金基催化剂催化若干重要化学反应过程的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金催化近年来己成为研究的热点。上世纪八十年代末Haruta等发现负载在过渡金属氧化物上的金纳米粒子在CO氧化反应中具有极高的催化活性并表现出独特的湿度增强效应,改变了人们长期以来一直认为金没有催化活性的传统观念,从而在世界范围内迅速掀起了纳米金及其合金团簇的研究热潮。金团簇及其合金结构和性能的研究是理解金及其合金纳米材料物理化学性能的基础,开展相关的实验和理论研究具有重要的科学意义和应用价值。然而,当前实验手段还没有做到真正从原子尺度分析金基催化剂的性质,限制了人们进一步开发其在不同领域的应用。而理论研究可以克服实验研究在这方面的弱点,当前已经成为团簇及表面科学研究的一个重要手段。
     本论文运用密度泛函方法研究了CO,NO等气体分子在金团簇,金表面,合金表面的吸附和反应。通过量子化学计算系统地研究了它们的结构和催化性能,获得了有关的微观结构信息,探讨了其结构与催化性能的内在联系,揭示了其催化活性的本质,找出了控制其催化活性的关键因素,为相关的实验提供了一定的理论指导,为开发与设计基于纳米金的新型催化剂提供了新的思路。
     主要研究内容及创新性研究结果归纳如下:
     1.概括论述了金基催化剂的实验和理论研究现状,总结了目前已知的影响金催化剂的活性因素,金催化剂的活性中心及催化机制。从理论与实验两个方面,介绍了金催化剂团簇与表面研究的基本方法。简述了密度泛函的基本原理,并介绍了本文的研究目的、特色与创新之处。
     2.以金的二聚体(Au2,Au2-和Au2+)为例用密度泛函理论研究了金催化的水煤气转化反应。研究了金的二聚体与反应物CO和H2O的结合能力,计算结果显示,催化剂与CO和H2O的结合能与金的氧化态有关,不同二聚体与CO和H2O的结合能数值的顺序为:Au2+>Au2>Au2-。计算结果表明,反应遵循所谓的甲酸盐机理,即在金的催化作用下H2O分解产生的OH与CO反应产生AuH-COOH中间体,并继而分解产生H2和CO2;其中水的分解是反应的速控步骤:外来的正负电荷可明显降低水解离的势垒,有效地提高金的催化性能。我们也在相同基组下计算了氧化还原机理,结果显示,计算所得的中间体和过渡态并不合理。因此,金的二聚体催化的WGS反应并不遵循氧化还原机理。总之,通过DFT计算提供了详细的金的二聚体(Au2,Au2-和Au2+)催化WGS反应的机制,解释了实验现象。
     3.以Au4+和Au4为例用密度泛函理论研究了金催化的NO/H2还原反应,弄清了其微观反应机理,分析了金上过剩的正电荷对其催化性能的影响。结果表明,H2的分解是反应的速控步骤;与文献报道一致,外来的正电荷可明显降低H2的分解的势垒,有效地提高金的催化性能。这些结果对理解NO/H2反应机理有一定科学意义,对相关的实验研究有一定指导作用。
     4.用密度泛函理论研究了NO分子在Au(111)面还原生成N2O的过程。为了更好地理解NO分子在Au(111)面的还原机理,论文首先讨论了NO分子在Au(111)面所有可能的的吸附方式:NO以N端与金属原子作用,NO以O端与金属原子作用,NO分子同时以N端和O端与金属原子作用。计算结果显示,在所有作用方式中,NO以N端与金属原子作用比其它两种作用方式稳定,而且NO在金属表面顶位弯曲型结构比直线型结构稳定。此外,NO与金表面的作用比较弱。在已确定NO分子最稳定的吸附构型的基础上,继而研究了NO分子直接分解还原的可能性。研究结果显示,NO分解为O原子和N原子的势垒高达3.9 eV,而且末态的能量比初态高3.03 eV和2.91 eV。如此高的势垒和反应过程中的强吸热表明,从化学动力学和热力学两方面而言,NO分子在Au(111)表面的分解都是不利的。因此,论文排除了NO分子在Au(111)表面分解的可能性,进而排除了NO分子通过分解在Au(111)表面还原生成N2O的可行性。同时,论文研究表明,NO还原易通过形成二聚体而发生,即两个NO分子首先结合生成(NO)2二聚体,继而二聚体分解产生N2O分子。这一计算结果也证实了实验中在金表面可以观察到NO二聚体的现象。论文详细地提供了三条反应通道,包括梯形OadNNOad通道,倒置梯形ONadNadO通道,锯齿形ONadNOad通道。计算结果发现,梯形OadNNOad通道是最佳反应通道,速控步的能垒仅为0.34 eV。总之,通过DFT计算提供了详细的NO分子在Au(111)面还原生成N2O的机理,充分解释了实验现象。
     5.使用密度泛函理论(DFT)研究了NO分子在中性及带正、负电荷的Au(111),Au(100),Au(310)和Au/Au(111)表面的吸附行为。研究结果表明,NO倾斜地吸附在金表面。中性及带正、负电荷的Au(111),Au(100),Au(310)和Au/Au(111)表面不同吸附位对NO的反应活性不同,NO易吸附于各个金表面的顶位。计算结果显示,NO分子在Au(111)面几乎不吸附,而在Au/Au(111)的吸附能高达0.89 eV。对表面金原子d态电子偏态密度分析表明,金表面对NO分子的吸附活性随着金原子配位数的减少而增强。当金表面增加或减少一个电子时,金表面对NO的吸附能有明显变化。正电荷的金表面对NO吸附的活性比中性的表面活性高,而带负电荷的表面对NO分子吸附的活性比中性的表面活性低。为了揭示电荷对金表面吸附活性的影响,我们计算了不同电荷态金表面的d带中心能量数值。研究表明,随着表面正电荷的聚集,金表面的d带中心能量逐渐增加。此外,本文进一步研究了NO分子在不同电荷态的金表面吸附时N—O键长的变化。研究发现,由于不同表面电子转移方向不同,使得在不同表面上分子构型将发生不同变化。在正电荷的金表面N—O键缩短,而在中性和带负电荷的金表面N—O键拉长。虽然实际催化剂颗粒绝非少数单一的单晶模型表面可以描述,但本文总结出的结论,即金表面的活性来源于表面低配位数的金原子和正电荷的聚集,是非常重要的,为研究过渡金属吸附NO分子的真实反应过程及催化剂的活性提供了有价值的信息,对理解NO在金表面的行为有一定科学意义,对相关的实验研究有一定指导作用。
     6.通过研究人们发现,在金上添加修饰成分或者使金合金化都能够有效的改进其催化活性。将1-3个Pd原子掺杂在Au(111)表面上,建立了不同Pd-Au(111)合金模型,用密度泛函理论研究了不同含量的Pd与金表面之间相互作用强度。研究结果显示,Pd易掺杂在Au(111)表面。同时,进一步研究了CO分子在不同Pd-Au(111)表面的吸附。研究发现,由于金原子影响Pd原子的d态电子,Pd原子为合金的活性位点,而且随着Pd原子数目的增多,CO分子的吸附能增加。为了揭示金原子的配合基作用和协同作用,比较了Au(111),Pd(111),和各个合金表面的总的电子轨道的投影态密度和Pd原子及靠近Pd原子的Au原子的d态电子轨道的投影态密度。研究表明,由于Au原子的影响,Pd原子的d带变窄,而且随着Pd数目的增多,Pd原子的d态越靠近费米能级,表明其催化活性增加。
     本文的研究取得了许多具有理论价值的创新性成果,对实验研究及金催化剂的进一步研究有重要的理论指导意义。
Catalysis by gold has attracted significant attention in the last decades, since Haruta's discovery that these catalysts have ultrahigh catalytic activity in the low temperature CO oxidation and that the activity is even higher in humid atmosphere. This discovery changes the traditional concept that gold does not have the catalytic activity, so a research fever is raised all over the world on the nano-gold and its alloy clusters. The studies on their structures and properties are the foundation on which the studies on the chemical and physical properties of gold and its alloy clusters are based and have very significant scientific meanings and application values for conducting related experimental and theoretical studies.
