新型掺杂钙钛矿型混合导体透氧膜材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型致密透氧膜作为一类重要的无机膜,在高温气体分离和膜催化反应中有巨大的潜在研究价值。在纯氧制备、燃料电池以及化学反应器等方面有着十分诱人的应用前景。对于面向应用的透氧膜材料而言,提高膜的氧通量、解决低氧分压气氛中膜的稳定性等问题是其实现工业化应用的关键,但是从该类材料目前的研究现状来看,同时满足以上要求的透氧膜材料还是很少。为此,开发高氧透量、高稳定性的混合导体透氧膜材料是现目前亟待解决的关键问题,本论文的研究工作正是顺应这种要求而展开的。
     我们在前人实验的基础上,借助于X射线衍射(XRD),扫描电子显微镜-元素分析(SEM-EDX),热重-示差量热(TG-DSC),程序升温氧脱附(O2-TPD),程序升温氢还原(H2-TPR)等分析测试手段对钙钛矿型混合导体膜的性能材料的优化及开发作了一些新的探索。
     针对在实验过程中遇到的问题,由于锆(Zr)的熔点较高,使得BaCo0.4Fe0.4Zr0.2O3-δ钙钛矿烧结温度较高,同时锆(Zr)的离子半径比较大,较难进入到立方钙钛矿的晶格中以至于很难形成纯相钙钛矿结构,我们通过采用具有稳定化学价态且离子半径较小的锌(Zn)逐步取代BaCo0.4Fe0.4Zr0.2O3-δ体系中的锆(Zr)来制备BaCo0.4Fe0.4ZnxZr0.2-xO3-δ(0≤x≤0.2)系列钙钛矿,通过XRD表征证明离子半径较小的Zn离子取代BaCo0.4Fe0.4Zr0.2O3-δ结构中离子半径较大的Zr离子,有利于改善钙钛矿相结构,避免生成杂相,同时通过O2-TPD测试表明BaCo0.4Fe0.4Zn0.2O3-δ在高温下低氧分压气氛中具有良好的结构稳定性。我们对BaCo0.4Fe0.4Zn0.2O3-δ膜片进行透氧性能研究测试,在Air/He梯度950 oC下,厚度为0.56 mm的膜片透氧量高达0.9 ml/min.cm2 (6.72×10-7 mol/cm2.s),通过Kim等人提出的扩散理论设计实验,实验结果表明BaCo0.4Fe0.4Zn0.2O3-δ膜片在厚度大于或等于0.56 mm情况下,透氧控制步骤为体相扩散过程,依据Wagner方程拟合数据作图发现在温度为900 oC附近,BaCo0.4Fe0.4Zn0.2O3-δ膜片的透氧控制步骤为体相扩散控制。在长达100小时的透氧测试过程没有发现透氧量有明显的下降,且通过对反应后的膜片的XRD分析表明膜片仍保持完整的钙钛矿结构。
     对具有高氧渗透能力的钙钛矿氧化物SrCo(1-y)TayO3-δ(y=0.0, 0.01, 0.05, 0.1, 0.2, 0.3)中钽掺杂对相结构、高温氧脱附(O2-TPD)、高温氢还原(H2-TPR)和氧渗透性能的影响进行研究,结果表明,随着钽掺杂量的增加,SrCo(1-y)TayO3-δ的室温钙钛矿相结构发生了六方相—立方钙钛矿相—立方钙钛矿相+Brownmillerite相的变化,并得出SrCo0.9Ta0.1O3-δ的钙钛矿结构是最优的立方钙钛矿结构。紧接着我们对SrCo0.9Ta0.1O3-δ钙钛矿膜进行了SEM-EDX表征,发现通过等静压煅烧法可以制备致密的透氧膜,且膜片表面和截面的元素计量比符合SrCo0.9Ta0.1O3-δ钙钛矿的化学计量比,随后对膜片进行了透氧性能测试,研究结果表明在700– 950 oC温度范围内,在Air/He梯度下,SrCo0.9Ta0.1O3-δ膜片具有可观的透氧量,厚度为0.65 mm的膜片在950 oC下,透氧量高达2.07 ml/min.cm2 (1.63×10-6 mol/cm2.s)。另外通过模型理论分析发现,在膜片厚度大于0.65 mm,反应温度在900 -950 oC之间时,透氧过程主要受体相扩散控制。在长达520小时的透氧测试过程没有发现透氧量有明显的下降,透量能基本维持在1.70 - 1.96 ml/min·cm2之间,利用XRD表征手段对新鲜膜片和长期稳定性测试后的膜片进行了对比分析,发现长时间稳定操作后的SrCo0.9Ta0.1O3-δ膜片仍保持完整的钙钛矿结构,没有发生本质的变化,表现出优异的结构稳定性和足够的机械性能,是一种有潜在应用前景的透氧膜材料。
As a very important inorganic membrane, perovskite-type dense oxygen permeable membranes have great potential applications in high temperature gas separation and membrane catalytic reaction research. Specically, perovskite-type dense oxygen permeable membranes are promising in producing pure oxygen, cathode for SOFC (solid oxide fuel cell) and chemical reactor. For practical application, these materials were required to have high oxygen permeability as well as sustainable structural stability to withstand harsh conditions. However, the present perovskite-type mixed-conducting oxides either showed high oxygen permeability but with poor structural and thermochemical stability in reducing atmosphere or showed high stability but poor oxygen permeation ability, and ideal materials are very few, therefore, it is a critical problem to develop novel materials both with high oxygen permeability and high structure stability, and this is also my thesis’s purpose.
