CaO-SrO-Li_2O-Sm_2O_3-TiO_2微波介质陶瓷介电性能及低温烧结研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用传统固相法制备了(Ca_(1-x)Sr_x)_(1-y)(Li_(1/2)Sm_(1/2))_yTiO_3(CSLST-y-x)基微波介质陶瓷,选用低熔点玻璃和氧化物为烧结助剂,研究各种烧结助剂对该微波介质陶瓷体系烧结性能、晶相组成、显微结构及微波介电性能的影响,并揭示低温烧结的内在机理。
     研究发现在y = 0.7~0.8,x=0~1/10范围内,CSLST-y-x体系均形成了单一的斜方钙钛矿结构,置换离子Sr~(2+)的掺杂不会改变陶瓷体系的晶体结构,但能使烧结温度降低近200℃;y = 0.7,0.75,0.8时,陶瓷的最佳烧结温度分别为1 250,1 200,1 175℃;在烧结温度范围内,陶瓷的介电常数εr,品质因素Qf,谐振频率温度系数τf随y增大而减小;CSLST-0.7-1/16陶瓷在1 250℃保温5h具有良好的微波介电性能:εr= 118.3,Qf= 2989 GHz,τf= 47.49 ppm/℃;CSLST-0.75-1/16陶瓷在1200℃下保温5h陶瓷具有优良的微波介电性能:εr= 97.2,Qf= 2 490 GHz,τf= 14.74 ppm/℃。
     选用低熔点玻璃Li2O-B2O3-SiO2-CaO-Al2O3(LBSCA)、复合氧化物B2O3-CuO(BC)和B2O3-CuO-Li_2CO_3(BCL)为烧结助剂,对CSLST-y-1/16陶瓷进行了低温烧结性能研究。结果表明:烧结助剂的加入,不会改变CSLST-y-1/16陶瓷体系的主晶相,但陶瓷微波介电性能降低。(1)添加5.0~15.0 wt% LBSCA低熔点玻璃,可将CSLST-0.75-1/16陶瓷的烧结温度降低近300℃;随LBSCA添加量的增加,陶瓷的εr、Qf和τf值均下降;LBSCA添加量为5.0 wt%时,可在1 000℃烧结,陶瓷具有优良的微波介电性能:εr = 84.7,Qf = 2 446 GHz,τf = -12.48 ppm/℃;(2)添加2.0~14.0 wt% BC,CSLST-0.75-1/16陶瓷的烧结温度由1 200℃降低到1 000℃;BC添加量为5wt%时,1 000℃烧结时,具有较佳的微波介电性能:εr = 80.3,Qf = 1 380 GHz,τf = -32.89 ppm/℃;(3)添加BCL复合助剂可使CSLST-0.7-1/16陶瓷的烧结温度从1 250℃降低到950℃,当BC添加量为5wt%时,Li_2CO_3添加量为0.5 wt%时CSLST-0.7-1/16陶瓷具有优良的微波介电性能:εr =84.7,Qf = 1 929 GHz,τf =28.76 ppm/℃。
     通过对CSLST-y-x陶瓷体系及其低温烧结的研究,获得了一种可低温烧结且性能优良的微波介质陶瓷。
(Ca_(1-x)Sr_x)_(1-y)(Li_(1/2)Sm_(1/2))_yTiO_3(CSLST-y-x) microwave dielectric ceramics were prepared by solid sate reaction technique in this dissertation. Using low melting point glass and oxide as sintering additives, the effects of different sintering aids on sintering characteristics, phase compositions, microstructures and dielectric properties of microwave ceramics were also studied. The low-temperature sintering properties and mechanisms of CSLST-y-x microwave dielectric ceramics were researched.
