BNT微波介质陶瓷制备、低温烧结及电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波技术的发展,微波介质陶瓷谐振器、滤波器等在卫星电视、移动通讯、雷达、电子计算机以及现代医学等众多领域中都有着广泛的应用,因此对于微波介质陶瓷的研究引起了人们极大的兴趣。本论文研究了钨青铜结构高性能微波介质陶瓷(Ba6-3xNd8+2xTi18O54(x=2/3),BNT)的粉体制备工艺、低温烧结特性及其介电性能。
     BNT陶瓷固有烧结温度很高,达到1350oC,本文分别通过固相法和柠檬酸盐法制备BNT陶瓷粉体,并结合掺杂低温烧结助剂CuO-B2O3,和低熔点玻璃陶瓷粉CaO-B2O3-SiO2,研究了不同粉体制备工艺和不同掺杂剂对BNT陶瓷性能的影响。与固相法相比,使用柠檬酸盐法有利于BNT陶瓷原料在较低温度条件下析出主晶相,并可在较低的温度下烧结;掺杂不同的烧结助剂可以在低温下形成液相或玻璃相促进烧结,降低烧结温度。下面列出本次研究是主要结果:
     通过固相法合成BNT陶瓷粉体后掺杂不同含量CuO-B2O3可以使BNT微波介质陶瓷在950oC致密烧结,得到的最好微波介电性能为:εr=63,Q·f=5000GHz。通过运用柠檬酸盐法制备BNT陶瓷粉体、掺杂5wt%CuO-B2O3作为烧结助剂时,可以使BNT陶瓷的烧结温度降低到925oC,此时陶瓷的εr=63,Q·f=5300GHz。为有效降低BNT陶瓷的烧结温度同时维持较好的电学性能,在BNT陶瓷中引入CaO-B2O3-SiO2微晶玻璃作为烧结助剂。CaO-B2O3-SiO2在烧结后期会部分析晶成为陶瓷相,在降低了BNT陶瓷烧结温度的同时减少了对介电性能劣化的影响,添加2wt%CaO-B2O3-SiO2的BNT陶瓷在950oC时具有更为优良的介电性能:εr=68,Q·f=7400GHz。
With the development of microwave technology, dielectric resonators and filters with excellent properties which were made up of microwave dielectric ceramics are widely used in many fields, such as satellite communications, mobile phone, modern medicine, and so on. Thereby the study of microwave dielectric ceramic materials has abstracted much attention. The fundamental purpose of this thesis is to investigate the preparation technology, low temperature sintering behavior and microwave dielectric properties of Ba6-3xNd8+2xTi18O54(x=2/3,BNT) ceramics with tungsten bornze-type structure.
     BNT ceramics have a sintering temperature as high as 1350oC. The effects of different sintering aids and different preparation technologies on the electrical properties were investigated. The mixtures of CuO-B2O3 and CaO-B2O3-SiO2 were the main additives used as sintering aids. Both solid-state method and citrate sol-gel route were used for preparing ceramic powders. The principal experimental results can be concluded as follows:
     Firstly, BNT ceramics were prepared by conventional solid-state method. The XRD results show that BNT ceramics have tungsten bornze-type like structure. When using CuO-B2O3 as sintering aids, it can be seen that CuO-B2O3 co-doping has an effect on the densification behavior, microstructure and microwave dielectric properties of BNT ceramics. When the content of CuO-B2O3 is 3wt%, the BNT ceramics can be well sintered at 950 oC and exhibit the best densification behavior and microwave dielectirc properties as:εr=63,Q·f=5000GHz. Secondly, a combination of chemical route derived pure powders plus the addition of a small amount of sintering aids, CuO and B2O3 was employed to decrease the sintering temperature. For 5wt% CuO-B2O3 modified BNT samples, the overall properties ofεr=63, Q·f=5300GHz and sintering temperature 925 oC are acceptable for applications. At last, the CaO-B2O3-SiO2 glass-ceramic was added into the BNT ceramic as sintering aids for not only reducing the sintering temperature but keeping the microwave dielectric properties at a high level as well. CaO-B2O3-SiO2 glass-ceramic has a low melting temperature and some of them were crystallized to form ceramic phase after sintering. With 2wt% content of CaO-B2O3-SiO2, the BNT ceramics can be well sintered at 950oC and show a good microwave dielectric properties asεr=68,Q·f=7400GHz.