     In this dissertation, we studied the interaction and reaction of molecules with Au-based catalysts with density functional theory (DFT) calculations. Our purposes are to (a) shed light on the mechanistic details of the Au-based catalysts and hence obtain a better interplay between theory and experiment, (b) understand the intrinsic catalytic activity of gold-based catalysts, (c) provide a general profile of the catalytic reaction by gold-based catalysts. Our results provide detailed information on the transition states of gold catalyzed reactions and on the behavior of small molecules adsorption. This should be helpful for the designing the new efficient gold-based catalysts.
     The valuable results in this dissertation can be summarized as follows:
     1. The research history and current state on gold-based catalysts have been briefly reviewd. A number of important chemical reactions at low temperature catalyzed by gold-based catalysts are reported. Different explanations have been proposed to account for the apparently high catalytic activity of gold-based catalysts. Moreover, the theory of quantum chemistry and the calculation methods of this paper are summarized. The contents of these reports were the basis and background of our studies and offer us with useful and reliable quantum methods.
     2. While nanoscale gold particles show exceptional catalytic activity towards the water-gas-shift (WGS) reaction, not much is known about the detailed reaction mechanism and the influence of charge state of Au nanoparticles on the reactivity. We here report a systematic theoretical study by carrying out density functional theory calculations for the WGS reaction promoted by cationic, neutral, and anionic Au dimers, which represent three simplest prototypes of Au nanoparticles with different charge states. To better understand the catalytic activities of the Au dimers towards the WGS reaction, we first study their complexes with CO and H2O molecules. We find that the calculated values of the binding energies of H2O and CO molecules on Au dimers are closely related to the oxidation state of gold. From the positively charged to neutral and to the negatively charged dimers, the value substantially decreases. The reaction mechanism is explored along two possible entrances:one involves the complexes of the dimers with CO and the other is related to the complexes of the dimers with H2O. In all cases, it is found that the catalytic cycle proceeds via the formate mechanism and involves two sequential elementary steps:the rupture of the O-H bond in H2O and the formation of H2 molecule. Great efforts have also been made to locate the intermediates and first-order saddle points proposed in the redox mechanism, however, our requests were always unsuccessful. It is found that the atomic O intermediates and transition states supposed in the redox mechanism are led to either the reactant-like intermediates or product-like intermediates in our calculations. This fact proposes that the WGS reaction mediated by small Au clusters may not adopt this mechanism. The calculated results show that the reaction mediated by Au2+ is energetically most favorable compared to those promoted by Au2 and Au2-, indicating that the charge state of Au dimers plays an essential role for the catalysted WGS. The notable catalytic activity of Au2+ may originate from the action of the cation, which stabilizes the intermediates and transition states by trsnsferring its charge to the ligand molecules. The present theoretical study rationalizes the early experimental findings well and enriches our understanding of the catalytic WGS by Au-based catalysts.
     3. Density functional theory (DFT) is used to study the NO reduction by H2 on Au4+ and Au4 clusters. The reaction mechanism is explored along two possible entrances:one involves the complexes of the clusters with H2 and the other is related to the complexes of the clusters with NO. In all cases, it is found that the catalytic cycle involves two sequential elementary steps:the rupture of the H-H bond in H2 and the formation of H2O and N2O molecule. The calculated results show that the reaction mediated by Au4+ is energetically most favorable compared to that promoted by Au4, indicating that the charge state of Au clusters plays an essential role for the catalysted NO reduction. The present theoretical study rationalizes the early experimental findings well and enriches our understanding of the catalytic NO reduction by Au-based catalysts.
     4. Density functional theory calculations have been performed to elucidate the mechanism of N2O formation over Au(111) surface during NO reduction. Initial adsorption manner of a molecule on a metal surface is expected to affect the following surface reaction. To better understand the reactivity of NO on Au(111) surface, we examine the NO adsorption behavior on Au(111) surface by considering three possible adsorption manners:the N atom close to the surface, the O atom close to the surface, and both the N and O atoms close the surface. It is found that NO adsorption occurs with the N atom close to the surface. It is noted that in all situations the NO molecular axis is tilted with respect to the surface normal and the most stable adsorptions occur at the top site. In addition, NO binds weakly to the Au(111) surface. During the catalytic NO reduction on metal surfaces, the formation of N2O via the direct dissociation mechanism is considered as the most straightforward pathway. At such, we first investigate the possibility of the direct dissociation mechanism. Our calculations show that the dissociation of NO into an N atom and an O atom involves a barrier as high as 3.9 eV, and the final states are more unstable than the initial states by 3.03 and 2.91 eV, respectively. These extremely high barriers and the strong endothermicity of the reaction indicate that the NO dissociation over the Au(111) surface is both kinetically and thermodynamically very unfavorable. We thus rule out the possibility of direct NO dissociation on Au(111) and hence the direct dissociation mechanism for N2O formation during NO reduction on Au(111) surface. Alternatively, we find that the reaction may occur via a dimer mechanism, i.e. two NO molecules initially associate into a dimeric (NO)2, which then dissociate into a N2O molecule and a N atom. We find that the formation of dimer (NO)2 over the Au(111) surface is a thermodynamically favorable process. We have scanned the potential energy surface forming N2O along different pathways, which involve trapezoid OadNNOad dimer, inverted trapezoid ONadNadO dimer, zigzag ONadNOad dimer, or rhombus ONadOadN dimer. The trapezoid dimer, OadNNOad is found to be a necessary intermediate for the formation of N2O, and the calculated barrier for the rate-determining step along the energetically most favorable pathway is only 0.34 eV. The present results rationalize the early experimental findings well, and enriches our understanding of the reduction of NO on Au surface.
     5. The adsorption of gas molecules on transition metal surfaces is the first elementary step in a heterogeneous catalysis and it is fundamental to the understanding of catalytic mechanism. Nowadays it has being one of key subjects in the field of surface science and numerous studies have been carried out in experiments as well as theories. The first principles density function theory (DFT) calculation plays more and more important role in understanding of adsorption mechanics and explaining of experiment phenomenon in atomic scale. Here, DFT calculations are performed to study NO adsorption on neutral, anionic, and cationic Au(111), Au(100), Au(310), and Au/Au(111). We carefully study the NO adsorption at different adsorption sites on each surface, and find that NO prefers to bond at the top site with the NO molecular axis tilted to the surface normal. The adsorption energy of NO on the surfaces increases as the coordination number of Au atoms decreases:NO binds weakly to the Au(111) surface, while the adsorption energy of NO on Au/Au(111) is as high as 0.89 eV. In addition, the charge state of Au surfaces has a very strong effect on the Au activity:the cationic surfaces generally present stronger reactivity towards the NO molecule than the neutral and anionic surfaces. We have also provided detailed evidence for the origin of these trends:the low coordinated gold atoms and the surface with the concentration of positive charges have d states closing to the Fermi level, resulting in the high activity toward NO adsorption. The N—O bond length are also taken into account. For the cationic surfaces, the NPA charge on the NO molecule in all situations is positive. This indicates that electrons transfer from NO to the cationic surfaces, which will reduce the occupation of theπ* orbital of NO. Thus, the N-O bonding will be enhanced and the N-O bond length will shorten. In contrast, for the anionic and neutral surfaces, electron transfer occurs from the surfaces to molecule and the transferred electrons enter the 2π* orbital of NO. As a result, the N-O bonding becomes weaker, as indicated by the calculated longer N-O bond lengths. The present results enrich our understanding of the adsorption of NO on Au surfaces.