     The results show that a pure orthorhombic perovskite structure forms within the y range of 0.7-0.8 mol and x range of 0-1/10 mol; the best sintering temperatures of CSLST-y-x are 1 250, 1 200 and 1 175℃in the y range of 0.7, 0.75 and 0.8, respectively; the sintering temperatures of the Sr~(2+) modified the ceramics are efficiently decreased by nearly 200℃; the dielectric constantεr, the product of quality factor and resonance frequency (Qf ) value and the temperature coefficient of resonant frequencyτf decrease with the increasing of y content; the CSLST-0.7-1/16 ceramic sintered at 1 250℃for 5 h exhibits excellent microwave dielectric properties:εr= 118.3, Qf=2 989 GHz,τf= 47.49 ppm/℃; the CSLST-0.75-1/16 ceramic sintered at 1 200℃for 5 h exhibits excellent microwave dielectric properties:εr=97.2, Qf=2490 GHz,τf=14.74 ppm/℃.
     The low-temperature sintering of CSLST-y-1/16 microwave dielectric ceramics were researched by using Li2O-B2O3-SiO2-CaO-Al2O3(LBSCA)、B2O3-CuO (BC) and B2O3-CuO-Li_2CO_3 (BCL) as sintering additives. The results indicate that the major phase of additives-doped CSLST-y-1/16 ceramics is orthorhombic perovskite and dielectric properties of microwave ceramics are decreased. (1) The sintering temperature of CSLST-0.75-1/16 ceramics is reduced by 300℃using 5-15 wt% LBSCA as sintering additives. The sample of CSLST-0.75-1/16 with 5.0 wt% LBSCA sintered at 1 000℃for 5 h has excellent dielectric properties:εr = 84.7,Qf = 2 446 GHz,τf = -12.48 ppm/℃. (2) 2-14 wt% BC additives can effectively decrease the sintering temperature of CSLST-0.75-1/16 from 1 200℃to 1 000℃. The sample of CSLST-0.75-1/16 with 5 wt% BC sintered at 1 000℃for 5 h still has excellent dielectric properties:εr = 80.3, Qf = 1 380 GHz,τf = -32.89 ppm/℃. (3) BCL additives can effectively decrease the sintering temperature of CSLST-0.7-1/16 from 1 250℃to 1 000℃, The sample of CSLST-0.7-1/16 with 5 wt% BC and 0.5 wt% Li_2CO_3 can be sintered at 900℃for 5 h and still show excellent dielectric performance:εr = 84.7, Qf = 1 929 GHz,τf = 28.76 ppm/℃.
     A series of low-temprature sintering microwave dielectric ceramics with excellent dielectric properties would be achieved, based on the research of the microwave dielectric properties and the low-temperature sintering of CSLST-y-x ceramics.
引文
[1] Choy J H, Han Y S, Hwang S H, et al. Citrate Route to Sn-Doped BaTi4O9 with Microwave Dielectric Properties [J]. J Am Ceram Soc. 1998, 81(12): 3197-3204.
    [2] Wakino K, Nishikawa T, Ishikawa Y, et al. Dielectric resonator materials and their applications for mobile communication systems [J]. Br Ceram Trans J. 1990, 89(2): 39-43.
    [3] Wakino K, Recent development of dielectric resonator materials and filters in Japan [J]. Ferroelectrics. 1989, 91: 69-86.
    [4]李标珍,王筱珍,张绪礼.无机电介质[M].武昌:华中理工大学出版社. 1995. 154-166.
    [5]水启刚,微波与光导波技术[M].杭州:浙江大学出版社, 1994年.
    [6]向勇,谢道华. ABO3型氧化物的结构与性能及其应用[J].材料工程. 2000, 9: 15-18.
    [7]吕文中,张道礼.高εr微波介质陶瓷的结构、介电性能及其研究进展.功能材料[J], 2000, 31(6): 572-575.
    [8]黄永峰,李谦,黄金亮等.高介电常数微波介质陶瓷的发展及研究现状[J].硅酸盐通报. 2006, 25(4): 115-119.
    [9] Kell R C, Greenham A C, Olds G C E. High-permittivity temperature- stable dielectric ceramics with low microwave loss [J]. J Am Ceram Soc. 1973, 56(7): 352-354.
    [10] Takahashi H, Baka Y, Ezaki K, et al. Dielectric characteristics of (A1+1/2A3+1/2)TiO3 ceramics at microwave frequencies [J]. Jpn J Appl Phys. 1991, 30(9B): 2339-2342.
