低温烧结BaO-TiO_2系陶瓷材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,移动通信的信息容量成指数成长,因此移动通信必然朝更高频段迈进,无源器件小型化的需求也变得日益迫切。多层片式元件是实现移动通信终端更进一步小型化的唯一途径,然而多层片式微波元器件的制备,要求微波材料能与高电导率的金属电极共烧,目前熔点较低的Ag(td=960℃)或Cu(td=1060℃)等金属是最为理想的电极材料。因此,能与Ag或Cu共烧的低温烧结微波介质陶瓷的研究和开发已成为发展重点和方向。
     本文首先通过实验研究得出BaO-TiO2系微波介质陶瓷中具有较好介电性能的化合物,分别是BaTi_4O_9和Ba4Ti_(12)O_(27),并得出了它们的最佳预烧温度为1130℃。由于BaTi_4O_9和Ba4Ti_(12)O_(27)的烧结温度在1300℃左右,远远无法满足低温共烧的要求,所以必须通过添加烧结助剂来降低它们的烧结温度。
     对BaTi_4O_9和Ba4Ti_(12)O_(27)陶瓷添加ZnO,实验表明添加ZnO能降低Ba4Ti_(12)O_(27)和BaTi_4O_9的烧结温度,而且对Ba4Ti_(12)O_(27)的降烧作用更加明显。ZnO的降烧作用主要是由于ZnO加入后形成固溶体,促进了液相烧结,降低了体系的自由能,从而降低了系统的烧结温度。当添加的ZnO含量为11wt%时,能使Ba4Ti_(12)O_(27)的烧结温度降低至1100℃,同时具有较好的微波性能:εr=36.4,Q×f=14140GHz。当添加ZnO含量为9wt%时,能使BaTi_4O_9的烧结温度降低至1160℃,同时也具有较好的微波性能:εr=31.4,Q×f=12264GHz。
     虽然ZnO有较好的降烧作用,但烧结温度仍未达到与Ag或Cu共烧的要求,故改用添加H_3BO_3,添加H_3BO_3能使Ba4Ti_(12)O_(27)的烧结温度降到950°C,并具有良好的微波性能,并且优于添加H_3BO_3的BaTi_4O_9。H_3BO_3的降烧作用主要是由于形成了BaB_2O_4,促进了陶瓷的液相烧结,从而降低了烧结温度。实验表明,当添加的H_3BO_3含量为3wt%时,Ba4Ti_(12)O_(27)具有较好的微波介电性能:εr=34.1,Q×f=9000GHz。当添加的H_3BO_3含量为2wt%时,BaTi_4O_9烧结温度降至980°C,也具有较好的微波介电性能:εr=31.5,Q×f=15000GHz。
     最后对Ba4Ti_(12)O_(27)进行H_3BO_3和CuO的复合掺杂以及其它一些氧化物的掺杂。H_3BO_3和CuO复合掺杂的作用主要是由于形成了液相BaCu(B2O5),从而降低了陶瓷的烧结温度。实验结果表明:当复合添加3wt%H_3BO_3和5mol%CuO时,能使Ba4Ti_(12)O_(27)的烧结温度降低至900℃,其微波介电性能还是较为满意的,其中εr=32.2,Q×f=8573.8GHz。ZnO和Nb2O5对Ba4Ti_(12)O_(27)复合掺杂以及CuV2O6对Ba4Ti_(12)O_(27)掺杂,都能很好的抑制陶瓷中的Ti4+转变为介电性能较差的Ti3+,使样品能保持较好的介电性能,而且还能通过液相烧结降低Ba4Ti_(12)O_(27)的烧结温度。当ZnO含量为11wt%,Nb2O5含量为3wt%时,能使Ba4Ti_(12)O_(27)样品的烧结温度降至1140℃,在4GHz下,εr=35.2,Q×f=9111GHz。当CuV2O6含量为2wt%时,能使Ba4Ti_(12)O_(27)样品的烧结温度降至1130℃,在4GHz下,εr=37.5,Q×f=10512.8。
In recent years, the information capacity of mobile communications has a rapid growth. Therefore, Mobile communications must move towards higher frequencies and the demand for miniaturization of passive components has become increasingly urgent. The only way to achieve further miniaturization of mobile communication terminal is multilayer chip components. However, it requires microwave materials to co-fire with high conductivity metal electrodes and the best metal electrodes have low melting point, like Ag (td = 960℃) or Cu (td = 1060℃) and so on. Thus, the research and development of low-temperature sintering microwave dielectric ceramics has become a focus and direction.