     Based on the previous work, the present study was to exploited new mixed-conducting perovksite-type membrane materials for oxygen permeation with the aids of XRD, SEM-EDX, TG-DSC, O2-TPD and H2-TPR analysis.
     It was found that it was difficult to synthesize the pure phase BaCo0.4Fe0.4Zr0.2O3-δsince the Zr4+ ion is relatively large for the occupation of the B-site of the perovskite structure, therefore Zn which exhibits constant state was chosen to substitute Zr in BaCo0.4Fe0.4Zr0.2O3-δperovskite, From the XRD analysis, it is proved that the doping of B site of the perovskite structure with a divalent metal like zinc leads to the elimination of nonstoichiometric oxygen variations and lattice expansion of oxygen,from the O2-TPD it can be seen that BaCo0.4Fe0.4Zn0.2O3-δperovskite keep very good structure stability under high temperature and low oxygen partial pressure. Oxygen permeation test was investigated by the gas chromatography, an oxygen permeation flux of 0.9 ml/min.cm2 (6.72×10-7 mol/cm2.s) was found at 950 ?C with a membrane thickness of 0.56 mm. It was also found out that the oxygen permeation was controlled by the bulk diffusion under the experimental conditions. The membrane was steadily operated for more than 100 h in the oxygen permeation test. The XRD analysis after long term test proved that membrane still kept perovskite structure without been destroyed.
     The effects of Ta ion doping on the structure,high temperature oxygen desorption(O2-TPD), high temperature hydrogen reduction and oxygen transporting properties of SrCo(1-y)TayO3-δ(y=0.0, 0.01, 0.05, 0.1, 0.2, 0.3)were investigated. The perovskite phase structure of the as prepared SrCo(1-y)TayO3-δwas shown to change in the sequence of the hexagonal– cubic– cubic + browmnillerite as Ta ion content y increased. It was found that SrCo0.9Ta0.1O3-δpossessed the most optimized perovskite phase structure. The SrCo0.9Ta0.1O3-δmembrane was investigated by SEM-EDX analysis, it was found that membrane was dense and the compositions both on the surface and the cross agreed with SrCo0.9Ta0.1O3-δstoichiometry. Oxygen permeation test was performed within the temperature range of 700 - 950 oC, and the oxygen permeation flux of 2.07 ml/min·cm2 (1.63×10-6 mol/cm2.s)was obtained at 950°C with a thickness of 0.65 mm. It was found that the oxygen permeation of SrCo0.9Ta0.1O3-δmembrane disk were controlled by the bulk diffusion under the research conditions. The oxygen permeation fluxes varied within a very narrow range, i.e., from 1.70 to 1.96 ml/min·cm2 in the entire 520 h long-term operation. The XRD analysis of the spent membrane showed that the perovskite structure had been well preserved after the long-term permeation test both in the air feed gas side and He sweep gas side which indicated that SrCo0.9Ta0.1O3-δceramic membrane was a promising material used in high-temperature oxygen separation.