    [11] Ezaki K, Baba Y, Takahashi H, et al. Microwave dielectric properties of CaO-Li2O-Ln2O3-TiO2 ceramics [J]. Jpn J Appl Phys. 1993, 32(9B): 4319-4322.
    [12] Takahashi H, Baba Y, Ezaki K, et al. Microwave dielectric properties and crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3-TiO2 (Ln: lanthanide) ceramic system [J]. Jpn J Appl Phys. 1996, 35(9B): 5069-5073.
    [13] Woo S K, Ki H Y, Eung S K. Far-infrared reflectivity spectra of CaTiO3-Li1/2Sm1/2TiO3 microwave dielectrics [J]. Mater Res Bull. 1999, 34(14/15): 2309-2317.
    [14] Chen Y C, Cheng P S. Substitution of CaO by BaO to improve themicrowave dielectric properties of CaO-Li2O-Sm2O3-TiO2 ceramics [J]. Ceram Int. 2001, 27: 809-813.
    [15]郭倩. (Ba,Sr,Ca)TiO3基介质瓷的制备与研究[D].天津:天津大学. 2007: 2-3.
    [16] Kaino D, Funayama J, Yamaoka N. Electrical properties of a (Sr,Ca)TiO3 base ceramic varistor[J]. Jpn J Appl Phys, 1985, 24(Supplement 24-3): 120- 121.
    [17] Shannon R D. Dielectric polarizabilities of ions in oxides and fluorides [J]. J Appl Phys. 1993, 73(1): 348- 366.
    [18]李建英,李盛涛,庄严,等. SrTiO3双功能陶瓷中CaTiO3掺杂的研究[J].功能材料, 2000, 31(3): 281- 286.
    [19]缪卫国,吴音,周和平.无机材料学报[J], 1998,13(1): 47- 48.
    [20]邹秦,刘阳春,孟中岩. Ca2+离子对Na扩散(Sr,Ca)TiO3系电容-压敏陶瓷结构与性能的影响[J].西安交通大学学报, 1993, 27(5): 1- 2.
    [21] Myhra S, Riviere J C. Crystallographic changes in (CaxSr1-x)n+1 TinO3n+1 layer perovskites: XPS and XAES investigations [J]. J Mater Res, 1992, 7(2): 482-483.
    [22]肖谧,李玲霞,王洪儒,等. CaO-SrO-TiO2-Bi2O3系统介电性能研究[J].硅酸盐学报. 2000, 28 (3): 294-298.
    [23]庄严,朱卓雄,张绪礼. Sr/Ti及TiO2晶型对SrTiO3陶瓷性能的影响[J].电子元件与材料. 2002. 21(3).
    [24]雷德铭.掺Nb的SrTiO3内边界层高介电常数材料[J].无机材料学报. 1987, 2(3): 217-222.
    [25]张树人,王鸿.游离SrO和SiO2杂质在SrTiO3晶界层陶瓷材料烧结中的作用[J].无机材料学报. 1988, 3(I): 22-26.
    [26]范福康,唐晓霞. Ti/Sr比对SrTiO3晶界层电容器性能的影响[J].南京:化工学院报. 1989, 11(1): 8-13.
    [27]江涛,郭育源,江丽君,等.三价阳离子固溶的(Sr,Ca)TiO3基瓷的缺位结构与介电性能[J].电子元件与材料, 2001, 20(8): 3-6.
    [28]傅剑,李承恩,赵梅瑜,等.低温烧结PZT压电陶瓷研究进展[J].材料导报, 2001, 14 (1): 38-39.
    [29]李飞龙,黄金亮,杨留栓,等. Li2O-B2O3-SiO2掺杂低温烧结CLST陶瓷的介电性能[J].电子元件与材料, 2009, 28(5): 50-53.
    [30]黄永峰,李谦,黄金亮,等. Bi2O3掺入对CLST微波介质陶瓷性能的影响[J].电子元件与材料, 2006, 12: 51-52.
    [31] Yoon K H, Park M S, Cho J Y, et al. Effect of B2O3-Li2O on microwavedielectric properties of (Ca0.275Sm0.4Li0.25)TiO3 ceramics[J]. J Eur Ceram Soc, 2003, 23: 2423-2424.
