharpin D L, Fields T W. A hardware-efficient, multirate, digital channelized receiver architecture. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(1): 137-152
    [54] Pok D, Chen C H, Montgomery C, et al. ASIC For 1-GHz Wide Band Monobit Receiver. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998, Vol.2: 77-80
    [55] Inkol R, Szwarc V, Desormeaux L, et al. A 400Megasample Per Second Digital Receiver ASIC. Ninth Annual IEEE International ASIC Conference and Exhibit, 1996,235-238
    [56] Akos D M, Tsui J B Y. Design and Implementation of a Direct Digitization GPS Receiver Front End. IEEE Trans. on Microwave Theory and Techniques, 1996,44(12): 2334-2339
    [57] Pok D S K, Chen C H, Schamus J J, et al. Chip Design for Monobit Receiver. IEEE Trans. on Microware Theory and Techniques, 1997,45(12): 2283-2295
    [58] Pok D, Chen C H, Montgomery C, et al. ASIC design for monobit receiver. Proceedings of the 1997 IEEE International Symposium on Circuits and Systems, 1997,142 -146
    [59] Joel K M, Michael E F. Small, Flexible, Low Power, DFT Filter Bank for Channeled Receivers. Texas Instruments, Butterfly DSP Inc.
    [60] 电子战新技术. 电子侦察干扰. 电子工业部51所,1997
    [61] Sanderson R B, Tsui J B Y, Freese N. Reduction of aliasing ambiguities through phase relations. IEEE Trans. on AES, 1992.28(4): 950-955
    
    [62] Tsui J B Y. Digital techniques for wideband receiver. ARTECH House, inc. 1995
    [63] Zoltowski M D, Mathews C P. Real-time frequency and 2-D angle estimation with subnyquist spatio-temporal sampling. IEEE Trans. on Signal Processing, 1994,42(10): 2781-2794
    [64] Wang Xinyu. Dynamic Bandwidth Allocation for VBR Video Traffic Using Adaptive Wavelet prediction. IEEE International Conference on Communication, 1998, 549-553
    [65] Chiang T, Zhang Y Q. A new rate control scheme using quadratic rate distortion model. IEEE Trans. on Circuits and System for Video Technology, 1997,7(1): 246-250
    [66]Tufts D W,Ge H,Kumaresan.Resolving ambiguities in estimating spatial frequencies in space linear array.IEEE ICASSP 1994,1994,Vol.Ⅱ:345-348
    [67]Tufts D W,Ge H.Digital estimation of frequencies of sinusoids from wide-band under-sampled data.IEEE ICASSP 1995,3155-3158
    [68]柯召,孙琦.数论讲义(上).高等教育出版社,1986
    [69]Mccormick W S,Tsui J B Y and Bakke V L.A noise insensitive solution to an ambiguity problem in spectral estimation.IEEE Trans.on AES,1989,25(3):729-732
    [70]唐斌.空间信号多维参数估计方法研究:[博士学位论文].成都:电子科技大学,1996
    [71]唐斌,熊英,肖先赐.基于高阶统计的欠采样多信号频率估计.仪器仪表学报,1999,20(3):229-231
    [72]张贤达.现代信号处理(第二版).北京:清华大学出版社,2002
    [73]肖先赐.现代谱估计原理与应用.哈尔滨:哈尔滨工业大学出版社,1991
    [74]Mccormick W S,Miller D E and Tsui J B Y.Resolution ofa 2π ambiguity problem in multiple frequency spectral estimation.IEEE Trans.on AES,1995,31(1):2-7
    [75]Hill G.The Benefits of undersampling.Electronic design.1994,July:69-79
    [76]Chester D B,PhilipsG.Use DSP filter concepts in IF system-design.Electronic design.1994,July:80-88
    [77]Saito H.Dynamic resource allocation in ATM networks.IEEE Communication Magazine,1997,35(5):146-153.