     6. Here configurations of different Pd-containing Au(111) bimetallic surfaces with Pd substituents varying from one to three atoms have been studied using density functional theory within the generalized gradient approximation. The stability of the so-formed Pd atoms in the surface of a Au(111)-(2×2) unit cell and their influence on the adsorption of CO molecule have been investigated. The influences of surface-ligand effect and lattice strain effect on activity were demonstrated. We have furthermore analyzed local trends by considering different adsorption sites on the different surfaces. The catalytic efficiency of Pd-Au bimetallic systems depends largely on the surface composition of Pd and Au. The addition of Pd significantly improves the activity of a Pd-Au bimetallic slab on CO adsorption. The surface Pd atoms are active and serve as independent attractive centers towards CO. The results can be rationalized within the d-band model. The Pd-d band becomes narrow and well below the Fermi level, very different from those in a bulk Pd. The work provides an effective method which can be used to link experiment and theory result.
     In this dissertation, the study rationalizes the early experimental findings well and enriches our understanding of the catalytic activity of gold-based catalysts. The valuable results have provided reliable verification and theoretical guide for the development of gold-based catalysts.
引文
[1]王广厚,团簇物理学(M).上海:上海科学技术出版社,2003:1.
    [2]Castleman Jr A W, Bowen Jr K H. Clusters:Structure, energeties, anddynamieso intermediate states of matter. J. Phys. Chem.,1996,100(31):12911-12944
    [3]Oehs S A, Cote R E, Kuseh P. On the radiofrequeney speetrum of the components of a sodium chloride beam the dimidiation of the alkali halides. J. Chem. Phys., 1953,27:459
    [4]Kroto H, Health J R, OBrien S S, et al.C60:Buekminsterfullerene. Nature,1985, 318:162-163
    [5]Schwankde, J. Catalytic gold. Gold Bull.,1983,16(4):103-110.
    [6]Shastri A G, Datye A K Schwank J. Gold-titania interactions:Temperature dependence of surface area and crystallinity of TiO2 and gold dispersion. J. Catal,1984,87(1):265-275.
    [7]Benton A F, Elgin J C. The catalytic synthesis of water vapor in contact with metallic gold. J. Am. Chem. Soc,1927, (49):2426-2438
    [8]Cant N W, Fredrickson P W. Silver and gold catalyzed reactions of carbon monoxide with nitric oxide and with oxygen. J. Catal.,1975, (37):531-539
    [9]Lee J Y, Schwank J. Infrared speetroseopic study of NO reduction by H2 on supported gold. J. Catal.,1979,57(1):177-182
    [10]Chambers R P, Boudart M. Selectivityof gold for hydrogenation and dehydrogenation of cyclohexene. J. Catal.,1966,3(5):517.
    [11]Bond G C, Sermon P A. Gold Bull.,1973,6:102-115.
    [12]Hutchings G J, Haruta M. A golden age of catalysis:A perspective. Appl. Catal. A:Gen.,2005,291,2-5
    [13]Hutchings G J. Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts. J. Catal,1985,96: 292-295.
    [14]Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature for below O℃. Chem. Lett,1987:405-408
    [15]Daniel M C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev.2004,104,293-346.
    [16]Min B K, Friend C M. Heterogeneous Gold-Based Catalysis for Green Chemistry:Low-Temperature CO Oxidation and Propene Oxidation. Chem. Rev. 2007,107,2709-2724.
    [17]Sault A G, Madix R J, Campbell C T. Adsorption of oxygen and hydrogen on Auz(110)-(1×2). Surf. Sci,1986,169(2-3):347-356
    [18]Chen B S, Bai C S, Cook R, Wright J, Wang C. Gold/cobalt oxide catalysts for oxidative destruction of dichloromethane. Catalysis Today,1996,30(1-3): 15-20.
    [19]Scire S, Minico S, Crisafulli C, Satriano C, Pigone A. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Applied Catalysis B: Environmental,2003,40(1):43-49
    [20]Quijada C, Huerta F J, Morallon E, Vazquez J L, Berlouis L E A. Electrochemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media:a voltammetric and in situ vibrational study Part 1. Reduction of SO2:deposition of monomeric and polymeric sulphur. Electroehimica Aeta,2000,45(11): 1847-1862
    [21]Streeter I, Waill A J, Davis J, Compton R. G. Cathodic reduction of bisulfite and sulfur dioxide in aqueous solutions on copper electrodes:An electrochemical ESR study. J. Phy. Chem. B,2005,109(39):18500-18506.
    [22]Okumura M, Akita T, Haruta M, Wang X, Kajikawa O, Okada O. Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Applied Catalysis B: Environmental,2003,41(1-2):43-52
    [23]Yingying Wang, Dongju Zhang, Zhangyu Yu, Chengbu Liu. The Mechanism of N2O Formation during NO Reduction on Au(111) Surface. J. Phys. Chem. C, 2010,114,2711-2716
    [24]Cameron D, Holliday R, Thompson D. Gold's future role in fuel cell systems. Journal of Power Sources,2003,775(1-2):298-303.
    [25]Yingying Wang, Dongju Zhang, Rongxiu Zhu, Changqiao Zhang, Chengbu Liu, A Density Functional Theory Study of the Water-Gas Shift Reaction Promoted by Neutral, Anionic, and Cationic Gold Dimers, J. Phys. Chem. C 2009,113, 6215-6220
    [26]Nkosi B, Coville N J, Hutchings G J. Reactivation of a Supported Gold Catalyst for Acetylene Hydroehlorination. Journal of the Chemical Society-Chemical Communications,1988, (1):71-72.
    [27]Edwards J K, Solsona B, Landon P, Carley A F, Herzing A, Watanabe M, Kiely C J, Hutchings G J. Direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd/Fe2O3 catalysts. Journal of Materials Chemistry,2005,15 (43): 4595-4600.
    [28]Lopez-Sanchez J A, Lennon D. The use of titania-and iron oxide-supported gold catalysts for the hydrogenation of propyne. Appl Catal A:General,2005,291 (1-2):230-237.
    [29]Chen MS, Luo K, Wei T, Yan Z, Kumar D, Yi C W, Goodman D W. The nature of the active site for vinyl acetate synthesis over Pd-Au. Catal Today, 2006,117(1-3):37-45.
    [30]Lin S D, Gluhoi A C, Nieuwenhuys B E. Ammonia oxidation over Au/MOx/gamma-Al2O3— activity, selectivity and FTIR measurements. Catal Today,2004,90 (1-2):3-14.