引文
[1]International Energy Outlook,Energy Information Administration [A],U.S.A., 2004
    [2]Teraoka Y., Zhang H.M., Furukawa S., et al. Oxygen Permeation through Perovskite-type Oxides [J]. Chem.Lett.,1985,167(11):1743-1746
    [3]Bouwmeester H. J. M., Burggraaf A.J. Dense Ceramic Membranes for Oxygen Separation. Fundamentals of Inorganic Membrane Science and Technology, Elsevier: Amsterdam, 1996, 435-515
    [4]Steele B.C.H. Oxygen Ion Conductors and Their Technological Applications [J]. Mater.Sci.Eng.1992, B 13:79-87
    [5]Balachandran U., Ma B., Maiya P.S., et al. Development of Mixed-Conducting Oxides for Gas Separation [J]. Solid State Ionics, 1998,108:363-370
    [6]Yasumoto K., Inagaki Y., Shiono M., et al. An (La,Sr)(Co,Cu)O3-δcathode for reduced temperature SOFCs [J]. Solid State Ionics, 2002,148:545-549
    [7]Wen T.L., Wang D., Chen M., et al. Materials research for planar SOFC Stack [J]. Solid State Ionics, 2002,148:513-519
    [8]Jin W., Li S., Huang P, et al. Tubular Lanthanum Cobaltite Perovskite-Type Membrane Reactors for Partial Oxidation of Methane to Syngas [J]. J.Membr.Sci., 166(1):13-22
    [9]Xu S.J., Thomson W.J. Perovskite-type Oxide Membranes for the Oxidative Coupling of Methane [J]. AIChE J., 1997,43:2731-2740
    [10]Balachandran U., Dusek J.T., Sweeney S.M., et al. Dense Ceramic Membranes for Partial Oxidation of Methane to Syngas [J]. Appl.Catal.A:General, 1995, 133:19-29
    [11]Tsai C.Y., Dixon A.G., Moser W.R., et al. Dense Perovskite Membrane Reactors for the Partial Oxidation of Methane to Syngas [J]. AIChE J., 1997,43:2741-2750
    [12]Jin W., Gu X., Li S., et al. Experimental and Simulation Study on a Catalyst Packed Tubular Dense Membrane Reactor for Partial Oxidation of Methane toSyngas [J]. Chem.Eng.Sci., 2000,55(14):2617-2625
    [13]Wang H.H., Schiestel T., Tablet C., et al. Mixed oxygen ion and electron conducting hollow fiber membranes for oxygen separation [J]. Solid State Ionics, 2006,177 (26-32): 2255-2259
    [14]Smith A.R., Klosek J. A review of air separation technologies and their Integration with energy conversion Processes [J]. Fuel Process Technology, 2001, 70(2):115-134
    [15]Wang H.H, Cong Y., Yang W.S., Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δoxygen permeable membrane [J]. Journal of Membrane Science, 2002, 210: 259-271
    [16]Bouwmeester H.J.M., Dense ceramic membranes for methane conversion [J]. Catalysis Today, 2003, 82:141-150
    [17]Tong J.H., Yang W.S., Hiroyuki S., et al., Initiation of oxygen permeation and POM reaction in different mixed conducting ceramic membrane reactors [J]. Catalysis Today, 2006,118:144-150
    [18]Wang H.H, Tablet C., Schiestel T., et al. Hollow fiber membrane reactors for the oxidative activation of ethane [J]. Catalysis Today, 2006, 118 (1-2):98-103
    [19]Wilhelm D.J., Simbeek D.R., Karp A.D., et al. Syngas production for gas-to-liquids applications: technologies, issues and outlook [J]. Fuel Process. Technology, 2001, 71(1-3):139-148
    [20]Dyer P.N., Richardsa R.E., Russeka S.L.,et al. Ion transport membrane technology for oxygen separation and syngas Production [J]. Solid State Ionics, 2000, 134(1-2):21-33
    [21]Griffin T., Sundkvist S.G., Asen K., et al. Advanced zero emissions gas turbine Power Plant [J]. J.Engin.GasTurb.Power, 2005,127:81-88
    [22]Kingery W.D., Bowen H.K., Uhlmann D.R. Introduction to Ceramics [M]. John Wiley& Sons, Toronto, 1976.