     In this paper, the first step is obtaining the compound which have good microwave dielectric properties in the BaO-TiO2 system, BaTi_4O_9 and Ba4Ti_(12)O_(27), respectively, and their optimum pre-firing temperature. Due to the sintering temperature of BaTi_4O_9 and Ba4Ti_(12)O_(27) at 1300℃, They are far from meeting the requirements of low-temperature cofiring. So it is necessary adding sintering aids to lower their sintering temperature. The effect of ZnO on the sintering temperature and microwave dielectric properties of BaTi_4O_9 and Ba4Ti_(12)O_(27) was investigated. The decrease of sintering temperature is mainly upon the formation of second phase. The Ba4Ti_(12)O_(27) ceramics containing 11wt% ZnO sintering at 1100℃have good microwave dielectric properties ofεr=36.4,Q×f=14140GHz. The BaTi_4O_9 ceramics containing 9wt% ZnO sintering at 1600℃have good microwave dielectric properties ofεr=31.4,Q×f=12264GHz.
     Although ZnO has a good effect on the sintering temperature of the specimen, it has not yet reached the requirements co-firing with the Ag or Cu. So the effect of H3BO3 on the sintering temperature and microwave dielectric properties of BaTi_4O_9 and Ba4Ti_(12)O_(27) was investigated. The decrease of sintering temperature is mainly up to the formation of BaB_2O_4 . The Ba4Ti_(12)O_(27) containing 3wt% H3BO3 sintering at 950℃have good microwave dielectric properties ofεr=34.1, Q×f=9000GHz. The BaTi_4O_9 ceramics containing 2wt% H3BO3 sintering at 980℃also have good microwave dielectric properties ofεr=31.5, Q×f=15000GHz.
     After that, to get better results, the effect of H3BO3 and CuO on the sintering temperature and microwave dielectric properties of Ba4Ti_(12)O_(27) was investigated. The decrease of sintering temperature is mainly up to the formation of BaCu(B2O5) . The Ba4Ti_(12)O_(27) ceramics containing 3wt% H3BO3 and 5mol% CuO sintering at 900℃have good microwave dielectric properties ofεr=32.2, Q×f=8573.8GHz.
     At last, the effect of some other sintering aids on the sintering temperature and microwave dielectric properties of Ba4Ti_(12)O_(27) was investigated. Owing to inhibiting Ti4+ into poor dielectric properties of Ti3+, the Ba4Ti_(12)O_(27) can maintain good dielectric properties. The Ba4Ti_(12)O_(27) containing 11wt% ZnO and 3wt% Nb2O5 sintering at 1140℃have good microwave dielectric properties ofεr=35.2, Q×f=9111GHz. The Ba4Ti_(12)O_(27) containing 2wt% CuV2O6 sintering at 1130℃also have good microwave dielectric properties ofεr=37.5, Q×f=10512.8.
