海洋弧菌S-9801次级代谢产物抑藻作用及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有害藻华己经成为当今全球性的海洋灾害,不仅破坏海洋生态环境,制约沿海经济的发展,而且也威胁到人类的健康。利用微生物方法治理赤潮不仅可以有效的抑制藻类的生长,而且还能降解藻类产生的毒素,保持海洋环境的生态平衡。本文拟通过对胶州湾典型赤潮藻—塔玛亚历山大藻有明显抑制作用的海洋弧菌S-9801来研究该菌是否对棕囊藻、赤潮异湾藻、角毛藻等其它藻种有广谱抑制性,并分析对以上藻种起主要抑制作用的化合物结构,以及该化合物作用的浓度和机理。同时,分析了海洋弧菌S-9801次级代谢产物对大型绿藻藻华生物-浒苔抑制机理。本文的主要研究内容包括:
     (1)以塔玛亚历山大藻为基础研究藻种,对前期实验显示抑菌、杀虫和抗肿瘤活性的7个菌株进行抑藻活性研究,通过实验筛选出抑藻活性较强的细菌:弧菌S-9801。
     (2)在此基础上,又选取了9种藻种:棕囊藻、赤潮异湾藻、角毛藻、海链藻、中肋骨条藻、东海原甲藻、链状亚历山大藻、锥状斯氏藻和卡氏前沟藻为研究对象,通过实验发现弧菌S-9801次级代谢产物具有广谱的抑藻活性,而且对硅藻的抑制作用明显强于甲藻。
     (3)对细菌S-9801的次级代谢产物进行分离纯化,利用波谱学等方法确认了对以上藻种起抑制作用的化合物为灵菌红素,通过正交实验,优化了该菌代谢产灵菌红素的条件,结果表明采用蛋白胨和酵母粉培养基,在NaCl浓度为2%,pH为5,30℃的条件下培养48 h,灵菌红素的产量达到30 mg/L。
     (4)通过实验,得到灵菌红素对棕囊藻、赤潮异湾藻、角毛藻、海链藻、中肋骨条藻、东海原甲藻、链状亚历山大藻和锥状斯氏藻的半抑制浓度IR50,依次为0.15μg/mL、0.15μg/mL、0.15μg/mL、0.5μg/mL、2μg/mL、4μg/mL、6μg/mL和8μg/mL。结合赤潮藻细胞显微结构、超微结构的观察及生理生化研究,分析灵菌红素对微藻的抑制机理,结果表明:灵菌红素抑藻作用主要是通过对藻细胞膜系统造成伤害从而抑制藻类的生长。
     (5)利用海洋弧菌S-9801次级代谢产物对浒苔进行抑制试验,结果表明:该菌次级代谢产物能显著抑制浒苔生长,浒苔生长缓慢时发现浒苔藻体叶绿素含量和蛋白质含量同比空白组有所减少。
The incidence of harmful algaes blooms (HABs) has recently increased in frequency as a long-term trend on a global scale. It has not only influenced the marine ecosystem, constrainted coastal economic development, but also formed a threat to human health. The method of using bacteria to control red tide can not only effectively inhibit the growth of algae, but also hasten the degradation of toxic production of algae, hence, to maintain the ecological balance of the marine environment.
     Based on the study of inhibition about Vibrio sp.S-9801 on a typical red-tide alga–Alexandrium tamarense, this paper tends to testify its broad-spectrum inhibition on other nine algaes, such as Phaeocystis globosa, Heterosigma akashiwo, Chaetoceros sp. and other algaes. Further, the structure of prodigiosin, its concentration and mechanism to inhibit those algaes has been analysed. On the other hand, this paper studies the mechanism of secondary metabolites of Vibrio sp.S-9801 on large green algae- Enteromorpha prolifera.This paper comprises of five parts:
     First of all, the inhibition activity of seven strains on the typical red-tide algae Alexandrium tamarense has been analysed. It shows that Vibrio sp.S-9801 has strong inhibition activity. Seven strains have a somewhat degree of antibacterial, insecticidal and anti-tumor activity in the early experiments.