引文
[1] Richtmyer R. D., Dielectric resonators [J]. J. Appl. Phys., 1939, 10(6): 391-398.
    [2] Hakki B. W., Coleman P. D., A dielectric resonator method of measuring inductive capacities in the millimeter range [J]. IRE Trans. Microwave Theory Tech., 1960, 8: 402-410.
    [3] Bosman A. J., Havinga E. E., Temperature dependence of dielectric constants of cubic ionic compounds [J]. Phys. Rev., 1963, 129: 1593-1600.
    [4] Cohn S. B., Microwave bandpass filters containing High-Q dielectric resonators [J]. IEEE Trans. Microwave Theory Tech., 1968, 16: 218-227.
    [5]杨辉.微波介质陶瓷及器件研究进展[J].硅酸盐学报.2003.10:967-973.
    [6]何进,杨传仁.微波介质陶瓷材料综述[J].电子元件与材料,1995,14(2):7-13.
    [7]郭秀芬.陶瓷介质在微波技术中的应用[J].压电与声光,1990,12(6):40-47.
    [8] Liu S. J., Merrick V. A., Newman N., Structural, chemical and dielectric properties of ceramic injection moulded Ba(Zn1/3Ta2/3)O3 microwave dielectric ceramics [J]. J. Eur. Ceram. Soc., 2006, 26(15): 3273-3278.
    [9] Shimada T., Ichikawa K., Minemura T., et al. Temperature and frequency dependence of dielectric loss of Ba(Mg1/3Ta2/3)O3 microwave ceramics [J]. J. Eur. Ceram. Soc., 2010, 30: 331-334.
    [10] Koshy P., Kumari L. P., Sebastian M. T., Preparation, characterization and dielectric properties of Ba3 Ln3Ti5Nb5O30 (Ln=La,Nd) ceramics [J]. J. Mater. Sci. - Mater. Electron., 1998, 9: 43-45.
    [11] Rawn C. J., Birnie D. P., Bruck M. A., et al. Structural investigation of Ba6-3xLn8+2xTi18O54 (x=0.27, Ln=Sm) by single crystal X-ray diffraction in space group Pnma (No. 62) [J]. J. Mater. Res., 1998, 13(1): 187-196.
    [12]肖定全,杜若晰,熊雅玲,微波介质陶瓷的近期研究进展[J].1995,26(1):20-23.
    [13] Breeze J. D., Aupi X., Alford N. M., Ultralow loss polycrystalline alumina [J]. Appl. Phys. Lett., 2002, 81: 5021-5023.
    [14] Breeze J. D., Penn S. J., Poole M., et al. Layered Al2O3-TiO2 composite dielectric resonators [J]. Electron. Lett., 2000, 36: 883-884.
    [15] Ohsato H., Tsunooka T., Kan A., et al. Microwave-millimeterwave dielectric materials [J]. Key. Eng. Mater., 2004, 269: 195-198.
    [16] Ogawa H., Kan A., Ishihara S., et al. Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss [J]. J. Eur. Ceram. Soc., 2003, 23: 2485-2488.
    [17] Freer R., Microwave dielectric ceramics - an overview [J]. Silicates Industriels., 1993, 58: 191-197.
    [18] Huang C. L., Pan C. L., Hsu J. F., Dielectric properties of (1-x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramic system at microwave frequency [J]. Mater. Res. Bull., 2002, 37: 2483-2490.
    [19] Kan A., Ogawa H., Ohsato H., et al. Crystal structure of Y2Ba(Cu1-xZnx)O5 (x=0 to 1) solid solutions [J]. Mater. Lett., 2001, 49: 34-37.
    [20] Chen X. M., Xiao Y., Liu X. Q., et al. SrLnAlO4(Ln=Nd and Sm) microwave dielectric ceramics [J]. J. Electroceram., 2003, 10: 111-115.
    [21] Cho S. Y., Kim I. T., Hong K. S., Microwave dielectric properties and applications of rare-earth aluminates [J]. J. Mater. Res., 1999, 14: 114-119.