    [32] Yongjun Gu, Jinliang Huang, Ying Wang. Low temperature firing of CaO-Li2O-Sm2O3-TiO2 ceramics with BaCu(B2O5) addition[J]. Solid State Commun. 2009. 149: 555-558.
    [33]张启龙,杨辉,童建喜.低温烧结Ca[(Li1/3Nb2/3)0.8Ti0.2]O3-δ微波介质陶瓷掺杂改性[J].陶瓷学报. 2006. 27(1): 43-46.
    [34] Choi J W, Kang C Y, Yoon S J, et al. Microwave dielectric properties of B2O3 doped Ca[(Li1/3Nb2/3 )0.9Ti0.1]O3-δceramics [J]. Ferroelectrics. 2001, 262: 167- 168.
    [35] Ha J Y, Choi J W, Yoon S J,et al, Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3-δceramics[J]. J Eur Ceram Soc. 2003, 23: 2413- 2414.
    [36] Tong J X, Zhang Q L, Yang H, et al. Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.84Ti0.16]O3-δceramics for LTCC application [J]. J Am Ceram Soc, 2007, 90: 845-846.
    [37] Liu P, Ogawa H, Kim E S, et al. Microwave dielectric properties of low-temperature sintered ceramics [J]. J Eur Ceram Soc. 2004, 24(6): 1761-1764.
    [38]童建喜,张启龙,杨辉,等.片式多层微波器件用Ca[(Li1/3Nb2/3)0.8 Ti0.2]O3-δ微波介质陶瓷的制备[J].稀有金属材料与工程, 2005. 34(6)1增刊: 812-815.
    [39] Tong J X, Zhang Q L, Yang H, et al. Low-temperahme firing and microwave dielectric properties of Ca[( Li1/3Nb2/3 )0.9 Ti0.1]O3-δCeramics with LiF addition [J]. Mater Lett, 2005, 59(26): 3252-3255.
    [40] Tong J X, Zhang Q L, Yang H, et al. Low-temperahme firing and microwave dielectric properties of Ca[(Li1/3Nb2/3 )0.84Ti0.16]O3-δceramics for LTCC applications [J]. J Am Ceram Soc. 2007, 90(3): 845-849.
    [41]张启龙.低温烧结微波介质陶瓷及多层片式带通滤波器的研究[D].杭州:浙江大学博士论文, 2004: 14-15.
    [42]童建喜.中介电常数低温共烧微波介质陶瓷及其器件研究[D].杭州:浙江大学博士论文, 2006: 15-16.
    [43]宋婷婷. CaO-Li2O-Sm2O3-TiO2微波介质陶瓷介电性能及低温烧结研究[D].景德镇,景德镇陶瓷学院硕士学位论文, 2008: 25-30.
    [44] Huang C L, Tsai J T. Effects of sintering temperature on CaO-Li2O-Sm2O3-TiO2 microwave dielectric ceramic [J]. Proc Natl Sci Coun. 2001, 25(5): 317-321.
    [45]刘维良,喻佑华.先进陶瓷工艺学[M].武汉:武汉理工大学出版社, 2004: 306-306.
    [46]曹春娥,顾幸勇.无机材料测试技术[M].武汉:武汉理工大学出版社. 2001: 13-17.
    [47]唐宗熙,张其勋.微波介质谐振器介电参数的测量[J].计量学报. 1996, 17(4): 297-309.
    [48]周洪庆,刘敏,杨南如,等.微波介质复介电系数测试理论及方法[J].硅酸盐通报. 1997, 6: 59-63.
    [49]唐宗熙.介质谐振器介电参数频响特性及频率温度系数的测量[J].计量学报. 2002, 23(1): 57-61.
    [50] Herbert J M. Ceramic Dielectrics and Capacitors [M]. NewYork: Gordon and Breach Science publishers, 1985: 264-284.
    [51]范福康,周洪庆.稀土掺杂和Ti/Sr比对SrTiO3电容器电参数的影响[J].电子元件与材料, 1990, 9l: 13-18.