    [31]Sinha A K, Seelan S, Tsubota S, Haruta M. Catalysis by gold nanoparticles: epoxidation of propene. Topics in Catalysis,2004,29(3-4):95-102.
    [32]Biella S, Prati L, Rossi M. Selective oxidation of D-glucose on gold catalyst. Journal of catalysis,2002,206(2):242-247.
    [33]Prati L, Rossi M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. Journal of Catalysis,1998,176(2):552-560.
    [34]Corma A, Domine M E. Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid
    phase. Chemical Communications,2005, (32):4042-4044.
    [35]Mirescu A, Prusse U. A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Appl Catal B: Environmental,2007,70 (1-4):644-652.
    [36]LoPez N, Janssens T V W, Clausen B S, Xu Y, Mavrikakis M, Bligaard T, Norskov J K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal.2004,223,232-235.
    [37]Molina L M, Hammer B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett.2003,90,206102-206105.
    [38]Bartram M E, Koel BE. The molecular adsorption of NO2 and the formation of N2O3 on Au(111). Surf Sci,1989,213:137-156
    [39]Rienks E D L, Berkel G P, Bakker J W, Nieuwenhuys B E. Lifting of the Au(100) surface reconstruction by NO chemisorption. Surf Sci,2004,571: 187-193
    [40]Vinod C P, Niemantsverdriet J W, Nieuwenhuys B E. Interaction of small molecules with Au(3 1 0):Decomposition of NO. Appl Catal A:General,2005, 291:93-97
    [41]Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science 2003,301,935.
    [42]Valden M, Lai X, Goodman D W, Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998,281, 1647-1650.
    [43]Holmgren L, Andersson M, Rosen A. CO reaetivity of small transition metal clusters. Surf. Sci.,1995,257:331-333.
    [44]Mavrikakis M, Stoltze P, Norskov J K. Making gold less noble. Catal.Lett., 2000,64(2-4):101-106
    [45]Haruta M. Size-and support-dependency in the catalysis of gold. Catalysis Today. 1997,1:153-166
    [46]Valden M, Lai X, Goodman D W. On set of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science.1998,5383: 1647-1650.
    [47]LoPez N, Janssens T V W, Clausen B S, Xu Y, Mavrikakis M, Bligaard T, Norskov J K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal.2004,1:232-235.
    [48]Karpenko A, Leppelt R, Plzak V, et al. The role of cationic Au3+ and nonionic Au0 species in the low-temperature water-gas shift reaction on Au/CeO2 catalysts. J Catal,2007,252:231-242.
    [49]Saliba N, Parker D H, Koel B E. Adsorption of oxygen on Au(111) by exposure to ozone.Surf. Sci.,1998,410:270-282.
    [50]Valden M, Lai X, Goodman D W. On set of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Sci.,1998,281: 1647-1650.
    [1]吴兴惠,项金钟,现代材料计算与设计教程[M].北京:电子工业出版社,2002.
    [2]冯端,金国钧,凝聚态物理学(上卷)[M].北京:高等教育出版社,2003.
    [3]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev.1964,136, B864-B871.
    [4]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.1965,140, A1133-A1138.
    [5]Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev.1964,136:B864.
    [6]Kohn W, Sham L J. Self-consistent Eguations Including Exchange and Correlation Effects. Phys. Rev. A 1965,140,1133.
    [7]]Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functional. Phys. Rev. B 1999,59(11):7413-7421.
    [8]Perdew J P, Chevary J A, Vosko S H. Atoms, Molecules, Solids, and surface-applications of the generalized gradient approximation for exchanged and correlation. Phys. Rev. B 1992,46(11):6671-6687
    [9]Kittel C. Quantum theory of solids. Moscow:Nauka Press 1967,221-230.
    [10]Becke A D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys.1993,98 (2),1372-1377.
    [11]Frisch M J. et al. Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.
    [12]王繁,黎乐民.高精度相对论密度泛函计算方法.物理化学学报2004,20,966.
    [13]其木苏荣. 重金属混合/掺杂团簇电子相关和相对论效应理论研究[博士论文].哈尔滨工业大学,2005.
    [14]Bagus P S, Nelin C J, Bauschlicher C W. Bonding of CO to metal surfaces:A new interpretation. Phys Rev B,1983,28:5423-5438
    [15]Favot F, Corso A D, Baldereschi A. CO adsorbed on Cu(001):A comparison between local density approximation and Perdew, Burke, and Ernezerhof generalized gradient approximation. J Chem Phys,2001,114:483-488
    [16]Mehmood F, Kara A, Rahman T S, Henry C R. Comparative study of CO adsorption on flat, stepped, and kinked Au surfaces using density functional theory. Phys Rev B,2009,79:075422(1-6)
    [17]Eyring H. The Activated Complex and the Absolute Rate of Chemical Reactions. Chem. Rev.,1935,17(1),65-77
    [18]Matsuzawa N, Seto J, Dixon D A. Density Functional Theory Predictions of Second-Order Hyperpolarizabilities of Metallocenes, J. Phys. Chem. A,1997,101, 9391-9398.
    (1)Spivey, J. J. Catalysis in the development of clean energy technologies. Catal. Today 2005,100,171-180.
    (2)Zalc, J. M.; Sokolovskii, V.; Loeffler, D. G. Are Noble Metal-Based Water-Gas Shift Catalysts Practical for Automotive Fuel Processing? J. Catal.2002,206, 169-171.
    (3)Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002,418,964-967.
    (4)Liu, P.; Rodriguez, J. A. Water-gas-shift reaction on metal nanoparticles and surfaces. J. Chem. Phys.2007,126,164705(1-8).
    (5)Rodriguez, J. A.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Water Gas Shift Reaction on Cu and Au Nanoparticles Supported on CeO2(111) and ZnO(0001):Intrinsic Activity and Importance of Support Interactions. Angew. Chem. Int. Ed.2007,46, 1329-1332.
    (6)Bohlbro, H.; J(?)rgensen, M. H. Catalysts for the conversion of carbon monoxide Chem. Eng. World 1970,5,46.
    (7)Rhodes, C.; Hutchings, G. J.; Ward, A. M. Water-gas shift reaction:finding the mechanistic boundary. Catal. Today 1995,23,43-58.
    (8)Ghenciu, A. F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr. Opin. Solid State Mater. Sci.2002,6,389-399.
    (9)Idakiev, V.; Tabakova, T.; Yuan, Z. Y.; Su. B. L. Gold catalysts supported on mesoporous titania for low-temperature water-gas shift reaction. Applied Catalysis A:General 2004,270,135-414.
    (10)Deng, W.; Jesus, J.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Low-content gold-ceria catalysts for the water-gas shift and preferential CO oxidation reactions. Appl. Catal. A:General 2005,291,126-135.
    (11)Wang, X.; Rodriguez, J. A.; Hanson, J. C.; Perez, M.; Evans, J. In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction:Presence of Au and O vacancies in the active phase. J. Chem. Phys.2005,123,221101 (1-5).
    (12)Sakurai, H.; Akita, T.; Tsubota, S.; Kiuchi, M.; Haruta, M. Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction Appl. Catal. A:General 2005,291,179-187.
    (13)Jacobs, G.; Williams, L.; Graham, U., et al. Low-Temperature Water-Gas Shift: In-Situ DRIFTS-Reaction Study of a Pt/CeO2 Catalyst for Fuel Cell Reformer Applications. J. Phys. Chem. B.2003,107,10398-10404.