    [22] Matsumoto H., Tamura H., Wakino K., Ba(Ma,Ta)O3-BaSnO3 high Q dielectric resonator [J]. Jpn. J. Appl. Phys., 1991, 30: 2347-2349.
    [23] Barber D. J., Moulding K. M., Zhou J., et al. Structural order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics [J]. J. Mater. Sci., 1997, 32: 1531-1544.
    [24] Chen X. M., Liu D., Hou R. Z., et al. Microstructure and microwave dielectric characteristics of Ca(Zn1/3Nb2/3)O3 complex perovskite ceramics [J]. J. Am. Ceram. Soc., 2004, 87: 2208-2212.
    [25] Hirano S., Hayashi T., Hattori A., Chemical processing and microwave characteristics of (Zr,Sn)TiO4 microwave dielectrics [J]. J. Am. Ceram. Soc., 1991, 74: 1320-1324.
    [26] Takahashi J., Kageyama K., Kodaira K., Microwave dielectric properties of lanthanide titanate ceramics [J]. Jpn. J. Appl. Phys., 1993, 32: 4327-4331.
    [27] Bijumon P. V., Mohanan P., Sebastian M. T., High dielectric constant low loss microwave dielectric ceramics in the Ca5Nb2-xTaxTiO12 system [J]. Mater. Letters., 2003, 57: 1380-1384.
    [28] Janear B., Suvorov D., Valant M., et al. Characterization of CaTiO3-NdAlO3 dielectric ceramics [J]. J. Eur. Ceram. Soc., 2003, 23: 1391-1400.
    [29] Jawahar I. N., Santha M. I., Sebastan M. T. et al. Microwave dielectric properties of MO-La2O3-TiO2 (M=Ca,Sr,Ba) ceramics [J]. J. Mater. Res., 2002, 17: 3084-3089.
    [30] Okawa T., Kiuchi K., Okabc H., et al. Microwave dielectric properties of BanLa4Ti3+nO12+3n homologous series [J]. Jpn. J. Appl. Phys., 2001, 40: 5779-5782.
    [31] Borisevich A., Davies P. K., Microwave dielectric properties ofLi1+x-yM1-x-3yTix+4yO3 (M=Nb5+,Ta5+) solid solutions [J]. 2001, 21: 1719-1722.
    [32] Cheng H. F., Chen Y. H., Tsau Y. M., et al. Dielectric properties of Bi2(Zn1/3Nb2/3)2O7 electroceramics and thin films [J]. J. Eur. Ceram. Soc., 2001, 21: 1605-1608.
    [33] Chen Y. C., Huang C. L., Microwave dielectric properties of Ba2-xSm4+2/3xTi9O26 ceramics with zero temperature coefficient [J]. Mater. Sci. Eng., 2002, A334: 250-256.
    [34] Ohsato H., Komura A., Takagi Y., et al. Microwave dielectric properties and sintering of Ba6-3xR8+2xTi18O54 (R=Sm, x=2/3) solid solution with added rutile [J]. Jpn. J. Appl. Phys., 1998, 37: 5357-5359.
    [35] Hoffman C., Wasser R., Hot-forging of Ba6-3xRe8+2xTi18O54 ceramics (Re=La, Ce, Nd, Sm) [J]. Ferroelectrics., 1997, 201: 127-135.
    [36] Kim I. S., Jung W. H., Inaguma Y., Nakamura T., Itoh M., Dielectric properties of A-site deficient perovskite-type lanthanum-calcium-titanium solid solution system [(1-x)La2/3TiO3-xCaTiO3]2 [J]. Mater. Res. Bull., 1995, 30: 307-316.
    [37] Huang C. L., Weng M. H., The effect of PbO loss on microwave dielectric properties of (Pb,Ca)(Zr,Ti)O3 ceramics [J]. Mater. Res. Bull., 2001, 36: 683-691.
    [38] Ubic R., Reaney L. M., Lee W. E., Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2 (Ln=lanthanide cation) [J]. Intern. Mater. Rev., 1998, 43: 205-219.
    [39] Kim D. W., Park B., Chung J. H., et al. Mixture behavior and microwave dielectric properties in the low-fired TiO2-CuO system [J]. Jpn. J. Appl. Phys., 2000, 39: 2696-2700.
