LaP_5O_(14)粉体的溶胶—凝胶法合成及磷扩散源片研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅晶片掺杂用固态磷扩散源是一种片状的、常温下性能稳定、在高温下能分解并稳定释放出P2O5的功能陶瓷材料。本文采用溶胶-凝胶法合成了LaP5O14粉体,并以该粉体为原料,通过常压烧结制备了硅晶片掺杂用固态磷扩散源片。采用DSC-TG、DTA-TG、XRD、SEM等测试手段对试验中的样品进行表征,得到了以下结论:
     在800℃保温5h的煅烧制度下,合成了以柱状结构LaP5O14为主晶相的粉体,晶体尺寸为10μm;LaP5O14粉体能够在850℃分解并释均匀放出P2O5,失重量与时间近似于线性关系,粉体在850℃保温5h的失重量与LaP5O14含量成正比。同时研究表明,随着煅烧温度的提高,LaP5O14的含量呈现先增加后减少的趋势,晶体尺寸先增大后变小;随着保温时间的延长,LaP5O14含量增加,晶体尺寸增大。
     以LaP5O14粉体为原料加入磷酸盐玻璃作为烧结助剂,在900℃保温1h的烧结制度下制备了磷扩散源片,随着烧结温度的提高,磷扩散源样品中LaP5O14分解、含量减少,气孔率先减小后增大,晶粒尺寸和密度先增大后减小,磷扩散源片的失重速率降低;随着保温时间的延长,磷扩散源样品中LaP5O14分解、含量减少,气孔率降低,晶粒尺寸增大,磷扩散源片的失重速率降低;磷酸盐玻璃的加入对磷扩散源片的组成没有影响,但随着加入玻璃量的增加,磷扩散源片气孔率和软化点降低,密度先增加后减小;随着扩散温度的提高,磷扩散源片的失重速率提高。
Solid-state phosphorus diffusion source for doping silicon wafer was a functional material which was flaky,stable at room temperature,and it can be decomposed and stablely released P2O5 at high temperature. In this artile, Solid phosphorus diffusion source chips were produced by sintering method using LaP5O14 powder as materials which was prepared by sol-gel process. The samples were characterized and analyzed by DSC-TG、DTA-TG、XPD、SEM.The results shows:
     The LaP5O14 power can be obtained by calcinateing the gelatinate at 800℃for 5 hours, and the obtained LaP5O14 is about 10μm in length. P2O5 can be released from the LaP5O14 powder with constant rate at 850℃, and there was a good linear relationship between the weight loss of the powder and the heat preservation time, the percent of the powder'weight loss at 850℃for 5h was proportional to the content of LaP5O14. With the calcinateing temperature increasing,the content and the grain size of LaP5O14 was increased and then decreased. Along with the holding time growing, the content and the grain size of LaP5O14 was increased.
     The chips were produced by liquid state sintering using LaP5O14 powder,at 900℃for 1h,adding 6% phosphorus glasses as aids. As the growth of sintering temperature,the content of LaP5O14 was decreased,the gas porosity was increased and then decreased, the grain size and the density were decreased and then increased;Along with the holding time increasing, the content of LaP5O14 and the density were decreased, the grain size was increased. But with adding number of phosphorus glasses, the gas porosity and the sofening temperature were decreased,the density was increased and then decreased.
引文
[1]关旭东.硅集成电路工艺基础.北京:北京大学出版社,2003:72-75
    [2]翼海英,申伸等.半导体器件开管扩散工艺,原子能科学技术,1998,32(2):136-139
    [3]冒慧敏,张东红.高浓度磷扩散的模拟,固体电子学研究与进展,1998,18(3):334-339
    [4]郭天雷,吴春瑜.用于电力器件的磷扩散模型,辽宁大学学报,2004,31(4):358-362
    [5]P2O5-Al2O3-SiO2系统微晶玻璃磷扩散源的制备及其性能研究.[东华大学硕士学位论文].上海,东华大学:2007,1-6
    [6]James E R.Low Temperature P2O5 oxide diffusion source U.S.patent.5656541
    [7]任书霞,杨丹.溶胶凝胶法在纳米粉体制备中的应用.中国粉体技术.2006,1:48-50
    [8]刘素琴,唐联兴.溶胶-凝胶法制备Li3V2(PO4)及其性能研究.无机化学学报,2006,6(22):1076-1071
    [9]李勃,周济.Sol-Gel制备B2O3-P2O5-SiO2系低介玻璃陶瓷,无机材料学报.2002:6(15):977-981
    [10]沈志刚,陈建峰.无机纳米粉体制造技术的现状及展望.无机盐工业,2002,34(3):18-22
    [11]赵婧,李怀祥,溶胶-凝胶法制备无机纳米材料的研究现状.微纳米电子技术,2005,(11):500-505
    [12]黄剑锋,溶胶凝胶法原理与技术.北京:化学工业出版社.2005:1-30
    [13]赵鹏,姚点.溶胶-凝胶法制备的钛酸钡铁电微晶玻璃的显微结构与介电特性.硅酸盐学报,2005,33(10):1208-1214
    [14]刘骥,郑冲,陈建峰.碳酸锶纳米粉体的制备研究.无机盐工业,1999,31(6):3-4
    [15]梁亚红,竹涛,马广大.溶胶-凝胶法制备纳米Ti02薄膜的研究.西安建筑科技大学学报(自然科学版),2006,38(6):799-803