     Secondly, based on this, other nine kinds of algae species has been selected: P. globosa, H. akashiwo, Chaetoceros sp., Thalassiosira sp., S. costatum, P. donghaiense, A. catenella, S. trochoidea, A. carterae. The result indicates that the Vibrio sp.S-9801 showed strong and broadspectrum inhibition activity on almost all algaes, while it had a weaker function on Dinophyceae.
     Thirdly, the red compound was separated from the secondary metabolites of Vibrio sp.S-9801 and identified as prodigiosin which elucidated by spectroscopic methods. The culture condition of Vibrio sp.S-9801 for prodigiosin production was obtained according to orthogonal experiment. The experiment found the optimum culture condition with the maximal prodigiosin production. It showed that when Vibrio sp.S-9801 was cultured at 30℃, layed in a medium which contains peptone and yeast extract, with the salinity 2% and pH 5, after 48 h the prodigiosin production reached 30 mg/L.
     Fourthly, the experiments found the IR50 of prodigiosin about P. globosa, H. akashiwo, Chaetoceros sp. was 0.15μg/mL, about Thalassiosira sp. S. costatum, P. donghaiense, A. catenella, S. trochoidea was 0.5μg/mL, 2μg/mL, 4μg/mL, 6μg/mL and 8μg/mL, respectively. Combination of algae cells in the light micrographs, TEM micrographs and physiological and biochemical research, the inhibition mechanism on the algae of prodigiosin has been studied. The result shows that prodigiosin does harm to membrane of microalgae.
     Finally, the growth-inhibitory effects of the Vibrio sp.S-9801 on Enteromorpha prolifera were first investigated. The result showed that secondary metabolites of Vibrio sp.S-9801 could inhibit the growth of Enteromorpha prolifera. And it also indicated that with the slowerly speed of Enteromorpha prolifera growth, the contents of the chlorophyll and the soluble protein of Enteromorpha prolifera were lower than that of control group.
引文
[1]徐宁,吕颂辉,段舜山,等.营养物质输入对赤潮发生的影响[J].海洋环境科学,2004, 23(2): 20-24.
    [2]舒廷飞,罗琳,温琰茂.海水养殖对近岸生态环境的影响[J].海洋环境科学,2002(2): 74-79
    [3]孙冷,黄朝迎.赤潮及其影响[J].灾害学,1999, 02: 51-54.
    [4]梁松,钱宏林,齐雨藻.中国沿海的赤潮问题[J].生态科学,2000, 19(4), 44-50.
    [5] Pierce R H, Henry M S, Higham C J, et al. Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation [J]. Harmful Algae, 2004, 4(2): 141-148.
    [6]吴敏,居志华,王士芬,等.MPB和MTB对海水小球藻的抑制作用[J].同济大学学报,2007, 35(9): 1125-1129.
    [7]张树林,邢克智,穆祥兆.三氯异氰脲酸对铜绿微囊藻的毒性效应[J].水利渔业,2008, 28(1): 93-95.
    [8]曹西华,俞志明.有机絮凝剂在赤潮治理中的应用展望[J].科学视野,2001, 25(5): 12-14.
    [9] Sengco M R, Li A, Kulis D, Anderson D M. Removal of red and brown tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens[J].Mar. Ecol. Prog. Ser. 2001, 210: 41-53.
    [10]俞志明,邹景忠,马锡年.一种去除赤潮生物更有效的粘土种类[J].自然灾害学报,1994, 3(2): 105-109.
    [11]俞志明,马锡年,谢阳.粘土矿物对海水中主要营养盐的吸附[J].海洋与湖沼, 1995, 26(2): 208-213.
    [12]曹西华,俞志明.有机改性粘土去除有害赤潮藻的研究[J].应用生态学报,2003, 14(7): 1169-1172.
    [13] Mayali X, Doucette G J. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae) [J]. Harmful Algae, 2002, 1:277-293.
    [14]王丹,孙军,江岷,等.海洋浮游植物病毒的研究进展[J].海洋科学进展,2005, 23(1):105-113.
    [15]龚良玉,王修林,李雁宾,等.铜绿假单胞菌产吩嗪类色素的分离纯化及其对赤潮生物生长的影响[J] .复旦学报(自然科学版),2004 , 43 (4) : 494-499.
    [16] Dakhama A , Dela N J , Lavoiel M C. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa [J] . J App Phycol, 1993, 5: 297-306.