    [40] Templeton A., Wang X. R., Penn S. J., et al. Microwave dielectric loss of titanium oxide [J]. J. Am. Ceram. Soc., 2000, 83: 95-100.
    [41] Huang C. L., Tsai J. T., Chen Y. B., Dielectric properties of (1-y)Ca1-xLa2x/3TiO3-y(Li,Nd)1/2TiO3 ceramic system at microwave frequency [J]. Mater. Res. Bull., 2001, 36: 547-556.
    [42] Wise P. L., Reaney I. M., Lee W. E., et al. Structure– microwave property relations of Ca and Sr titanates [J]. J. Eur. Ceram. Soc., 2001, 21: 2629-2632.
    [43] Kim W. S., Kim E. S., Yoon K. H., Effects of Sm3+ substitution on dielectirc properties of Ca1-xSm2x/3TiO3 ceramics at microwave frequencies [J]. J. Am. Ceram. Soc., 1999, 82: 2111-2115.
    [44] Ichinose N., Mutoh K., Microwave dielectric properties in the(1-x)(Na1/2La1/2)TiO3-x(Li1/2Sm1/2)TiO3 ceramic system [J]. J. Eur. Ceram. Soc., 2003, 23: 2455-2459.
    [45] Ezaki K., Bba Y., Takahashi H., et al. Microwave dielectric properties of CaO-Li2O-Ln2O3-TiO2 ceramics [J]. Jpn. J. Appl. Phys., 1993, 32: 4319-4322.
    [46]张绪礼,王筱珍,汤清华.微波介质陶瓷材料与器件[J].电子科技导报,1997,6: 315-320.
    [47] Onada M., Kuwata J., Kaneta K., Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 solid solution ceramics with temperature-stable high dielectric buconstant and low microwave loss [J]. Jpn. J. Appl. Phys., 1982, 21: 1707-1710.
    [48] Kawashima S., Nishida M., Ueda I., Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies [J]. J. Am. Ceram. Soc., 1983, 66: 421-423.
    [49] Kawashima S., Influence of ZnO evaporation on microwave dielectric loss and sinterability of Ba(Zn1/3Ta2/3)O3 ceramics [J]. J. Am. Ceram. Soc. Bull., 1993, 72: 120-126.
    [50] Davies P. K., Tong J. Z., Effect of ordering-induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3-BaZrO3 perovskite microwave dielectrics [J]. J. Am. Ceram. Soc., 1997, 80: 1727-1740.
    [51] Furuya M., Microwave dielectric properties and characteristics of polar lattice vibrations for Ba(Mg1/3Ta2/3)O3-A(Mg1/2Ta1/2)O3 (A=Ba,Sr, and Ca) ceramics [J]. J. Appl. Phys., 1999, 85: 1084-1088.
    [52] Hu X., Chen X. M., Wu Y. J., Nd-substituted Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics [J]. Mater. Lett., 2002, 54: 279-283.
    [53] Katayama S., Yoshinaga I., Yamada N., Low-temperature synthesis of Ba(Mg1/3Ta2/3)O3 ceramics from Ba-Mg-Ta alkoxide precursor [J]. J. Am. Ceram. Soc., 1996, 79: 2059-2064.
    [54] Tsai C. C., Teng H. S., Synthesis of Ba(Mg1/3Ta2/3)O3 microwave ceramics through a sol-gel route using acetate salts [J]. J. Am. Ceram. Soc., 2004, 87: 2080-2085.
    [55] Kakegawa K., Wakabayashi T., Sasaki Y., Preparation of Ba(Mg1/3Ta2/3)O3 by using oxine [J]. J. Am. Ceram. Soc., 1986, 69: C82-C83.
    [56] Li L., Chen X. M., Ba2Ti9O20-Ba1.85Sm4.1Ti9O24 layered dielectric resonators with adjustable effective dielectric constant [J]. Mater. Lett., 2009, 63: 252-254.
    [57] Lim J. B., Nahm S., Kim H. T., et al. Effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of the BaTi4O9 ceramics [J]. J.Elctroceram., 2006, 17: 393-397.
    [58] Yang C. F., Diao C. C., Chung H. H., et al. Microwave dielectric characteristics of (1-x)BaTi4O9-xBa(Mg1/3Ta2/3)O3 ceramics [J]. J. Alloys Compd. 2008, 461: 404-409.