    [52] Xu Baomin,Wang Hong, Yin Zhiwen. Study on Sintering SrTiO3, GBBL Capacitors at Low Temperature[C]. Presented at the 92nd Annual Meeting of the American Ceramic, Society, Dallas, Texas, 1990: 22- 26.
    [53]王评初,贾惠良.一种含钇的一次烧结SrTiO3 GBBL电容器用材料[J].无机材料学报. 1998, 13(6): 93-95.
    [54]李世普,特种陶瓷工艺学[M].武汉:武汉工业大学出版社. 1992: 185-190.
    [55]吕文中,张道礼,黎步银,等.高εr微波介质陶瓷的结构、介电性质及其研究进展[J].功能材料. 2000, 31(6): 572-575.
    [56] Nenasheva E A, Kartenko Artenko N F. High dielectric constant microwave ceramics [J]. J Eur Ceram Soc. 2001, 21(15): 2697-2701.
    [57]王浩.改性CaTiO3基微波介质陶瓷结构与介电性能的研究[D].武汉:武汉理工大学博士论文. 2004. 5: 61-61.
    [58] Shannon R D. Dielectric polarizabilities of ions in oxides and fluorides [J]. Acta Cryst. 1976, A32: 751-767.
    [59]何进,杨传仁.微波介质陶瓷材料综述[J].电子元件与材料. 1995, 14(2): 7-13.
    [60] Sagala D A, Nambu S. Microscopic calculation of dielectric loss at microwave frequencies for complexperovskite Ba(Zn1/3Ta2/3)O3 [J]. J AmCeram Soc. 1992, 75: 2573-2575.
    [61] Kuchiko S, Choi J W, Kim H J, et al. Microwave dielectric properties of CaTiO3-Ca(Al1/2Ta1/2)O3 ceramics [J]. J Am Ceram Soc. 1996, 79(10): 2739-2743.
    [62] Kajfea D. Temperature characterization of the dielectric-resonator materials [J]. J Eur Ceram Soc. 2001, 21(15): 2663-2667.
    [63]陆栋,蒋平,徐至中.固体物理学[M].上海:上海科学技术出版社, 2003: 245-246.
    [64] Colla E L, Reaney I M, Setter N. Effect of structral changes in complex perovskites on the temperature coefficient of the relative permittivity [J]. Jpn J Appl Phys, 1993, 74(5): 3414-3418.
    [65]张绪礼.电介质物理与微波介质陶瓷[J].压电与声光. 1997, 19(5): 29-33.
    [66]张绪礼,王筱珍,汤清华.微波介质陶瓷与器件[J].电子科技导报. 1997, (6): 315-320.
    [67] Kagata H, Inoue T, Kato J and Kameysma I. Low-fire bismuth-based dielectric ceramics for microwave use [J]. Jpn. J. Appl. Phys. 1992, 31(9B): 3152-3155.
    [68] Chio W, Kim K Y, Moon M R and Bae K S. Effects of Nd2O3 on the microwave dielectric properties use [J]. J Mater Res. 1992, 13(10), 2945-2949.
    [69]吴振则.无机材料物理性能[M].北京:清华大学出版社, 2005.
    [70] Park J. H., Choi Y. J., Park J. H., et al. Low-fire dielectric compositions with permittivity 20–60 for LTCC applications [J]. Mater Chem & Phys. 2004, 88(2-3): 308-312.
    [71]张迎春.铌钽酸盐微波介质陶瓷材料[M].北京:科学出版社. 2006: 3-7.
    [72] Kim H T, Kim S H, Nahm S, et al. Low-temperature sintering and microwave dielectric properties of zinc metatitante-rutile mixtures using boron [J]. J Am Ceram Soc, 1999, 82(11): 3043-3048.
    [73] Abdullaev, G. K. Rza-Zade, P. F. Mamedov, et al. Physicochemical study of lithium oxide-copper (II) oxide-boron oxide ternary system [J]. Russ J Inorg Chem. 1982, 27(7), 1837-1841.
    [74]丑修建,翟继卫,孙建英,等. B2O3-Li2O掺杂低温烧结Ba0.6Sr0.4TiO3陶瓷的介电性能[J].硅酸盐学报. 2007, 35(2): 149-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700