    (14)Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science 2003,301, 935-938.
    (15)Tibiletti, D.; Amieiro-Fonseca, A.; Burch, R.; Chen, Y.; Fisher, J. M.; Goguet, A.; Hardacre, C.; Hu, P.; Thompsett, D. DFT and In Situ EXAFS Investigation of Gold/Ceria-Zirconia Low-Temperature Water Gas Shift Catalysts:Identification of the Nature of the Active Form of Gold. J. Phys. Chem. B.2005,109, 22553-22559.
    (16)Idakiev, V.; Tabakova, T.; Naydenov, A.; Yuan, Z. Y.; Su. B. L. Gold catalysts supported on mesoporous zirconia for low-temperature water-gas shift reaction. Applied Catalysis B:Environmental 2006,63,178-186.
    (17)Tabakova, T.; Boccuzzi, F.; Manzoli, M.; Sobczak, J. W.; Idakiev, V.; Andreeva, D. A comparative study of nanosized IB/ceria catalysts for low-temperature water-gas shift reaction. Appl. Catal., A.2006,298,127-143.
    (18)Shido, T.; Iwasawa, Y Regulation of reaction intermediate by reactant in the water-gas shift reaction on cerium dioxide, in relation to reactant-promoted mechanism. J. Catal.1992,136,493-503.
    (19)Shido, T.; Iwasawa, Y Reactant-promoted reaction mechanism for water-gas shift reaction of rhodium-doped ceria. J. Catal.1993,141,71-81.
    (20)Jacobs, G.; Williams, L.; Graham, U.; Spark. D.; Davis, B. H. Low-Temperature Water-Gas Shift:In-Situ DRIFTS-Reaction Study of a Pt/CeO2 Catalyst for Fuel Cell Reformer Applications. J. Phys. Chem. B.2003,107,10398.
    (21)Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction. Science 2007,318,1757-1760.
    (22)Liu, Z. P.; Jenkins, S. J.; King, D. A. Origin and Activity of Oxidized Gold in Water-Gas-Shift Catalysis. Phys. Rev. Lett.2005,94,196102 (1-4).
    (23)Bunluesin, T.; Gorte, R. J.; Graham, G. W. Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh:implications for oxygen-storage properties. Appl. Catal B 1998,15,107-114.
    (24)Zalc, J. M.; Sokolovskii, V.; Loffler, D. G. Are Noble Metal-Based Water-Gas Shift Catalysts Practical for Automotive Fuel Processing? J. Catal.2002,206, 169-171.
    (25)Goguet, A.; Burch, R.; Chen, Y.; Hardacre, C. Hu, P.; Joyner, R. W.;Meunier,F. C. Mun, B. S.; Thompsett, D.; Tibiletti, D. Deactivation Mechanism of a Au/CeZrO4 Catalyst During a Low-Temperature Water Gas Shift Reaction. J. Phys. Chem. C2007,111,16927-16933.
    (26)Venugopal, A.; Aluha, J.; Scurrell, M. S. The water-gas shift reaction over Au-based, bimetallic catalysts The Au-M (M=Ag, Bi, Co, Cu, Mn, Ni, Pb, Ru, Sn, T1) on Iron(Ⅲ) oxide system. Catal. Lett.2003,90,1.
    (27)Fu, Q.; Deng, W.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Appl. Catal. B 2005,56,57-68.
    (28)Deng, W.; Carpenter, C. Yi, N.; Flytzani-Stephanopoulos, M. Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions. Top. Catal.2007,44,199-208.
    (29)Karpenko A, Leppelt R, Plzak V, et al. The role of cationic Au3+ and nonionic Au0 species in the low-temperature water-gas shift reaction on Av/CeO2 catalysts. J Catal,2007,252:231-242.
    (30)Burch, R. Gold catalysts for pure hydrogen production in the water-gas shift reaction:activity, structure and reaction mechanism. Phys. Chem. Chem. Phys. 2006,8,5483-5500.
    (31)Fialko,E.F.;Kikhtenko,A.V.;Goncharov,V.B.;Zamaraev,K.I.similarities between reactions of methanol with MoxOy+ in the gas phase and over real catalysts.J.Phys.Chem.B 1997,101,5772-5773.
    (32)Wells,D.H.;Delgass,W.N.;Thomson,K.T.Density functional theory investigation of gold cluster geometry and gas-phase reactivity with O2.J.Chem. Phys.2002,117,10597-10603.
    (33)Hakkinen,H.;Landman,U.Gas-phase catalytic oxidation of CO by Au(2-).J. Am.Chem.Soc.2001,123,9704-9705.
    (34)Socaciu,L. D.;Hagen,J.;Bernhardt,T.M.;Woste,L.;Heiz,U.;Hakkinen,H.; Landman,U.Catalytic CO Oxidation by Free Au2-:Experiment and Theory.J. Am.Chem.Soc.2003,125,10437-10445.
    (35)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.; Cheeseman,J.R.;Montgomery,J.A.,Jr.;Vreven,T.;Kudin,K.N.;Burant,J.C.; Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.; Scalmani,G.;Rega,N.;Petersson,G.A.;Nakatsuj i,H.;Hada,M.;Ehara,M.; Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao, O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.; Bakken,V.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.; Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma, K.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.; Daniels,A.D.;Strain,M.C.;Farkas,O.;Malick,D.K.;Rabuck,A.D.; Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.;Clifford, S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi, I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.; Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong, M.W.;Gonzalez,C.;Pople,J.A.Gaussian03,revision A.1;Gaussian,Inc.: Pittsburgh,PA,2004.
    (36)Becke,A.D.Density-functional thermochemistry Ⅲ.The role of exact exchange. J.Chem.Phys.1993,98,5648-5652.
    (37)Lee, C.;Yang, W.;Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys.Rev. B. 1988,37,785-789.
    (38)Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations Potentials for the transition metal atoms scandium to mercury. J. Chem. Phys.1985,82,270-283.
    (39)Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations Potentials for potassium to gold including the outermost core orbitals. J. Chem. Phys.1985,82,299-310.
    (40)Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can. J. Chem.1992,70,612-630.
    (41)Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem.1970,74, 4161-4163.
    (42)Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996,77,3865-3868.
    (43)Taylor, K. J.; Pettiette-Hall, C. L.; Cheshnovsky, O.; Smalley. R. E. Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys.1990,96,3319.
    (44)Cheeseman, M. A.; Eyler, J. R. Ionization potentials and reactivity of coinage metal clusters J. Phys. Chem.1992,96,1082-1087.
    (45)Ho, J.; Ervin, K. M.; Lineberger, W. C. Photoelectron spectroscopy of metal cluster anions:copper, silver, and gold (Cun-, Agn-, and Aun-). J. Chem. Phys. 1990,93,6987-7002.
    (46)Herzberg, G in Molecular Spectra and Molecular Structure, Ⅰ. Spectra of Diatomic Molecules,2nd Ed. (Van Nostrand Company ILC, Princeton, NJ,1967)
    (47)Wu, X.; Senapati, L.; Nayak, S. K. A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters. J. Chem. Phys.2002,117,4010-4015.
    (48)Schwerdtfeger, P.; Lein, M.; Krawczyk, R. P.; Jacob, C. R. The adsorption of CO on charged and neutral Au and AU2:A comparison between wave-fuction based and density functional theory. J. Chem. Phys.2008,128,124302 (1-10).