    [59] Tzou W. C., Yang Y. S., Yang C. F., et al. Microstructure and microwave dielectric characteristics of (1-x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics [J]. Mater. Res. Bull., 2007, 42: 1897-1904.
    [60] Yang X. J., Li Y. P., Gao P. Z., et al. Effect of sintering methods on properties of (Zr0.8Sn0.2)TiO4(ZST) dielectric ceramics [J]. Rare Metal Mat. Eng., 2009, 38: 659-662.
    [61] Yang R. Y., Weng M. H., Su Y. K., et al. Effect of annealing temperatures on microstructure of (Zr0.8Sn0.2)TiO4 thin films grown by a sol-gel process [J]. J. Alloys Compd., 2009, 471: 511-514.
    [62] Huang C. L., Weng M. H., Shan G. M., Effect of V2O5 and CuO additives on sintering behavior and microwave dielectric properties of BiNbO4 [J]. J. Mater. Sci., 2000, 35: 5443-5447.
    [63] Zhou D., Wang H., Yao X., Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO substitution [J]. Mater. Chem. Phys., 2007, 104: 397-402.
    [64] Zhou D., Wang H., Yao X., et al. Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO-WO3 substitution [J]. Mater. Sci. Eng. B, 2007, 142: 106-111.
    [65] Wang S. F., Hsu Y. F., Wang Y. R., et al. Densification, microstructural evolution and dielectric properties of Ba6-3x(Sm1-yNdy)8+2xTi18O54 microwave ceramics [J]. J. Eur. Ceram. Soc., 2006, 26: 1629-1635.
    [66] Wada K., Kakimoto K. I., Ohsato H., Dielectric anisotropy and sinterability improvement of Ba4Nd9.33Ti18O54 textured ceramics [J]. J. Eur. Ceram. Soc., 2006, 26: 1899-1902.
    [67] Ravi G. A., Azough F., Freer R., Effect of Al2O3 on the structure and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3 [J]. J. Eur. Ceram. Soc., 2007, 27: 2855-2859.
    [68] Lim J. B., Cho K. H., Nahm S., et al. Effect of BaCu(B2O5) on the sintering temperature and microwave dielectric properties of BaO-Ln2O3-TiO2 (Ln=Sm, Nd) ceramics [J]. Mater. Res. Bull., 2006, 41: 1868-1874.
    [69] Chen Y. C., Lee W. C., Chen K. C., Improved dielectric properties of CaLa4Ti5O17 ceramics with Zr substitution at microwave frequency [J]. Mater.Chem. Phys., 2009, 118: 161-164.
    [70] Fu Y. P., Liu C. W., Lin C. H., et al. Effect of TiO2 ratio on BaO-Nd2O3-TiO2 microwave ceramics [J]. Ceram. Inter., 2005, 31: 667-670.
    [71]梁军,梁飞,吕文中.低温共烧微波介质陶瓷材料研究进展[J].电子元件与材料,2009,28:75-78.
    [72] Pei J., Yue Z. X., Zhao F., et al. Microstructure and dielectric properties control of Ba4(Nd0.7Sm0.3)9.33Ti18O54 microwave ceramics [J]. Ceram. Inter., 2009, 35: 253-257.
    [73] Wee S. H., Kim D. W., Yoo S. I., Microwave dielectric properties of low-fired ZnNb2O6 ceramics with BiVO4 addition [J]. J. Am. Ceram. Soc., 2004, 87: 871-874.
    [74] Zhang Y. C., Yue Z. X., Gui Z. L., et al. Microwave dielectric properties of CuO-V2O5-Bi2O3-doped ZnNb2O6 ceramics with low sintering temperature [J]. J. Electroceram., 2005, 14: 67-74.
    [75] Zhou D., Wang H., Yao X., Layered complex structures of Bi2(Zn2/3Nb4/3)O7 and BiNbO4 dielectric ceramics [J]. Mater. Chem. Phys., 2007, 105: 151-153.
    [76] Hsieh M. L., Chen L. S., Hsu H. C., et al. Effect of oxide additives on the low-temperature sintering of dielectrics (Zn,Mg)TiO3 [J]. Mater. Res. Bull., 2008, 43: 3122-3129.