    [17]李雁宾,龚良玉,王修林,等.细菌产绿脓菌素对东海原甲藻生长的影响[J].海洋环境科学,2005,24 (3): 33-36.
    [18] Anderson D M. Turning back the harmful red tide [J]. Nature, 1997, 388: 513-514.
    [19] Nakai S, Inone Y, Hosomi M, et al. Growth inhibition of blue-green algae by allelopathic effects of macroalgals [J]. Water Science Technology ,1999, 39: 47-53.
    [20] Jeong J H, Jin H J, Sohn C H, et al. Algicial activity of the seaweed Corallina pilulifera against red tide microalgae [J]. Journal of Applied Phycology, 2000, 12: 37-43.
    [21]胡洪营,门玉洁,李锋民.植物化感作用抑制藻类生长的研究进展[J].生态环境,2006, 15(1): 153-157.
    [22] Jin Q, Dong S L. Comparative studies on the allelopathic effects of two different strains of U. pertusa on Heterosigma akashiwo and Alexandum tamarense [J]. Journal of Experimental Marine Biology and Ecology, 2003, 293: 41-55.
    [23]王悠,俞志明,宋秀贤,等.大型海藻与赤潮微藻以及赤潮微藻之间的相互作用研究[J].环境科学,2006, 27(2): 275-280.
    [24] Jin Z H, Zhuang Y Y, Dai S G, et al. Isolation and identification of extracts of Eichhornia crassipes and their allelopathic effects on algae [J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71: 1048-1052.
    [25] Sun X X, Choi J K, Kim E K. A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment [J]. Journal of Experimental Marine Biology and Ecology, 2004, 304(1): 35-49.
    [26] Chen Z L, Yang W D, Liu J S, et al. Allelopathic effects of Eichhornia crassipes roots on Alexandrium tamarense [J]. Acta Hydrobiologica Sinica, 2005, 29(3): 110-114.
    [27]刘洁生,杨维东,陈芝兰.凤眼莲根对东海原甲藻生长的抑制作用及机理研究[J].热带海洋学报,2007, 26(3): 44-47.
    [28] Gibson M T, Welch I M, Barrett P R F, et al. Barley straw as aninhibitor of algal growthⅡ: Laboratory Studies[J]. J Appl Phycol, 1990, 2: 241-248.
    [29] Ball A S, Williams M, Vincent D, et al. Algal growth control by a barley straw extract [J]. Bioresource Technology, 2001, 77(2): 177-181.
    [30]张薛,胡洪营,门玉洁.大麦杆提取液对铜绿微囊藻生长的影响研究[J].环境科学学报,2007,27(12): 1985-1987.
    [31]刘洁生,杨维东,高洁,等.稻、麦秸秆对球形棕囊藻(Phaeocystis globosa)生长的抑制作用[J].生态学报,2007,27(11): 4499-4505.
    [32] Ridge I, Pillinger J M, Towards understanding the nature of algal inhibitors from barley straw[J]. Hydrobiologia, 1996, 340: 301-305.
    [33] Ferrier M D, Sr B R B, Terlizzi D E, et al. The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae [J]. Bioresource Technology, 2005, 96(16): 1788-1795.
    [34] Takeda S, Kurihara Y. Preliminary study of management of red tide water by the filter feeder mytilus edulis galloprovincialis. Marine pollution bulletion, 1994, 28(11): 662-667.
    [35] Safferman R S, Morris M E. A lgal viruses: isolation [J]. Science, 1963, 140: 679-680.
    [36] Fuhrman J A. Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6736): 541-548.
    [37] Muller D G, Frenzer K. Virus infections in three marine brown algae: Feldmannia irregularis, F. simplex, and Ectocarpus. Siliculosus [J]. Hydrobiologia. 1993, 260/261: 37-44.
    [38] Nagasaki K, Tarutani K, Yamaguchi M. Growth characteristics of Heterosigma akashiwo virus and its possible use as a microbiological agent for red tide control[J]. Appli.Environ.Microbiol, 1999, 65(3): 898-902.
    [39] Christopher G P, Tom L D. Infection, growth and community-level consequences of a diatom pathogen in a sonoran desert stream [J]. Phycol. 1993,2 9(4): 442-452.