    [78]Melody W.Traffic prediction and dynamic bandwidth allocation over ATM:a neural network Approach.Computer Communication,1995,18(8):563-571
    [79]傅承硫,马佳光,叶步霞等.复合轴控制系统应用研究.光电工程,1998,25(4):1-12
    [80]张德良,姜文汉.自适应光学系统时间带宽和空间带宽的匹配.光电工程,1998,25(4):13-21
    [81]Park M H,Kim K S.Chattering reduction in the position control of induction motor using the sliding mode.IEEE Trans.on Power Electronics,1991,6(3):317-325
    [82]Mazor E,Averbuch A,Shalom Y B,et al.Interacting multiple model methods in target tracking:a survey.IEEE Trans.on Aerospace and Electronic Systems,1998,34(1):103-123
    [83]Philip P E,Leino R E,Styer D.Use of the symmetrical number system in resolving single-frequency undersampling aliases.IEEE Trans.on Signal Processing,1997,45(5):1153-1157
    [84]Xiang Gen Xia,GuangCai Zhou.Multiple frequency detection in undersampled waveforms.Signals,Systems and Computers Conference Record of the Thirty-First Asilomar,1999,Vol,1:867-871
    [85]Tufts D W.Digital estimation of frequencies of sinusoids from side and under-sampled data.IEEE ICASSP 1995,155-158
    [86]Maragos P,Kaiser J,Quatieri T F.Energy separation in signal modulations with application to speech analysis.IEEE Trans.on SP,1993,41(10):3024-3028
    [87]Ramalingam C S.On the Equivalence of DESA-Ia and Prony's method when the signal is a sinusoid,IEEE SPL,1996,3(2):54-58
    [88]Tretter S A.Estimating the frequency of a noisy sinusoid by linear regression.IEEE Trans.on IT,1985,Vol.31:832-838
    [89]Kay S M.Statistieally/Computationally Efficient Frequency Estimation.IEEE ICASSP 1988,1988,2292-2295
    [90]Kim D,Narasimbs M J,Cox D C.An improved single frequency estimator.IEEE SPL,1996,3(7):212-216
    [91]Flower M L,Johnson J A.Extending the threshold and frequency range for phase-based frequency estimation.IEEE Trans.on Signal Processing,1999,47(10):2857-2863
    [92]Fitz M D.Further Results In the Fast Estimation of A Single Frequency.IEEE Trans.on communications,1994,Vol.42:863-864
    [93]胡广书.数字信号处理-理论、算法与实现.北京:清华大学出版社,2003
    [94]谢明,丁康.频谱分析的校正方法.振动工程学报,1994,7(2):172-179
    [95]代俊光,陈光鄅.噪声背景下一种正弦信号频率估计的新插值算法.电子学报,2000,28(8):15-16
    [96]Macleod M D.Fast Nearly ML Estimation of The Parameter of Real or Complex Single Tones or Resolved Multiple Tones.IEEE Trans.on Signal Processing,1998,46(1):141-148
    [97]Kedem B.Spectral analysis and discrimination by zero-crossings.Proceeding of IEEE,1986,74(11):1477-1480
    [98]吴伟,唐斌,杜东平等.现代雷达中的高速FFT设计.空军工程大学学报.2005,6(5):53-58.