    [23]West A.R. Solid State Chemistry and Its Applications [M]. John Wiley & Sons, Chichester, 1984.
    [24]Kofstad P. Nonstoichiometry, Diffusion and Electrical Conductivity inbinaryMetal Oxides [M]. Wiley-Interscience, Toronto, 1972
    [25]Steele B.C.H. Solid state chemistry, in: L.E.J.Roberts (Ed.), Inorganic Chemistry [M]. vol. 10, Butterworths, London, 1972
    [26]Diness A.M., Roy A.M. Experimental confirmation of major change of defect type with temperature and composition in ionic solids [J]. Solid State Communication. 1965, 3(6):123
    [27]Teraoka Y., Nobunaga T., Yamazoe N. Effect of Cation Substitution on the Oxygen semipermeability of perovskite-type Oxides [J]. Chem Lett., (1988) 503-506
    [28]Teraoka Y., Nobunaga T., Okamoto K., Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability [J]. Solid State Ionics, 1991, 48(3-4):207-212
    [29]Weber W.J., Stevenson J.W., Armstrong T.R. et al. Processing and electrochemical properties of Mixed conducting La1-xAxCo1-yFeyO3-δ(A=Sr,Ca) n:G.-A. Nazri ,J.M.taracson and M.S.Schreiber (eds) Materials Research Society symposium Proceedings [J]. Solid State Ionics, 1995, 369:395-400
    [30]Inaba H., Tagawa H. Ceria-based solid electrolytes[J]. Solid State Ionies, 1996, 83(1-2):1-16
    [31]Goodenough J.B. Oxide ion electrolytes [J]. Annu.Rev.Mater.Res., 2003, 33:91-128
    [32]Boivin J.C., Mairesse G. Recent Material Developments in Fast Oxide Ion conductors [J]. Chem. Mater.,1998, 10(10):2870-2888
    [33]Kharton V.V., Naumovich E.N., Yaremchenko A.A.,et al. Research on the electrochemistry of oxygen ion conductors in the former Soviet Union IV, Bismuth oxide-based ceramics [J]. J.Solid State Electrochem., 2001,5(3):160-187
    [34]Bhalla A.S., Guo R., Roy R. The perovskite structure - a review of its role in ceramic science and technology [J]. Mater. Res. Innov., 2000, 4 (1): 3-26
    [35]Muller O., Roy R. The Major Ternary Structural Families [M], Springer-Verlag, Berlin, 1974
    [36]Goldschmidt V.M. Geochemische Verterlungsgesetze der Elemente [M], Norske Videnskap, Oslo, 1927
    [37]Kilner J.A., Brook R.J. A Study of Oxygen Ion Conductivity in Doped Nonstoichiometric Oxides [J]. Solid State Ionics, 1982,6:237-252
    [38]Cherry M., Islam M.S., Catlow C.R.A. Oxygen ion migration in Perovskite-type oxides [J]. J.Solid state Chem.,1995, 118(1):125-132
    [39]Cook R.L., Sammells A.F. On the Systematic Selection of Perovskite Solid Electrolytes for Intermediate Temperature Fuel Cells [J]. Solid State Ionics 1991, 45:311-321
    [40]Sammells A.F., Cook R.L., White J.H. Rational Selection of Advanced Solid Electrolytes for Intermediate Temperature Fuel Cells [J]. Solid State Ionics, 1992,52:111-123
    [41]Cherry M., Islam M.S., Catlow. C.R.A. Oxygen ion migration in Perovskite-type oxides [J]. J.Solid state Chem.1995, 118(1):125-132
    [42]Sammells A.F., Cook R.L., White J.H. Rational Selection of Advanced Solid Electrolytes for Intermediate Temperature Fuel Cells [J]. Solid State Ionics,1992,52:111-123