    [40] Jenkins K M, Toske S G, Jensen P R. et al. Antialgal metabolites produced by a marine fungus[J]. Phytochemistry, 1998, 49(8): 2299-2304.
    [41]韩志国.广东省大中型水库富营养化现状与防治对策研究[M].北京:科学出版社,2003,210-216.
    [42]肖慈琼,姜红,程凯,等.溶藻放线菌AN02的筛选及其培养条件的优化[J].微生物学杂志,2007, 27(4): 11-14.
    [43] Biabani M A, Baake M, Lovisetto B, et al. Anthranilamides: new antimicroalgal active substances from a marine Streptomyces sp [J]. Antibiot. (Tokyo) 1998, 51: 333-340.
    [44] Hogetsu K, Okanishi Y, Sugawara H. Studies on the antagonistic relationship between phytoplankton and rooted aquatic plants [J]. Jap J Limnol, 1960, 21(2): 124-130.
    [45] Singh D P, Tyagi M B, Kumar A, et al. Antialgal activity of a hepatotoxin-producing cyanobacterium Microcystis aeruginosa [J]. World.J.Microb.Biot, 2001, 17(1): 15-22.
    [46] Nagayama K, Shibata T, Fujimoto K. et al. Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on tide microalgae[J]. Aquaculture, 2003, 218:601-611.
    [47]郑天凌,薛雄志,李福东,等.海洋微生物在生态环境中的作用[J].海洋科学,1994, 3:35-38.
    [48] Imamura N, I Motoike, N Shimada, et al. An efficient screening apprcach for anti-microcystis compounds based on knowledge of aquatic microbial eccsystem[J]. J Antibiotics, 2001, 54(6): 582-587.
    [49]赵以军,刘永定.有害藻类及其微生物防治的基础—藻菌关系的研究动态[J].水生生物学报,1996,20(2): 173-181. [50吴刚,席宇,赵以军.溶藻细菌研究的最新进展[J].环境科学研究,2002, 15(5): 43-46
    [51] Yamamoto Y, Suzuki K. Distribution and algal-lysing activity of fruiting myxobacteria in lake Suwa [J]. J.Phycol. 1990, 26(3): 457-462.
    [52] Doucette G J, McGovern E R, Babinchak J A, et al. Algicidal bacteria active against Gymnodinium breve(dinophyceae).I. bacterial isolation and characteriazation of killing activity [J]. J Phycol. 1999, 35, 1447-1454.
    [53] Imai I, Ishida Y, Hata Y. Kill of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of japan [J]. Mar. Biol. 1993, 116(2): 527-532.
    [54] Oshikawa K, Aachi K, Nishijima M, et al.β-Cyanoaianene production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria [J]. Appl. Environ.Microbiol. 2000, 66(2): 718-722.
    [55] Banin E, Israely T, et al. Penetration of the Coral-bleaching Bacterium Vibrio shiloi into Oculina patagonica[J]. Appl. Environ. Microbiol. 2000, 66(2): 3031-3036.
    [56] Dakhama A, Delanoue J, Lavoie M C, et al. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa [J]. J. Appl. Phycol.,1993, 5(9): 297-306.
    [57] Hayashida A, Tanaka S, et al. Isolation of anti-lagal Pseudomonas stutzeri strains and their lethal activity for Chattonella antiaua [J]. Agric. Biol. Chem. 1991, 55(3): 787-790.
    [58] Iamura N, Motoike I, Noda N, et al. Argimicin A, a novel anti-cyanobacterial compound produced by an algae-lysing bacterium[J]. J.Antibitics. 2000, 53(1): 1317-1319.
    [59] Lee S, Kato J, Takiguchi N, et al. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28[J]. Appl. Environ. Microbiol., 2000, 66(1): 4334-4339.
    [60] Kato J, Amie J, Murata Y, et al. Development of a genetic transformation system for an algal-lysing bacterium [J]. Appl. Environ. Microbiol., 1998, 64(6): 2061-2064.
    [61]郑天凌,苏建强.海洋微生物在赤潮生消过程中的作用[J].水生生物学报,2003,27(3): 291-295.