    (49)Joshi, A. M.; Delgass, W. N.; Thomson, K. T. Analysis of O2 Adsorption on Binary-Alloy Clusters of Gold:Energetics and Correlations. J. Phys. Chem. B. 2006,110,23373-23387.
    (50)Hwu, H.; Polizzotti, B. D.; Chen, J. G. Potential Application of Tungsten Carbides as Electrocatalysts 2. Coadsorption of CO and H2O on Carbide-Modified W(111). J. Phys. Chem.B 2001,105,10045-10053.
    (51)Didziulis, S. V.; Frantz, P.; Perry, S. S.; El-bjeirami, O.; Imaduddin, S.; Merrill, P. B. Substrate-Dependent Reactivity of Water on Metal Carbide Surfaces. J. Phys. Chem. B 1999,103,11129-11140.
    [1]Haruta M, Yamada N, Kobayashi T, Iiji ma S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal.,1989,115:301-309.
    [2]Hayashi T, Tanaka K, Haruta M. Selective Vapor-Phase Epoxidation of Propylene over Au/TiCO2Catalysts in the Presence of Oxygen and Hydrogen J. Catal.,1998, 178:566-575.
    [3]Sinha A K, Seelan S, Tsubota S, Haruta M. Catalysis by Gold Nanoparticles: Epoxidation of Propene. Top. Catal,2004,29:95-102
    [4]Min B K, Friend C M. Heterogeneous Gold-Based Catalysis for Green Chemistry: Low-Temperature CO Oxidation and Propene Oxidation. Chem. Rev.,2007,107: 2709-2724
    [5]Hashmi A S K, Hutchings G J. Gold Catalysis. Angew. Chem. Int. Ed.,2006,45: 7896-7936
    [6]Galvagno S., Parravano G. Chemical reactivity of supported gold:Ⅳ. Reduction of NO by H2. J. Catal.1987,55:178-190.
    [7]Lee J Y, Schwank J. Hydrodenitrogenation chemistry,1:Cleavage of alkylcarbon-nitrogen bonds, methane and ammonia formation in the HDN reaction of 1,2,3,4-tetrahydroquinoline with a nickel oxide catalyst supported on silica/alumina. J. Catal.1986,102:207-273.
    [8]Salama T M., Ohnishi R, Shido T, Ichikawa M. Highly Selective Catalytic Reduction of NO by H2 over AuO and Au(Ⅰ) Impregnated in NaY Zeolite Catalysts. 1996,162:169-178.
    [9]Frisch M J. et al. Gaussian 03, Revision B.0.5; Gaussian, Inc., Pittsburgh PA, 2003.
    [10]Frisch M J. et al. Gaussian98,1998.
    [11]Hay P J; Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys.1985,82, 270-283.
    [12]Hay P J; Wadt W R. J. Chem. Phys. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals.1985,82,299.
    [13]Stevens W J; Krauss M; Basch H; Jasien P G. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can. J. Chem.1992,70,612.
    [14]Peng C; Schlegel H B. Combining synchronous transit and quasi-Newton methods to find transition states. Israel J. Chem.1993,33,449-454.
    [15]Laane J.; Ohlsen J R. Characterization of nitrogen oxides by vibrational spectroscopy. Prog. Inorg. Chem.1980,27,465-513.
    [16]Cotton, F. A.; Wilkinson, G.5th ed. Wiley New York,1988.
    [17]Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F., Ⅲ; Nandi, S.; Ellison, G. B. Atomic and Molecular Electron Affinities:Photoelectron Experiments and Theoretical Computations. Chem. Rev.2002,102,231-282.
    [18]Jackslath C; Rabin I; Schulze W; Bunsenges B. Electron impact ionization potentials of gold and silver clusters Men, n≤22. Phys. Chem.1992,96, 1200-1204.
    [1]Armor J N. Environmental catalysis:A review. Appl Catal B:Environmental, 1992,7,221-256
    [2]Iwamoto M, Yahiro H. Novel catalytic decomposition and reaction of NO. Catal Today,1994,22,5-18
    [3]Rhodin G, Rhodin T N, Brucker C, Benbow R, Hurych Z. Synchrotron radiation study of chemisorptive bonding of CO on transition metals—Polarization effect on Ir(100). Surf. Sci.1976,59,593-611
    [4]Bogdanchikova, N.; Menuier, F. C.; Avalos-Borja, M.; Breen, J. P.; Pestryakov, A. On the nature of the silver phases of Ag/Al2O3 catalysts for reactions involving nitric oxide. Appl. Catal. B 2002,36,287.
    [5]Gluhoi, A. C.; Lin, S. D.; Nieuwenhuys, B. E. The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement. Catal. Today 2004,90,175.
    [6]So, S. K.; Franchy, R.; Ho, W. The adsorption and reactions of NO on Ag(111) at 80 K. J. Chem. Phys.1989,91,5701.
    [7]So, S. K.; Franchy, R.; Ho, W. Photodesorption of NO from Ag(111) and Cu(111). J. Chem. Phys.1991,95,1385.
    [8]Hayden, B. E. An infra-red reflection absorption study of the adsorption of NO on Pt(111).Surf. Sci.1983,131,419.
    [9]Nelin, C. J.; Bagus, P. S.; Behm, R. J.; Brundle, C. R. Core level photoemission of the no dimer:Theory and Experimental realization for NO/Ag(111). Chem. Phys. Lett.1984,105,58.
    [10]Behm, R. J.; Brundle, C. R. Decomposition of NO on Ag(111) at low temperatures. J. Vac. Sci. Technol. A 1984,2,1040.
    [11]Ludviksson, A.; Huang, C.; Jansch, H. J.; Martin, R. M. Isotopic studies of the reaction of NO on silver surfaces. Surf. Sci.1993,284,328.
    [12]Gland, J. L.; Sexton, B. A. Nitric oxide adsorption on the Pt(111) surface. Surf. Sci.1980,94,355.
    [13]Okumura, K.; Motohiro, T.; Sakamoto, Y.; Shinjoh, H. Effect of combination of noble metals and metal oxide supports on catalytic reduction of NO by H2. Surf. Sci.2009.603,2544.
    [14]Miller, D. D.; Chuang. S. S. C. Pulse Transient Responses of NO Decomposition and Reduction with H2 on Ag-Pd/Al2O3. J. Phys. Chem. C 2009,113,14963.
    [15]Kumar, A.; Medhekar, V.; Harold, M. P.; Balakotaiah, V. NO decomposition and reduction on Pt/Al2O3 powder and monolith catalysts using the TAP reactor. Appl. Catal. B 2009,90,642.
    [16]Hu, Y. H.; Griffiths, K.; Norton, P. R. Surface science studies of selective catalytic reduction of NO:Progress in the last ten years. Surf. Sci.2009.603, 1740.
    [17]Salama, T. M.; Ohnishi, R.; Shido, T.; Ichikawa, M. Highly Selective Catalytic Reduction of NO by H2 over Au0 and Au(Ⅰ) Impregnated in NaY Zeolite Catalysts. J. Catal.1996,162,169.
    [18]Ueta, A.; Oshima, T.; Haruta, M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B 1997,12,81.
    [19]Dekkers, M. A. P.; Lippits, M. J.; Nieuwenhuys, B. E. Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions. Catal. Today 1999,54,381.