    [77] Zheng Y., Zhao X. Z., Lei W., et al. Effects of Bi2O3 addition on the microstructures and microwave dielectric characteristics of Ba6-3x(Sm0.2Nd0.8)8+2xTi18O54(x=2/3) ceramics [J]. Mater. Lett., 2006, 60: 459-463.
    [78] Huang C. L., Chen Y. B., Tasi C. F., Influence of B2O3 additions to 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.61Nd0.26TiO3 ceramics on sintering behavior and microwave dielectric properties [J]. J. Alloys Compd. 2008, 460: 675-679.
    [79] Huang C. L., Chen Y. B., Tasi C. F., Influence of V2O5 additions to 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.61Nd0.26TiO3 ceramics on sintering behavior and microwave dielectric propertises [J]. J. Alloys Compd., 2008, 454: 454-459.
    [80] Gu Y. J., Huang J. L., Li Q., et al. Low-temperature firing and microwave dielectric properties of 16CaO-9Li2O-12Sm2O3-63TiO2 ceramics with V2O5 addition [J]. J. Eur. Ceram. Soc., 2008, 28: 3149-3153.
    [81] Hsu C. H., Chang Y. S., Microwave characteristics of high-Q ZnO-doped Nd(Co1/2Ti1/2)O3 dielectric ceramics [J]. J. Alloys Compd., 2009, 479:714-718.
    [82] Lin H. X., Yang A., Luo L., et al. Microwave dielectric properties of low temperature co-fired glass-ceramic based on B2O3-La2O3-MgO glass with La(Mg0.5Ti0.5)O3 ceramics [J]. 2008, 62: 611-614.
    [83] Lin I. N., Chang C. B., Leou K. C., et al. Effect of reaction sintering process on the microwave dielectric properties of Ba2Ti9O20 materials [J]. J. Eur. Ceram. Soc., 2010, 30: 159-163.
    [84] Guan E. X., Chen W., Luo L., Low firing and microwave dielectric properties of BaTi4O9 with B2O3-ZnO-La2O3 glass addition [J]. Ceram. Inter., 2007, 33: 1145-1148.
    [85] Takada T., Sea F. W., Yoshikawa S., et al. Effects of glass additions on (Zr,Sn)TiO4 for microwave applications [J]. J. Am. Ceram. Soc., 1994, 77: 2485-2488.
    [86] Vasiliu F., Moisa S., Grozea D., et al. Investigation of the phase composition in sintered lanthana-doped (Zr,Sn)TiO4 ceramics [J]. J. Mater. Sci., 1994, 29: 3337-3341.
    [87] Huang C. L., Hsu C. H., Properties of reactively radio frequency-magnetron sputtered (Zr,Sn)TiO4 dielectric films [J]. J. Appl. Phys., 2004, 96: 1186-1191.
    [88] Zhou H. F., Wang H., Ding X. Y., et al. Microwave dielectric properties of 3Li2O-Nb2O5-3TiO2 ceramics with Li2O-V2O5 additions [J]. J. Mater. Sci: Mater. Electron., 2009, 20: 39-43.
    [89] Xiong G., Zhou D. X., Gong S. P., Influence of sintered aid B2O3 on microwave dielectric properties of Ca[(Li1/3Nb2/3)0.95Zr0.15]3+delta ceramics [J]. J. Huazhong Univer. Sci. Tech., 2007, 35: 63-65.
    [90] Huang C. L., Shen G. H., Pan C. L., Characterization and dielectric behavior of V2O5-doped MgTiO3-CaTiO3 ceramic system at microwave frequency [J]. Mater. Sci. Eng., B, 2007, 145: 91-96.
    [91] Zhou H. F., Wang H., Zhou D., et al. Effect of ZnO and B2O3 on the sintering temperature and microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics [J]. Mater. Chem. Phys., 2008, 109: 510-514.
    [92] Ohsato H., Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R=rare earth) microwave dielectric solid solution [J]. J. Eur. Ceram. Soc., 2001, 21: 2703-2711.
    [93] Okawa T., Imaeda M., Ohsato H., Site occupancy of Bi ions and microwave dielectric properties in Ba6-3xNd8+2xTi18O54 solid solitions [J]. Mater. Sci. Eng., 2002, B88: 58-61.