引文
[1]刘桂珍.微波技术[M].内蒙古大学出版社, 1997, 65–67
    [2] Plourde J K, Ren C L. Application of dielectric resonators in microwave components[J]. IEEE Trans Microwave Theory Tech, 1981, 29(8): 754-770
    [3]李标荣,王筱珍,张绪礼.无机电介质[M].武昌:华中理工大学出版社, 1995
    [4]何进,杨传仁.微波介质陶瓷材料综述[J].电子元件与材料. 1995, 14(2): 7-13
    [5]宋英,王福平,周玉.微波介质陶瓷材料的研究进展[J].材料科学与工艺, 1998, 6(2): 59-63
    [6]张迎春.铌钽酸盐微波介质陶瓷材料[M].北京:科学出版社, 2005, 1-35
    [7]尹雪帆,喻佑华,周川钧,等.微波介质陶瓷材料发展综述[J].中国陶瓷, 2006, 42(4): 3-7
    [8] Cohn S B. Microwave bandpass filters containing high Q dielectric resonators[J], IEEE Trans. 1968, 16: 218–227
    [9]徐廷献.电子陶瓷材料[M].天津大学出版社, 1992, 6: 23-26
    [10] Okaya A. The rutile microwave resonator[J]. Proc IRE, 1960, 48: 17-20
    [11]肖定全,杜若晰,熊雅玲.微波介质陶瓷的近期研究进展[J]. 1995, 26 (1): 20-23
    [12]章景泰,许赛卿,周东祥,等.微波介质材料与器件的发展[J].电子陶瓷, 2004, 23(6): 6-9
    [13]张绪礼,王筱珍,汤清华.微波介质陶瓷材料与器件[J].电子科技导报, 1997, 6: 29-33
    [14]方亮,杨卫明,鄢俊兵,等.微波介质陶瓷的研究现状与发展趋势[J].武汉理工大学学报, 2002, 24(2): 12-15
    [15] Rase D E, Roy R. Phase Equilibria in the System BaO-TiO2[J]. J Am Ceram Soc, 1955, 38(3): 102-113
    [16] Templeton D. Polarized octahedral in barium tetratitanate[J]. Chem Phys, 1960, 32(5): 1515-1519
    [17] Masse D J, Pucel R A, Readey D W. A new low-loss high-k temperature-compensated dielectric for microwave applications[J]. Proc IEEE, 1971, 59(11): 1628-1629
    [18] O’Bryan H M, Thomson J. et al. A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss[J]. J Am Ceram Soc, 1974, 57(10): 450-453
    [19] Plourde J K, Linn D F. Ba2Ti9O20 as a Microwave Dielectric Resonator[J]. J Am Ceram Soc, 1975, 58(9-10): 418-420
    [20]徐建梅,周东详,微波介质陶瓷的研究现状及发展趋势[J].非金属矿, 2001(24): 47-49
    [21] Mhaisalkar S G, Lee W E, Readey D W. Processing and characterization of BaTi4O9[J]. J Am Ceram Soc, 1989, 72(11): 2154-2158
    [22]刘玉明. KDC法合成钦酸钾纤维的研究[J].无机材料学报, 1994, 9(1): 83-88
    [23]宋英,王福平,张明福. BaO-TiO2系陶瓷微波介电性的近期研究进展[J].硅酸盐通报, 1998, 17(3): 50-52
    [24]宋英,王福平,姜兆华,等.四钛酸钡纤维陶瓷的制备及介电性研究[J].功能材料, 2001, 32(4): 391-392
    [25] Cernea M, Chirtop E, Neacsu D, et al. Preparation of BaTi4O9 from Oxalates[J]. J Am Ceram Soc, 2002, 85(2): 499-503
    [26]张启龙,杨辉,王伟.单相BaTi4O9柠檬酸凝胶法制备、表征及介电性能[J].稀有金属材料与工程, 2008, 37(2): 505-508
    [27] Das S, Mukhopadhyay A K, Datta S, et al. Prospects of microwave processing: An overview. Bull Mater Sci[J], 2008, 31(7): 943-956
    [28] Vaidhyanathan B, Agrqawal D K, Shrout T R, et al. Microwave synthesis and sintering of Ba(Mg1/3Ta2/3)O3 [J]. Mater Lett, 2000(42): 207-211
    [29] Katayama K, Azuma Y, Takashi Y. Molten salt synthesis of single-phase BaNd2TiO12 powder [J]. J Mater Sci, 1999, (34): 301-305
    [30] Hakki B W, Coleman P D. A dielectric resonator method of measuring inductive capacities in the millimeter range[J]. IEEE Trans. Microwave Theory Tech., 1960(8): 402-409
    [31] Courtney W E. Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators[J]. IEEE Trans. Microwave Theory Tech, 1970(18): 472-479
    [32]刘丹丹,吴顺华,赵玉双,等. Zn和Nb对BaO-TiO2系统微波陶瓷介电性能的影响[J].电子元件与材料, 2003, 22(9): 11-14
    [33] Jonker G H, Kwestroo W. The ternary system BaO-TiO2-SnO2 and BaO-TiO2-ZrO2[J]. J Am Ceram Soc, 1958, 41(10): 390-394