    [16]高朋召,王红洁,金志浩.Si02溶胶-凝胶转变过程的动力学研究及应用.复合材料学报,2003,20(4):122-127
    [17]朱晓丽,王迎军,叶建东.纳米羟基磷灰石的溶胶-凝胶制备及其特性研究.硅酸盐通报,2003,2:77-80
    [18]Wang Ruigang,Pan Wei.Synthesis and sintering of LaPO4 powderand its application.Materials Chemistry and Physics,2003,79:30-36
    [19]Z.Cao,B I Lee Thermal behavior of sol-gel derived phosphate ceramics.Journal of Physics and Chemistry of Solids,2000,61:1677-1685
    [20]王茂林,王新刚,杨志懋.溶胶-凝胶法制备La203纳米粉体.稀有金属材料与工程,2005,34(3):425-428
    [21]王飞,耿浩然,张昭良.溶胶-凝胶法制备SiO2-P2O5-TiO2粉体.济南大学学报,2007,21(4):367-369
    [22]张邦强,敖青,李德辉.溶胶-凝胶法制备掺钙铬酸镧超细粉的工艺研究.中国稀土学报,2004,22(6):786-790
    [23]李启甲,于宝刚.溶胶-凝胶法制备P2O5-SiO2快质子导电玻璃.玻璃与搪瓷,2004,1(32):27-30
    [24]Atsunori Matsuda,Yoshitaka Nono.Porton conductivity of acid-impregnated mesoporous silica gels prepared usong surfactants as a template.Solid state ionics,2001,4(145):135-140
    [25]B I Lee,W D Samuels.Thermal behavior of sol-gel derived phosphate ceramics. Journal of Physics and Chemistry of Solids,2000,61:1677-1685
    [26]陆佩文.无机材料科学基础.武汉:武汉理工大学出版社,1996:96-100
    [27]Nakajima A,Messing G.L.Liquid phase sintering of aluminacoated with magnesium aluminosilicate glass. J. Am. Ceram. Soc.,1996,79(12):199-210
    [28]李国军,黄校先.烧成温度对Al2O3/Ni复合材料的致密化、物相组成和显微结构的影响.复合材料学报.2003,2(20):58-63
    [29]彭晓峰,黄校先,张玉峰.高性能细晶粒氧化铝陶瓷材料的制备与研究.无机材料学报,1998,13(3):327-332
    [30]江东亮,王大千.热压烧结碳化硅陶瓷材料的研究.硅酸盐学报,1981,9(2):133-42
    [31]Lin B W,Imai M, Yano T. Hot pressing of β-SiC powder with Al-B-C additives. J. Am.Ceram.Soc.,1986,69(4):67-68
    [32]Lang F F. Hot pressing behaviour of silicon carbide powderswith additives of aluminilum oxide. J.Mat.Sci.,1975,10(2):314
    [33]Chen D J,Mayo M J. Rapid rate sintering of nanocrystalline ZrO2-3mol% Y2O3. J. Am.Ceram.Soc.,1996,79:906-912
    [34]W G Pfann.Semiconductor Signal Translating Device.U.S.Patent,1952,597(2):28
    [35]陈炳若.发射结磷扩散方法改进,半导体技术,1998,23(2):32-34
    [36]Carl H.Murtry,Solid diffusion sources for phosphorus doping,U.S.Patent, 3849344
    [37]Thomas A.Myles,Hot-pressed solid diffusion sources for phosphorus,U.S. Patent, 3954525
    [38]G U Njigake,Solid diffusion sources for phosphorus doping,U.S.Patent,4033790
    [39]Gary R.Pickrell,High temperature phosphorus oxide diffusion source,U.S.Patent, 5629234
    [40]Gary R.Piekrell,Solid diffusion Sources of GD oxide/P2O5 compound and method of making silicon wafer,U.S.Patent,4846902
    [41]Yorihiro Murata,Solid diffusion sources for phosPphorus doping,U.S.Patent, 3852086
    [42]Ronald A.Powell,RedwoodCity,Calif,Mehtod for doping semiconductor by rapid thermal proeessing of solid diffusion sources,U.S.Patent,4661177
    [43]B I Boltake. Diffusion in semiconductors. New York:Academic,1963,58-60
    [44]D Shaw. Atomic Diffusion in Semiconductors. New York:Plenum,1973,112-120
    [45]黄昆.固体物理学.北京:人民教育出版社,1966,40-44
    [46]Qifeng Shu,Jianhua Liu.Investigation on the thermal decomposition of aged La2O3.Journal of University of Science and Technology Beijing. 2006,5(13):456-460
    [47]Kaczmarek F A,Kosmina M B.Growth of erbium pentaphosphate monocrystals. Crystal Growth,1995,52:238-240
    [48]肖浦英.晶闸管中的杂质缺陷.电力电子技术,1988,2:61-68
    [49]郑锐,席生岐,周敬恩.A1N低温烧结助剂的研究现状.稀有金属工程.2001,5(21):376-378
    [50]马微微.磷酸盐微晶玻璃的制备.[湖南大学硕士学位论文].长沙,湖南大学,2008:29-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700