    [62] Shilo M. Lysis of blue-green algae by myxobacter [J]. J.Bacteriol, 1970, 104(1): 453-461.
    [63]李勤生,黎尚豪.溶解固氮蓝藻的细菌[J].水生生物学集刊,1981, 7(3): 377-384.
    [64] Imai I, Ishida Y, Sawayama S, et al. Isolation of a marine gliding bacterium that kills Chattonella antique (Raphidophyceae)[J]. Nippon Suisan Gakkaishi, 1991, 57: 14-19.
    [65] Furusawa G, Yoshilawa T, Yasuda A, et al. Algicidal activity and gliding motility of Saprospira sp.SS9825[J]. Can J Microbiol, 2003, 49: 92-100.
    [66] Anne M P, Flavia E, Doralyn D S, et al. Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicate[J]. Appl. Environ Microbiol, 2004, 7(70): 3232-3238.
    [67] Yamamoto Y, Suzuki K D, Ultrastructural studies on lysis of blue green algae by a bacterium[J]. J Gen. Appl. Microbial, 1977, 23(3): 285-295.
    [68] Furusawa G, Yoshikawa T, Yasuda A, et al. Algicidal activity and gliding motility of Saprospira sp. SS98-5[J]. Microbiology, 2003, 49(2): 92-100.
    [69] Mitsutani A, Takase K, Kitita M. et al. Lysis of Skeletonema costatum by Cytophaga sp. Isolated from the coastal waters of the Ariake Sea[J]. Nibon Suisan Gakkai-shi. 1992, 58: 2159-2169.
    [70] Maria G C, Stefania P. Lysis of Microcystis aeruginosa by Bdellovibrio-like Bacteria [J]. J. Phycol, 1984, 20(1): 471-475.
    [71] Baker K H, Herson D S. Interactions between the diatom Thallasiosira pseudonanna and an associated Pseudomonad in a mariculture system [J]. Appl. Environ. Microbiol., 1978, 35: 791-796.
    [72] Lee S O, Kato J, Takiguchi N, et al. Appl Environ Microbiol, 2000, 66(10): 4334-4339.
    [73] Takenaka S, Watanabe M F. Microcystin L R degradation by Pseudomonas aeruginosa alkaline protease [J]. Chemosphere, 1997, 34(4): 749-757.
    [74] Mitsutani A, Yamasaki I, Kitaguchi H, et al. Phycologia, 2001, 40(3): 286-291.
    [75] Imamura N, Motoike I, Noda M, et al. Argimicin A, a novel anti-cyanobacterial compound produced by an algae-lysing bacterium [J]. Antibiotics, 2000, 53(11): 1317-1319.
    [76] Banin E, Khare S K, Naider F, et al. Appl Environ Microbiol, 2001, 67(4): 1536-1541.
    [77] Ahn C Y, Joung S H, Jeon J W, et al. Selective control of cyanobacteria by surfactin-containing culture broth of Bacillus subtilis C1 [J]. Biotechnol Lett. 2003, 25: 1137-1142.
    [78] Dakhama A, Delanoue J, Lavoie M C, et al. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa [J]. Appl. Phycol, 1993, 5(9): 297-306.
    [79] Kawano Y, Nagawa Y, Nakanishi H, et al. Production of thiotropocin by a marine bacterium ,Caulobacter sp. and its an-timicroalgal activities [J]. Mar Biotechnol, 1997, 5: 225-229.
    [80] Yamamoto Y, Kouchiwa T, Hodoki Y, et al. Distribution and identification of actinomycetes lysing cyanobacteria in aeutrotrophic lake [J]. Appl. Phycol, 1998,10(2): 391-397.
    [81] Yoshikawa K, Adachi K, Nishijima M, et al.β-Cyanoaianene production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria [J]. Appl Environ Microbiol, 2000, 66(2): 718-722.
    [82] Paul S, Jinnque R, Haim B G. Bacterial suppression of chlorella by hydroxylamine production [J]. Water Res, 1979, 13(1): 267-273.
    [83] Jeong H, Yim J H, Lee C, et al. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent [J]. Nucleic Acids Res, 2005, 33(22): 7066-7073.