    [20]Debeila, M. A.; Coville, N. J.; Scurrell, M. S.; Hearne, J. R.; Witcomb, M. J. Effect of Pretreatment Variables on the Reaction of Nitric Oxide (NO) with Au-TiO2:DRIFTS Studies. J. Phys. Chem. B 2004,108,18254.
    [21]Ilieva, L.; Pantaleo, G.; Ivanov, I.; Nedyalkova, R.; Venezia, A. M.; Andreeva, D. NO reduction by CO over gold based on ceria, doped by rare earth metals. Catal. Today 2008,139,168.
    [22]Chau, T. D.; Bocarme, T. V.; Kruse, N. Formation of N2O and (NO)2 during NO adsorption on Au 3D crystals. Catal. Lett.2004,98,85.
    [23]Vinod, C. P.; Hansa, J. W. N.; Nieuwenhuys, B. E. Interaction of small molecules with Au(310):Decomposition of NO. Appl. Catal, A 2005,291,93.
    [24]Fajin, J. L. C.; Cordeiro, M. N. D. S.; Gomes, J. R. B. The Role of Preadsorbed Atomic Hydrogen in the NO Dissociation on a Zigzag Stepped Gold Surface:A DFT Study. J. Phys. Chem. C 2009,113,8864.
    [25]Hu, P.; King, D. A.; Lee, M. H.; Payne, M. C. Orbital mixing in CO chemisorption on transition metal surfaces. Chem. Phys. Lett.1995,246,73.
    [26]Hu, P.; King, D. A.; Crampin, S.; Lee, M. H.; Payne, M. C. Gradient corrections in density functional theory calculations for surfaces:Co on Pd{110}. Chem. Phys. Lett.1994,230,501.
    [27]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K.A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,46,6671.
    [28]Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.1996,77,3865.
    [29]Payne, M. C.; Teter, M. P.; Allen, D. C.; Arias, T. A.; Joannopolous, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys.1992,64,1045.
    [30]Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990,41,7892.
    [31]ICSD (Inorganic Crystal Structures Database), release 2005, entries 86308.
    [32]Govind, N.; Petersen, M.; Fitzgerald, G.; King, S. D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comp. Mater. Sci.2003, 28,250.
    [33]Laane, J.; Ohlsen, J. R. Prog. Inorg. Chem.1980,27,465.
    [34]Cotton, F. A.; Wilkinson, G.5th ed. Wiley New York,1988.
    [35]Lipscomb, W. N.; Wang, F. E.; May, W. R.; Lippert, E. L. Comments on the structure of 1,2-dichloroethane and N2O2. Acta Cryst.1961,14,1100.
    [36]Liu, Z. P.; Hu, P.; Alavi, A. Catalytic Role of Gold in Gold-Based Catalysts:A Density Functional Theory Study on the CO Oxidation on Gold. J. Am. Chem. Soc.2002,124,14770-14779.
    [37]Jigato, M. P.; King, D. A.; Yoshimori, A. The chemisorption of spin polarised NO on Ag(111). Chem. Phys. Lett.1999,300,639.
    [38]Carlisle, C. I.; King, D. A. Direct Molecular Imaging of NO Monomers and Dimers and a Surface Reaction on Ag{111}. J. Phys. Chem. B 2001,105,3886.
    [39]Rienks, E. D. L.; Berkel, G. P.; Bakker, J. W.; Nieuwenhuys, B. E. Lifting of the Au(100) surface reconstruction by NO chemisorption. Surf. Sci.2004.571,187.
    [40]Liu, Z. P.; Jenkins, S. J.; King, D. A. Car Exhaust Catalysis from First Principles: Selective NO Reduction under Excess O2 Conditions on Ir. J. Am. Chem. Soc. 2004,126,10746.
    [41]Mukerji, R. J.; Bolina, A. S.; Brown, W. A. The Temperature Dependence of the Adsorption of NO on Pt{211}:A RAIRS and DFT Investigation. J. Phys. Chem. B 2004,108,289.
    [42]Torres, D.; Gonzalez, S.; Neyman, K. M.; Illas, F. Adsorption and oxidation of NO on Au(111) surface:Density functional studies. Chem. Phys. Lett.2006,422, 412-416.
    [43]Zhang, W. H.; Li, Z. Y.; Luo, Y.; Yang, J. L. A first-principles study of NO adsorption and oxidation on Au(111) surface. J. Chem. Phys.2008,129, 134708(1-5).
    [44]Hammer, B.; Norskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci.1995,343,211.
    [45]Burch, R.; Breen, J. P.; Meunier, F. C. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. App. Catal, B 2002,39,283.
    [46]Feibelman, P. J. Interaction between adsorbed chalcogen and Al atoms on Al(001). Phys. Rev. B 1988,38,12133-12138.
    [47]Dinerman, C. E.; Ewing, G. E. Infrared Spectrum, Structure, and Heat of Formation of Gaseous (NO)2. J. Chem. Phys.1970,53,626.
    [1]Mills G, Gordon M S, Metiu H. Oxygen adsorption on Au clusters and a rough Au(111) surface:The role of surface flatness, electron confinement, excess electrons, and band gap. J Chem Phys,2003,118:4198—4205
    [2]Baker T A, Friend C M, Kaxiras E. Atomic oxygen adsorption on Au(111) surfaces with defects. J Phys Chem C,2009,113:3232—3238
    [3]Bagus P S, Nelin C J, Bauschlicher C W. Bonding of CO to metal surfaces:A new interpretation. Phys Rev B,1983,28:5423—5438
    [4]Favot F, Corso A D, Baldereschi A. CO adsorbed on Cu(001):A comparison between local density approximation and Perdew, Burke, and Ernezerhof generalized gradient approximation. J Chem Phys,2001,114:483—488
    [5]Mehmood F, Kara A, Rahman T S, Henry C R. Comparative study of CO adsorption on flat, stepped, and kinked Au surfaces using density functional theory. Phys Rev B,2009,79:075422(1—6)
    [6]Liu Z P, Hu P, Alavi A. Catalytic role of gold in gold-based catalysts:a density functional theory study on the CO oxidation on gold. J Am Chem Soc,2002,124: 14770—14779
    [7]Bartram M E, Koel B E. The molecular adsorption of NO2 and the formation of N2O3 on Au(111). Surf Sci,1989,213:137—156
    [8]Rienks E D L, Berkel G P, Bakker J W, Nieuwenhuys B E. Lifting of the Au(100) surface reconstruction by NO chemisorption. SurfSci,2004,571:187—193
    [9]Vinod C P, Niemantsverdriet J W, Nieuwenhuys B E. Interaction of small molecules with Au(3 1 0):Decomposition of NO. Appl Catal A:General,2005, 291:93-97
    [10]Hussain A, Curulla F D, Gracia J, Nieuwenhuys B E, Niemantsverdriet J W. DFT study of CO and NO adsorption on low index and stepped surfaces of gold. Surf Sci,2009,603:2734-2741
    [11]Qiu S, Ohnishi R, Ichikawa M. Novel preparation of gold(Ⅰ) carbonyls and nitrosyls in NaY zeolite and their catalytic activity for NO reduction with CO. J Chem Soc Chem Commun,1992,19:1425—1427
    [12]Salama T M, Shido T, Ohnishi Y, Ichikawa M. Low-temperature catalytic decomposition of NO over excess-loading gold(I) in NaY zeolite. J Chem Soc Chem Commun,1994,24:2749—2750
    [13]Hu P, King D A, Lee M H, Payne M C. Orbital mixing in CO chemisorption on transition metal surfaces. Chem Phys Lett,1995,246:73—78