    [94]黄雯雯,凌志远,欧瑞江,何新华,张庆秋,低温烧结0.5CaTiO3-0.5CaTiSiO5高频介质陶瓷[J].电子元件与材料,2003,22(6):14-16.
    [95] Cheng C. C., Hsieh T. E., Lin I. N.,?The effect of composition on Ba-Nd-Sm-Ti-O microwave dielectric materials for LTCC application [J]. Mater. Chem. Phys., 2003, 79: 119-123.
    [96] Bolton R. L., Temperature compensating ceramic capacitors in the system bariarare earth oxide titania [D]. The University of Illi nois, 1968.
    [97] Ohsato H., Ohhashi T., Kato H., et al. Microwave dielectric properties and structure of the Ba6-3xSm8+2xTi18O54 solid solutions [J]. Jpn. J. Appl. Phys.,1995, 34: 187-191.
    [98] Hsiang H. I., Chen T. H., Influence of glass additives on the sintering behavior and dielectric properties of BaO·(Nd0.8Bi0.2)2O3·4TiO2 ceramics [J]. J. Alloys Compd., 2009, 467: 485–490.
    [99] Wu Y. C., Wang S. F., Effects of Nd-Sm ratio and glass addition on the microwave dielectric properties of Ba4.5(Sm(0.8?x)NdxBi0.2)9Ti18O54 ceramics [J]. J. Alloys Compd., 2009, 468: 522–527.
    [100]右礁,砖蓉棉.低温共烧微波介质陶瓷及其器件的研究进展[J].硅酸盐学报.2008,36(6): 866–876.
    [101] Petrakovskii G. A., Sablina K. A., Velikanov, D. A., et al. Synthesis and magnetic properties of copper metaborate single crystals, CuB2O4 [J]. 2000, 45: 853-856.
    [102] Yim D. K., Kim J. R., Kim D. W., et al. Microwave dielectric properties and low-temperature sintering of Ba3Ti4Nb4O21 ceramics with B2O3 and CuO additions [J]. J. Eur. Ceram. Soc., 2007, 27: 3053-3057.
    [103] Pei J., Yue Z. X., Zhao F., et al. Microwave dielectric ceramics of hexagonal (Ba1-xAx)La4Ti4O15 (A=Sr, Ca) for base station applications [J]. J. Alloys Compd., 2008, 459: 390-394.
    [104] Choi Y. J., Park J. H., Park J. H., et al. Middle-and high-permittivity dielectric compositions for low-temperature co-fired ceramics [J]. J. Eur. Ceram. Soc., 2007, 27: 2017–2024.
    [105] Kipkoech E. R., Azough F., Freer R., Microstructural control of microwave dielectric properties in CaTiO3 - La(Mg1/2Ti1/2)O3 ceramics [J]. J. Appl. Phys., 2005, 97: 064103.
    [106] Wersing W., Microwave ceramics for resonators and filters [J]. Curr. Opin. Solid St. M., 1996, 1: 715-731.
    [107] Hsu C. H., Soong H. T., Yu C. C., et al. The effect of sintering temperatureand time on microwave properties of Sm(Zn1/2Ti1/2)O3 ceramics for resonators [J]. Ceram. Int., 2007, 33: 951–955.
    [108] Park J. H., Choi Y. J., Park J. H., et al. Low-fire dielectric compositions with permittivity 20–60 for LTCC applications [J]. Mater. Chem. Phys., 2004, 88: 308–312.
    [109] Dernovsek O., Naeini A., Preu G., et al. LTCC glass-ceramic composites for microwave application [J]. J. Eur. Ceram. Soc., 2001, 21: 1693–697.
    [110] Zou D., Zhang Q. L., Yang H. et al. Low temperature sintering and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics for LTCC applications [J]. J. Eur. Ceram. Soc., 2008, 28: 2777–2782.
    [111] Brinker C. J., Scherer G. W., Sol-Gel Science:?The physics and chemistry of sol-gel processing [M]. Academic Press, 1990.
    [112] Hench L. L., West J. K., The sol-gel process [J]. Chem. Rev., 1990, 90(1): 33-72.
    [113]蔡伟,谭小球.低温烧结低介硅灰石瓷料的研制[J].电子元件与材料,2002,21(2):16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700