    [84] Shieh W Y, Chen Y W, Chaw S M, et a1. A red facultatively anaerobic marine bacterium isolated from sea water. [J] Syst Evol Microbio, 2003, 53: 479-484.
    [85] Pandey R, Chander R, Sainis KB. A novel prodigiosin-like immunosuppressant from analkalophilic Micrococcus sp. [J] Immunopharmacol, 2003, 3 (2): l59-l67.
    [86] Hayashida S, Tanaka S, Teramoto Y, et al. Isolation of anti-algal pseudomonas stutzeri strains and their lethal activity for Chattonella antiqua [J]. Agric Biol Chem, 1991, 55(3): 787-790.
    [87] Fukami D, Yuzawa A, Nishijima T, et al. Isolation and properties of a bacterium inhibiting the growth of Gymnodinium nagasakiense [J]. Nippon Suisan Gakkaishi, 1992, 58(2): 1073-1077.
    [88] Egan S, James S, Holmstrom C, et al. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicate.FEMS [J]. Microbiol. Ecol, 2001, 35(1): 67-73.
    [89]郑天凌,田蕰,苏建强,等.海洋赤潮生物与厦门海域几种细菌的生态关系研究[J].生态学报,2002,22(12): 2063-2070.
    [90]袁峻峰,孟智芳,陈德辉,等.中性柠檬酸菌对几种常见藻类生长的他感作用[J].淡水渔业,1999, 29(4): 12-15.
    [91] Colwell F S, Speidel H K. Diffusion through a double-sided plate development of a method to study algae-bacterium interaction [J]. Appl Environm Microbiol, 1985, 50: 1357-1360.
    [92] Imai I, Ishida K, Hata Y. Killing of marine phytoplankton by a gliding bacterium Cytophga sp. Isolated from the coastal sea of Japan [J]. Mar. Biol. 1993, 116: 527-532.
    [93]曹晓星,苏建强,郑天凌,等.海洋微生物的多样性在赤潮调控中的作用[J].海洋科学,31(5): 63-69.
    [94] Devereux R, He S H, Doyle C L, et al. Diversity and origin of Desulfovibro species: phylogenetic definition of a family[J]. J Bacteriol, 1990, 172(7): 3609-3619.
    [95] Egan S., James S., Holmstrom C., et al. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicate [J]. FEMS Microbiol. Ecol. 2001, 35:67-73.
    [96] Holmstrom C., Kjelleberg S., Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents [J]. FEMS Microbiol. Ecol. 1999, 30: 285-293.
    [97] Hentschel U., Schmid M., Wagner M., et al. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola [J]. FEMS Microbiol. Ecol. 2001, 35:305-312.
    [98] Barsby T., Kelly M.T., Gagne′S.M., et al. Bugorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org. Lett. .2001, 3:437–440.
    [99] Takashi K, Fumi S, Yoichi H. A prodigiosin from the roseophilin producer Streptomyces griseoviridis [J]. J. natural products, 2008, 71(7): 1265-1267.
    [100] Shieh WY, Chen YW, Chaw SM, et a1. A red facultatively anaerobic marine bacterium isolated from sea water. [J] Syst Evol Microbio, 2003, 53: 479-484.
    [101] Pandey R, Chander R, Sainis KB. A novel prodigiosin-like immunosuppressant from an alkalophilic Micrococcus sp. [J] Immunopharmacol, 2003, 3 (2): l59-l67.
    [102] Philip A G, Joachim G, Mark E L, et al. Conformational control of HCl co-transporter: imidazole functionalized isophthalamide vs. 2,6-dicarboxamidopyridine [J]. Chem.Comm, 2007, 1736-1738.
    [103] Eui I H, Kim Y K, Lee H B, et al. Screening system for Chitin synthaseⅡinhibitors from natural resources and its inhibitor prodigiosin[J]. Microbiol Biotech, 2000, 10: 251-257.
    [104] Jeong H, Yim J H, Lee C, et al. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent [J]. Nucleic Acids Res, 2005, 33(22): 7066-7073.
    [105] Jung E H, Joung H Y, Hong K L, et al. Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK,JNK andNF-κB activation in murine peritoneal macrophages[J]. International Immunopharmacology, 2007, 7: 1825-1833.