    [14]Hu P, King D A, Crampin S, Lee M H, Payne M C. Gradient corrections in density functional theory calculations for surfaces:Co on Pd{110}. Chem Phys Lett,1994,230:501—506
    [15]Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B,1992,46:6671 —6687
    [16]Payne M C, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett,1996,77:3865—3868
    [17]Payne M C, Teter M P, Allen D C, Arias T A, Joannopolous J D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev Mod Phys,1992,64:1045—1097
    [18]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B,1990,41:7892—7895
    [19]Karlsruhe F. Inorganic Crystal Structures Database, Germany,2005,86308
    [20]Torres D, Gonzalez S, Neyman K M, Illas F. Adsorption and oxidation of NO on Au(111) surface:Density functional studies. Chem Phys Lett,2006,422:412-416
    [21]Liu Z P, Hu P, Alavi A. Catalytic role of gold in gold-based catalysts:A density functional theory study on the CO oxidation on gold. J Am Chem Soc,2002,124: 14770-14779
    [22]Laane J, Ohlsen J R. Characterization of nitrogen oxides by vibrational spectroscopy. Prog Inorg Chem,1980,27:465—513
    [23]Liu Z P, Jenkins S J, King D A. Why is silver catalytically active for NO reduction? A unique pathway via an inverted (NO)2 dimer. J Am Chem Soc,2004, 126:7336-7340
    [24]Gajdos M, Hafner J, Eichler A. Ab initio density-functional study of NO on close-packed transition and noble metal surfaces:Ⅰ. Molecular adsorption. J Phys Condens Matter,2006,18:13-40
    [25]Gajdos M, Hafner J, Eichler A. Ab initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces:Ⅱ. Dissociative adsorption. J Phys Condens Matter,2006,18:41-54
    [26]Zhang W H, Li Z Y, Luo Y, Yang J L. A first-principles study of NO adsorption on Au(111) surface. J Chem Phys,2008,129:134708(1-5)
    [27]Torres D, Gonzalez S, Neyman K M, Illas F. Adsorption and oxidation of NO on Au(111) surface:Density functional studies. Chem Phys Lett,2006,422:412-416
    [28]Newns D M. Self-consistent model of hydrogen chemisorption. Phys Rev,1969, 178:1123-1135
    [29]Hammer B, Norskov J K. Electronic factors determining the reactivity of metal surfaces. Surf Sci,1995,343:211-220
    [30]Hammer B, Norskov J K. Theoretical surface science and catalysis—calculations and concepts. Adv Catal,2000,45:71-129
    [31]Hu P, King D A, Lee M H, Payne M C. Orbital mixing in CO chemisorption on transition metal surfaces. Chem Phys Lett,1995,246:73-78
    [32]Xu W G, Shang Z F, Wang G C. Adsorption of cyclohexene on nAu/Pt(100) (n=0,1,2):A DFT study. J Mol Struct (Theochem),2008,869:47—52
    [1]Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature for below O℃. Chem. Lett,1987:405-408
    [2]Buffrat Ph, Borel J P, Size effect on the melting temperature of gold particles. Phys. Rev. A.1976,13:2287-2298.
    [3]Chen M S, Luo K, Wei T, Yan Z, Kumar D, Yi C W, Goodman D W, The nature of the active site for vinyl acetate synthesis over Pd-Au. Catal. Today.117 (2006) 37-45.
    [4]Baddeley C J, Ormerod R M, Stephenson A W, Lambert R M, Investigation of an Alternative Reaction Pathway in the Cyclization of Ethyne to Benzene on Palladium:Cyclooctatetraene on Pd(111). J. Phys. Chem.99 (1995) 5146-5151.
    [5]Chen M S, Kumar D, Yi C W, Goodman D W, The Promotional Effect of Gold in Catalysis by Palladium-Gold. Sicence 310 (2005) 291-293.
    [6]Yi C W, Luo K, Wei T, Goodman D W, The Composition and Structure of Pd-Au Surfaces. J. Phys. Chem. B 109 (2005) 18535-18540.
    [7]Shen X Y, Frankel D J, Hermanson J C, Lapeyre G J, Smith R J, Photoemission studies of ordered Pd overlayers on Au(111):Implications for CO chemisorption. Phys. Rev. B 1985,32,2120-2125
    [8]Baddeley C J, Barnes C J, Wander A, Ormerod R M, King D G, Lamerod R M, Surf. Sci.1994,1,314.
    [9]Baddeley C J, Ormerod R M, Stephenson A W, Lamerod R M, J. Phys. Chem. 1996.99,5146-5151
    [10]Koel B E, Sellidj A, Paffett M T, Ultrathin films of Pd on Au(111):Evidence for surface alloy formation. Phys. Rev. B 1992,46,7846-7856
    [11]Shen X Y. Frankel D J, Hermanson J C, Lapeyre G J, Smith R J, Photoemission studies of ordered Pd overlayers on Au(111):Implications for CO chemisorption. Phys. Rev. B 32,2120-2125
    [12]Maroun F, Ozanam F, Magnussen O M. Behm R J, The Role of Atomic Ensembles in the Reactivity of Bimetallic Electrocatalysts. Science 2001,293, 1811-1814
    [13]Yi C W, Luo K, Wei T, Goodman D W, The Composition and Structure of Pd-Au Surfaces. J. Phys. Chem. B.2005,109.18535-18540
    [14]Luo K, Wei T, Yi C W, Axnanda S, Goodman D W, Preparation and Characterization of Silica Supported Au-Pd Model Catalysts. J. Phys. Chem. B 2005,109,23517-23522
    [15]Hu P, King D A, Lee M H, Payne M C. Orbital mixing in CO chemisorption on transition metal surfaces. Chem Phys Lett,1995,246:73-78
    [16]Hu P, King D A, Crampin S, Lee M H, Payne M C. Gradient corrections in density functional theory calculations for surfaces:Co on Pd{110}. Chem Phys Lett,1994,230:501-506
    [17]Payne M C, Teter M P, Allen D C, Arias T A, Joannopolous J D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev Mod Phys,1992,64:1045-1097
    [18]Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B,1992,46:6671-6687
    [19]Payne M C, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett,1996,77:3865-3868
    [20]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B,1990,41:7892-7895
    [21]Inorganic Crystal Structures Database,2005, entries 86308
    [22]Huber H, Herzberg G, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York,1979)
    [23]Yuan D, Gong X, Wu R, Atomic configurations of Pd atoms in PdAu(111)
    bimetallic surfaces investigated using the first-principles pseudopotential plane wave approach. Phys. Rev. B,2007,75,085428(1-5)
    [24]Hammer B, Norskov J K. Electronic factors determining the reactivity of metal surfaces. Surf Sci,1995,343:211-220
    [25]Hammer B, Norskov J K. Theoretical surface science and catalysis—calculations and concepts. Adv Catal,2000,45:71 -129
    [26]Liu Z P, Hu P, Alavi A. Catalytic Role of Gold in Gold-Based Catalysts:A Density Functional Theory Study on the CO Oxidation on Gold. J. Am. Chem. Soc.2002,124,14770-14779
    [27]Hu P, King D A, Lee M H, Payne M C. Orbital mixing in CO chemisorption on transition metal surfaces. Chem Phys Lett,1995,246:73-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700