    [43]Rao C.N.R., Raveau B. Transition metal oxides [M]. 2nd Edition,Wiley-VCH, New York,1998
    [44]Wagner C. Equations for transport in solid oxides and sulfides of transition metals [J]. Prog.Solid State Chem.1975, 10(1):3-16
    [45]Steele B.C.H. Oxygen Ion Conductors and Their Technological Applications [J]. Mater.Sci.Eng.1992, B 13:79-87
    [46]Cater S., Seluk A., Chater R.J., et al. Oxygen-Transport in Selected Nostoichiometeric Perovsktie-Structure Oxides [J]. Solid State Ionics, 1992, 53:597-605
    [47]Bouwmeester H.J.M., Kruidhof H., Burggraaf A.J. Importance of the Surface Exchange Kinetics as Rate Limiting Step in Oxygen Permeation Through Mixed-Conducting Oxides [J]. Solid State Ionics, 1994, 72:185-194
    [48]Kwon Y.T., Lee I.M., Lee W.I.,et al. Eeffct of sol-Gel Precursors on the GrainStructure of PZT Thin Films [j]. Mater. Res. Bull., 1999,34(5):749-760
    [49]PhiliP J., Kutty T.R.N. PerParation of Manganite Peorvskites by a wet-Chemical Method Involving a Redox Reaction and Their Characterization [J]. Mater Chem. Phys.,2000,63 (3):218-225
    [50]Raymond E.S., Tomas E.M. Perovskite by Design: A Toolbox of solid-State Reactions [J]. Chem. Mater., 2002,14:1455-1471
    [51]Dias A., Buono V.T.L., Ciminelli V.S.T., et al. Hydrothermal Synthesis and Sintering of Electroceramics [J]. J. Eur. Ceram. Soc., 1999,19 (6-7):1027-1031
    [52]Urek S., Drofenik M. The Hydrothermal Synthesis of BaTiO3 Fine Particles from Hydroxide-Alkoxide Precursors [J]. J. Eur. Ceram. Soc.,1998,18 (4):279-286
    [53]Huo D., Zhang J., Xu Z., et al. Synthesis of Mixed Conducting Ceramic Oxides SrFeCo0.5Oy powders by Hybrid Microwave Heating [J]. J.Am.Ceram.Soc., 2002,85(2):510-512
    [54]Fumo D.A., Jurado J.R., Segadaes A.M., et al. Combustion Synthesis of Iron-Substituted Strontium Titanate Perovskite [J]. Mater Res. Bull., 1997,32 (10):1459-1470
    [55]Poth J., Haberkom R., Beck H.P. Combustion-Synthesis of SrTiO3.PartII. Sintering Behavior and Surface Characterization [J]. J. Eur. Ceram. Soc., 2000,20(6):715-723
    [56]Schaak R. E., Mallouk T.E. Topochemical Synthesis of Three-Dimensional Perovskite from Lamellar Precursors [J]. J.Am.Chem.Soc., 2000,122:2798-2803
    [57]傅希贤,孙艺环,王俊珍,等. La Fe1 ? xCuxO3光催化降解水溶性染料的活性[J].催化学报,1999,20(6):623-627
    [58]Chung Y.T. Perovskite dense membrane reactors for partial oxidation of methane to synthesis gas [D]. PhD dissertation, Worcester Polytechnic Institute, 1996
    [59]Dong H., Shao Z.P., Xiong G.X., et al. Investigation on POM reaction in a novel perovskite membrane reactor [J]. Catal.Today., 2001, 67:3-13
    [60]Tong J.H., Yang W.S., Zhu B.C., et al. Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation [J]. J.Membr.Sci, 2002, 203:175-189
    [61]Wang H.H., Tablet C., Feldhoff A., et al. A Cobalt-free oxygen-permeable membrane based on the perovskite-type oxide BaSrZnFeO [J], Advanced Materials, 2005,17:1785-1788
    [62]Shao Z.P., Xiong G.X., Cong Y., et al. Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8?xO3?? ceramic membranes [J]. J. Membr. Sci., 2000,164 (1-2):167-176