    [34]赵梅瑜,王依琳.低温烧结微波介质陶瓷[J].电子元件与材料, 2002, 21(2): 30-33
    [35] Okawa T, Utaki H. The Development of a Multilayer Dielectric Filter Using Low Temperature Fired Microwave Ceramics[J]. Sumitomo Metals, 1991, 43(4): 134-138
    [36]李标荣,张绪礼.电子陶瓷物理[M].武汉:华中理工大学出版社, 1991
    [37] Takada T, Wang S F, Yoshikawa S, et al. Effects of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications[J]. J Am Ceram Soc, 2005, 77 (9): 2485-2488
    [38] Lee C C, Lin P. Effect of Glass Addition on Microwave Properties of BaO·La2O3·4.7TiO2[J]. Jpn J Appl Phys, 1998, 37(11): 6048-6054
    [39] Yang C F. The Microwave Characteristics of Glass-BaTi4O9 Ceramics[J]. Jpn J Appl Phys, 1999, 38(6A): 3576-3579
    [40] Takahiro T, Wang S F, Shoko Y, et al. Effect of glass additions on BaO-TiO2-WO3 microwave ceramics [J]. J Am Ceram Soc, 1994, 77(7): 1909-1916
    [41] Kim D W, Lee D G, Hong K S. Low-temperature firing and microwave dielectric properties of BaTi4O9 with Zn-B-O glass system[J]. Mater Res Bull, 2001, 36(3-4): 585-595
    [42] Lim J B, Nahm S, Kim H T, et al. Effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of the BaTi4O9 ceramics[J]. J Electroceram, 2006, 17(2-4): 393-397
    [43] Jhou M Z, Jean J H. Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO-ZnO–B2O3 Glass[J]. J Am Ceram Soc, 2006, 89(3): 786-791
    [44] Lee Y C, Lee W H, Shieu F S. Effects of B2O3 addition on the microwave dielectric properties of Ba2Ti9O20 ceramics[J]. Jpn J Appl Phys, 2003, 42, 1311-1314
    [45] Guan E, Chen W, Luo L. Low firing and microwave dielectric properties of BaTi4O9 with B2O3–ZnO–La2O3 glass addition[J]. Ceram Int, 2007, 33(6): 1145-1148
    [46] Lee Y C, Lee W H, Shieu F S. Low temperature sintering and microwave dielectric properties of Ba2Ti9O20 ceramics with 3ZnO-B2O3 addition[J]. Jpn J Appl Phys, 2002, 41, 6049-6053
    [47] Choi Y J, Park J H, Nahm S, et al. Middle- and high-permittivity dielectric compositions for low-temperature co-fired ceramics[J]. J Eur Ceram Soc, 2007, 27(4): 2017-2024
    [48] Kim D W, Lee D G, Hong K S, Low-temperature firing and microwave dielectric properties of BaTi409 with Zn-B-O glass system[J]. Mater Res Bull, 2001, 36, 585-595
    [49] Lim J B, Jeong Y H, Nguyen N H, et al. Low temperature sintering of the Ba2Ti9O20 ceramics using B2O3/CuO and BaCu(B2O5) additives[J]. J Eur Ceram Soc, 2007, 27, 2875-2879
    [50] Lee J A, Lee J H, Kim J J.Low-temperature sintering and microwave dielectric characteristics of Ba2Ti9O20 ceramics[J]. J Eur Ceram Soc, 2006, 26, 2111-2115
    [51] Lim J B, Nahm S, Kim H T, et al. Effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of the BaTi4O9 ceramics[J]. Journal of Electroceramics, 2006, 2(4): 393-397
    [52] Levin E M, McMurdie H F. The System BaO-B2O3[J]. J Res Natl Bur Stand, 1949, 42: 131-137
    [53] Kim M H, Lim J B, Kim J C. et al. Synthesis of BaCu(B2O5) Ceramics and their Effect on the Sintering Temperature and Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Ceramics[J]. J Am Ceram Soc, 2006, 89: 3124-3128
    [54]凌栋,徐国跃. Bi2O3和V2O5复合掺杂BaTi4O9微波介质陶瓷[J].电子元件与材料, 2005, 24(10): 11-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700