    [99]Abatzoglou T J.Fast maximum likelihood joint estimation of frequency and frequency rate.IEEE Trans.on AES,1986,22(6):708-715
    [100]Peleg S,Porat B.Linear FM signal parameter estimation from discrete-time observations.IEEE Trans.on AES,1991,27(4):607-615
    [101]Vaughan R G,Neil L S,White D.The theory of bandpass sampling.IEEE Trans.on SP,1991,39(9):1973-1984
    [102]黄有方.带通信号的直接采样与重构.信号处理,1994,10(1):194-198
    [103]Ching-Hsiang Tseng,Sun-Chung Chou.Direct Downconversion of Multiple RF Signals Using Bandpass Sampling.IEEE International Conference on ICC,2003,Vol.3:2003-2007
    [104]Akos D M,Stoekmasker M,Tsui J B Y,et al.Direct bandpass sampling of multiple distinct RF signals.IEEE Transaction on Communications,1999,47(7):983-988
    [105]Wong N,Tung-Sang N.An efficient algorithm for downconverting multiple bandpass signals using bandpass sampling.IEEE International Conference on ICC,2001,Vol.3:910-914
    [106]Yuan-Pei Lin,Vaidyanathan P P.Periodically Nonuniform Sampling of Bandpass Signals.IEEE Trans.on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,1998,45(3):340-351
    [107]Park M H,Kim K S.Chattering reduction in the position control of induction motor using the sliding mode.IEEE Trans.on Power Electronics,1991,6(3):317-325
    [108]Pawlowski E,Takiguchi,Okuno M,et al.Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter.Electronics Letters,1996,32(2):113-114
    [109]Pasko R,Rijnders L,Schaumont P R,et al.High-performance flexible all-digital quadrature up and down converter chip.IEEE Journal of Solid-State Circuits,2001,36(3):408-416
    [110]Vancorenland P,Coppejans P,Cock W D,et al.A quadrature direct digital downconverter.IEEE Custom Integrated Circuits Conference,2002,235-238
    [111]Zhu Jun,Tang Bin,Wu Wei,et al.Design and Implementation of a Cueing Wideband Digital EW Receiver.Journal of Electronic Science and Technology of China.2006,4(3):257-264
    [112]沈显祥,叶瑞青,唐斌.基于频谱压缩接收的宽带/超宽带线性调频信号参数估计.电子与信息学报.2007,29(1):23-25
    [113]吴伟,唐斌.基于Laguerre变换的宽带LFM信号频谱压缩数字接收方法.电子与信息学报.2007,29(1):50-53
    [114]Silva T O,On the determination of the optimal pole position of Laguerre filters,IEEE Trans.on Signal processing,1995,43(9):2079-2087
    [115]Wood J C,Barry D T.Radon transformation of time-frequency distribution for analysis of multi-component signals.IEEE Trans.on Signal Processing,1994,42(11):3166-3177
    [116]Raveh I,Mendlovic D.New properties of the Radon transform of the cross wigner/ambiguity distribution function.IEEE Trans.on Signal Processing,1999,47(7):2077-2080
    [117]Stoyanov G,Kawamata M.Variable digital filters.Journal of Signal Processing,1997,1(4):275-289
    [118]Chan S C,Pun K S,Yeung K S,et al.On the design and implementation of FIR and IIR digital filters with variable frequency characteristics.Proceeding of IEEE International Symposium on Circuits System,Phoenix,AZ,2002(2):185-188
    [119]Tay D B H,Abeysekera S S,Balasuriya A P.Audio signal processing via harmonic separation using variable Laguerre filters.Proceeding of IEEE International Symposium on Circuits System,Bangkok,Thailand,2003(3):558-561
    [120]Oppenheim A V,Mecklenbrauker W F G,Mersereau R M.Variable cutoff linear phase digital filters.IEEE Trans.on Circuits Systems,1976,23(4),199-203
    [121]Jarske P,Mitra S K,Neuvo Y.Signal processor implementation of variable digital filters.IEEE Trans.on Instrumentation and Measurement,1988,37(3):363-367
    [122]Karam L J,McClellan J H.Efficient design of families of FIR filters by transformations.Proceeding of IEEE International Conference on Acoustic Speech Signal Processing,1996(3):1359-1362
    [123]Zarour R,Fahmy M M.A design technique for variable digital filters.IEEE Trans.on Circuits Systems,1989,36(11):1473-1478
    [124]C W Farrow.A continuous variable digital delay element.Proceeding of ISCAS,2000,104-107
    [125]Deng T B,Okamoto E.SVD-based design of fractional-delay 2-D digital filters exploiting specification symmetries.IEEE Trans.on Circuits and Systems,2003,50(8):470-480
    [126]Deng T B.Weighted least-squares design of variable 1-D FIR filters with arbitrary magnitude responses.Proceeding of IEEE Asia-Pacific Conference on Circuits System,Tianjin,China,2000,288-291
    [127]Deng T B.Vector-array decomposition-based design of variable digital filters.Proceeding of ISCAS,2003:550-553
    [128]吴伟,唐斌.基于扩展傅里叶变换的可变带宽滤波器设计及应用.仪器仪表学报,2007,28(5):826-831.