    [63]Chen X.Z., Liu H.F., Wei Y.Y., et al. A novel zincum-doped perovskite-type ceramic membrane for oxygen separation [J]. Journal of Alloys and Compounds, 2009,484: 386-389
    [64]Kim S., Yang Y.L., Jacobson A.J., et al. Oxygen surface exchange in mixed ionic electronic conductor membranes [J]. Solid State Ionics, 1999, 121: 31-33
    [65]Kim S., Yang Y.L., Christffersen R., et al. Determination of oxygen permeation kinetics in a ceramic membrane based on the composition SrFeCo0.5O3.25-δ[J]. Solid State Ionics, 1998, 109:187-196
    [66]Bouwmeester H.J.M., Burggraaf A.J. Dense Ceramic Membranes for Oxygen Separation.Fundamentals of Inorganic Membrane Science and Technology, Elsevier:Amsterdam,1996
    [67]Balachandran U., Ma B., Maiya P.S., et al. Development of Mixed-Conducting Oxides for Gas Separation [J]. Solid State Ionics, 1998,108:363-370
    [68]Steele B.C.H. Oxygen Ion Conductors and Their Technological Applications [J]. Mater.Sci.Eng., 1992,13:79-87
    [69]Ten E.J.E., Bouwmeester H.J.M., Verweij H. Oxidative Coupling of Methane in a Mixed-Conducting Perovskite Membrane Reactor [J]. Appl.Catal.A, 1995, 130: 195-212
    [70]Xu S.J., Thomson W.J. Perovskite-Type Oxide Membranes for the Oxidative Coupling of Methane [J]. AIChE J., 1997,43(11A):2731-2740
    [71]Teraoka Y., Zhang H.M., Furukawa S., et al. Oxygen permeation through perovskite-type oxides [J]. Chem. Lett., 1985,167(11):1743-1746
    [72]Li S.G., Jing W.Q.,Huang P., et al. Perovskite-related ZrO2-doped SrCo0.4Fe0.6O3?δmembrane for oxygen permeation [J]. AICHE J., 1999, 45 (2): 276-284
    [73]Nagai T., Ito W., Sakon T. Relationship between cation substitution and stability of perovskite structure in SrCoO3–δ-based mixed conductors [J]. Solid State Ionics, 2007,177:3433–3444
    [74]Kun Z, Ran Z., Lei G., et al. Systematic investigation on new SrCo1?yNbyO3?d ceramic membranes with high oxygen semi-permeability [J]. Journal of Membrane Science, 2008, 323:436-443
    [75]Luo H.X., Tian B.B., WeiY.Y., et al. Oxygen permeability and structural stability of a novel tantalum-doped perovskite BaCo0.7Fe0.2Ta0.1O3-δ[J]. AICHE J., 2010, 56:604-610
    [76]Takeda Y., Kanno R., Takada T., et al. Zeitschrift fuer Anorganische und Allgemeine Chemie, 1986, 540/541:259-267
    [77]Gibb T.C. Magnetic exchange interactions in Perovskite solid solutions.Part8.A study of the solid solution SrFe1-xCoxO3-y by iron-57 Moessbauer spectroscopy [J]. J. Chem. Soe. Dalton Trnas. (1987)1419
    [78]Kokhanovskii L.V., Vashuk V.V., Ol’shevskaya O.P., et al. Oxygen Stoichiometry and phase transitions of SrCo(1-x)FexO3-δ[J]. Inorg. Mater., 2001,37(7):730-736
    [79]Shao Z.P., Xiong G.X., Cong Y., et al. Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8?xO3?? ceramic membranes [J]. J. Membr. Sci., 2000 164 (1-2):167-176
    [80]Tong J.H., Yang W.S., Zhu B., et al. Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation [J]. J. Membr. Sci., 2002,203(1-2):175-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700