    [106] Roberts D P, Mckenna L F, Lakshman D K, et al. Suppression of damping-off cucumber caused by Pythium ultimum with live cells and extracts of Serratia marcescens N4-5 [J].Soil Biology Biochemistry, 2007, 39: 2275-2288.
    [107]李厚金,蔡创华,周毅频,等.大亚湾海洋细菌Pseudomonas sp.中的红色素[J].中山大学学报,2003, 42 (3): 102-104.
    [108] Tao J, Wang XD, Shen YL, et a1. Strategy for the improvement of prodigiosin production by a Serratia marcescens mutant through fed—batch fermentation [J]. World J Microbiol Biotechnol, 2005, 21: 969-972.
    [109]蓝文健,莫林峰,蔡创华,等.海洋新细菌ZooshikeUa sp.SY01的培养条件研究[J].中山大学学报, 2007, 46 (6): 55 - 58.
    [110] Jonathan T, Reeves. A concise synthesis of butylcycloheptylprodigiosin [J]. Organic letters, 2007, 9(10): 1879-1881.
    [111] Wasserman HH, Mckeon JE, Santer UV. Studies related to the biosynthesis of prodigiosin in Serratia marcescens [J]. Biochem Biophys Res Commun, 1960, 3: 146-149.
    [112] Ruchi P, Ramesh C, Krishna B S. Role of interleukin-2 regulated proteins in immunosuppression by the N-alkylated prodigiosin analogue [J]. International Immunopharmacology, 2007, 7: 1695-1703.
    [113] Roser F, Ricardo P P, Pepita G B, et al. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines [J]. European Journal of Pharmacology, 2007, 572: 111-119.
    [114]王丽平,郑丙辉,孟伟.荧蒽对两种海洋硅藻生长、SOD活力和MDA含量的影响[J].海洋通报,2008,27(4): 53-58.
    [115] Beauchamp C O,Fridovich I.Superoxide dismutase: Improved assays and an assay applicable to acrylamine gel [J]. Analytical Biochemistry, 197l, 44: 276-287.
    [116]宫相忠,唐学玺,黄健,等.球等鞭金藻8701的耐低温机理[J].水产学报,2001,25: 20-25.
    [117] Baek, S H, Sun X X, Lee Y J, et al. Mitigation of harmful algal blooms by siphorolipid [J]. J Microbiol Biotech, 2003, 13: 651-659.
    [118]陆斗定,齐雨藻,Jeanette Goebel.等.东海原甲藻修订及相关原甲藻的分类学比较[J].应用生态学报,2003,14(7): 1060-1064
    [119] Mccord J M, Fridovich I, Superoxide dismutase: An enzyme funetion for erythrocuprein (Hemocuprein) [J]. J Biol Chem, 1969, 224: 6049-6055.
    [120]蔡恒江,唐学玺,张培玉,等.3种海洋赤潮微藻抗氧化酶活性对UV-B辐射增强的相应[J].中国海洋大学学报, 2006, 36(1): 81-84.
    [121]王丽平,郑丙辉,孟伟.重金属Cu对两种海洋微藻的毒性效应[J].海洋环境科学, 2007, 26(1): 6-9.
    [122] D’Ischia M, Constantini C, Prota G. Lipofuscin-like pigments by autoxidation of polyunsaturated fatty acids in the presence of amine neuritransmitters: the role of malondialdehyde [J]. Biochim Biophys Acta, 1996, 1290: 319-326.
    [123]张浏,陈灿,高倩,等.两种营养状态下pH对轮叶黑藻(Hydrilla verticillata)生长和抗氧化酶活性的影响[J].生态环境,2007, 16(3): 748-752.
    [124]于志刚,张经,张耀红,等.提取测定大型海藻叶绿素a的新方法[J].海洋科学,1997,5:1-2.
    [125]李合生.植物生理生化实验原理和技术[M].高等教育出版, 2000.
    [126] Bradford M M. A rapid and sensitive method for the quantitation of microgram qualities of protein utilizing the principle of protein dye binding[J]. Analytic Biochemistry.1976, 72:248-254.
    [127]焉翠蔚,肖宜华,朱岩松,等.多效唑对2种海洋微藻生长和抗氧化酶活性的影响[J].中国海洋大学学报,2008, 38(2): 291-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700