    [129] Steiglitz K, Parks T W, Kaiser J F. Meteor: a constrain-based FIR filter design program. IEEE Trans. on signal processing, 1992,40(8): 1901-1909.
    [130] Nahi, Gagliardi. Estimation of signal-to-noise. IEEE Trans. on Information Theory, 1969, 15(1): 166-167
    [131] Heyoung L, Zeungnam B. Bandpass variable-bandwidth filter for reconstruction of signals with known boundary in time-frequency domain. IEEE Signal Processing Letters, 2004,11(2): 160-163
    [132] Heyoung L, Zeungnam B. On the eigenstructure of linear quasi-time-invariant systems. Internationa] Journal of Systems Science, 1998,29: 873-887
    [133] Tsui K M, Yeung K S, Chan S C, et al. On the minimax design of passband linear-phase variable digital filters using semidefinite programming. IEEE Signal Processing Letter, 2004, 11(11): 867-870
    [134] Tsui K M, Chan S C, Tse K W. Design of Complex-Valued Variable Digital Filters and Its Aplication to The Realization of Arbitrary Sampling Rate Conversion for Complex Signals. The 47~(th) IEEE International Midwest symposium on Circuits and Systems, 2004, Vol.11: 349-352
    [135] Johansson H, Lowenborg P. On the Fractional Delay FIR Filters. IEEE Trans. on Circuits and Systems, 2003, 50(4): 164-169
    [136] Lu W S, Hinamoto T. Optimal Design of FIR Frequency-Response-Masking Filters Using Second-Order Cone Programming. IEEE ISCAS'2003,2003, Vol.3: 878-881
    [137] Fredric J H, Chris D, Michael R. Digital Receiver and Transmitters Using Polyphase Filter Banks for wireless Communications. IEEE Trans. on Microware Theory and Techniques, 2003,51(4): 1395-1412
    [138] Deng T B. Design of Complex-Coefficient Variable Digital Filters Using Successive Vector-Array Decomposition. IEEE Trans. on Circuits and Systems, 2005, 52(5): 932-942
    [139] James B Y T, James P S. Digital Microware Receiver Technology. IEEE Trans. on Microware Theory and Techniques, 2002,50(3): 699-705
    [140] Ligang Zheng, Youxin Lu. An Technique to Design Efficient Wideband Digitized Radar Receiver. Signal Processing, 2003,19:366-369
    [141] William S S. A new 3-GSPS 65-GOPS UHF digital radar receiver and its performance characteristics. Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997, Vol.2:1542-1546
    [142]Van Y V,Aziz B D.A New Digital Receiver Architecture for Direction Finding Systems.IEEE First International Conference on Communications and Electronics,2006,430-433
    [143]George K,Chen C H,Tsui J B Y.Extension of two-signal spurious-free dynamic range of wideband digital receivers using Kaiser window and compensation method.IEEE Transaction on Microware theory and techniques,2007,55(4):788-794
    [144]唐斌,吴伟等.XXX的信号高精度参数估计技术.XXXX项目中期研究报告,2003
    [145]唐斌,吴伟等.XXX的信号高精度参数估计技术.XXXX项目2004年年终总结报告,2004
    [146]唐斌,吴伟等.XXX的信号高精度参数估计技术.XX XX项目终期总结研究报告,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700