金属基纳米粉体/聚合物复合材料的制备及微波吸收性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米粒子是一种良好的微波吸收材料,将磁性金属纳米粒子加入到聚合物基体中,可以使得复合材料既具有磁性纳米粒子的性能又具有聚合物基体的性能。然而磁性纳米粒子易团聚、化学稳定性差、与有机介质相容性差,极大的影响了其应用发展。因此选用合适的材料对磁性粒子进行表面改性,不仅能防止磁性纳米粒子的氧化和团聚,而且可以提高磁性纳米粒子与聚合物基体的相容性。
     本文主要研究了聚苯胺/镍纳米复合材料的制备与表征以及磁性吸波剂纳米铁粉、碳包覆铁纳米粉加入到水性丙烯酸树脂涂料制备的水性纳米复合涂料的吸波性能。
     采用界面聚合的方法制备聚苯胺,通过改变上、下界面的反应溶剂和反应温度等工艺参数制备了形状比较均一的管状聚苯胺。同时采用界面聚合法制备了管状聚苯胺/镍纳米复合材料,通过FT-IR、XRD、TEM分析表征表明,生成了管状聚苯胺,形状均一,直径大约在100nm,并且存在着部分的结晶。聚苯胺很好地包覆了纳米镍粉,实现了管状聚苯胺及聚苯胺包覆纳米镍粉的多种物质及形态的复合,对其制备工艺及微波频段的电磁特性进行了研究。
     以“壳/核”型碳包覆铁(Fe(C))纳米颗粒为填料,水性丙烯酸树脂为基体制备了纳米复合电磁波吸收涂料。采用不同含量十二烷基苯磺酸钠(SDBS)对纳米颗粒改性,提高了纳米颗粒在基体中的分散性。选用吸收剂填充量为30wt%的涂料,测定了不同厚度涂层的电磁波吸波性能。涂层具有很好的吸波性能,当厚度为5mm时,反射损耗峰值为-17.2dB,吸收带宽为3.2GHz(7~10.2GHz)。实验结果证明了传输线理论对铁磁性纳米颗粒吸波性能的模拟结果。并制备了3mm的不同含量的涂层测定其吸波性能。
     以铁(Fe)纳米颗粒为填料,水性丙烯酸树脂为基体制备了纳米复合电磁波吸收涂料。采用钛酸酯偶联剂(JSC)对纳米铁粉进行表面处理,提高其与丙烯酸树脂的相容性。选用吸收剂填充量为30wt%的涂料,测定了不同厚度涂层的电磁波吸波性能。涂层具有很好的吸波性能,当涂层厚度为3mm时,在2~18GHz频段内吸收优于-10dB的频宽则约为2.3GHz(5.9~8.2GHz)。
Magnetic metal nanoparticles are considered as a kind of excellent microwave absorbers. However,the applications of the nanoparticles are limited by some factors,such as agglomeration,poor chemical durability and combination with organic matrix.Selecting proper organic surfactants to modify nanoparticles can solve agglomeration in polymer, improve the compatibility of organic compounds.Adding the magnetic metal nanoparticles into the polymer make the nanocomposites not only have the properties of nanoparticles but also the polymer.
     In this paper,the preparation and properties of tube-polyanilin/polyaniline coated nano-nickel(PANi/PANi(Ni)) nanocomposites are studied.As well as,the nano-iron/ waterborne acrylic resin and carbon coated iron/waterborne acrylic resin nanoconposites were researched,and the characteristics of them also were studied.
     The tube-polyaniline is prepared by a simple interracial polymerization method through change the aqueous/organic biphasic system and reaction temperature.As well as the tube-polyanilin/polyaniline coated nano-nickel(PANi/PANi(Ni) nanocomposites are prepared. Both samples are characterized by Fourier transform infrared spectroscopy,X-ray diffraction (XRD) and transmission electron microscope(TEM).The results show that the PANi is tubal with diameter of about 100nm and length of several micrometers,and exhibits some crystalline grains of several nanometers on the surface.In the system of PANi/Ni nanocomposite,it can also be found the PANi tubes and almost all the Ni nanoparticles encapsulated into PANi shells,exhibiting a coexistence of two kinds of morphologies.The microwave characteristics of both samples are measured and discussed in detail in this paper.
     The microwave absorption properties of the coatings containing 30wt%of the carbon-coated Fe nano-particles with various thicknesses was tested,in which the waterborne acrylic resin was used as the matrix.To improve the dispersion of the nano-particles in resin, sodium dodecyl benzene sulfonate(SDBS) was employed as the surfactant.The results showed that the coatings have excellent absorbing properties in thickness of 5mm,presenting the reflection loss of -17.2dB at 8.6GHz and the bandwidth of -10dB at 3.2GHz(7~10.2GHz). Based on the current results,it was confirmed that the absorption properties of ferromagnetic nano-particles are basically consistent with the theoretical prediction of transmission line.As well as the microwave absorbing properties of the coatings which thickness is 3mm containing different contant of carbon-coated Fe nano-particles were tested.
     The microwave absorbing properties of the coatings containing 30wt%of the nano-Fe with various thicknesses was tested,in which the waterborne acrylic resin was used as the matrix.To improve the compatibility of the nano-particles in resin,titanate coupling reagent (JSC) was employed as the surfactant.The results showed that the coatings have excellent absorbing properties in thickness of 3mm,presenting the bandwidth of -10dB at 2.3GHz (5.9~8.2GHz).
引文
[1]Rechberger W,Hohenau A,Leitner A,et al.Optical properties of two interacting gold nanoparticles[J].Optics communications,2003,220:137-141.
    [2]Wu M Z,Zhang Y D,Hui S,eta].Microwave magnetic properties of C_(0.50)/(SiO_2)_(50)nanoparticles[J].Applied physics letters,2002,(8023):4004-4006.
    [3]王昶,于名讯,朱洪立,等.磁性纳米微波吸收剂研究及发展[J].化工新型材料,2006,34(2):19-20.
    [4]Zchinosen N.Superfine particle Technology[J].Spring verlog,1991,49-51.
    [5]Turner M R,Duguet E,LabrugereC.Characterization of silane-modified ZrO_2 power surfaces[J].Surface and interface analysis,1997,25:917-923
    [6]Roy R.Elective laser sintering characteristics of nylon-b/clay-reiforced nanocomposites[J].Science,1987,238:1664-1673.
    [7]P Kun,Zhou L P,Hu A P,et al.Synthesis and magnetic properties of NiSiO_2nanocomposites[J].Materials chemistry and physics 111,2008,34-37.
    [8]Ohmori M,Matijevic E.Preparation and properties of uniform coated colloidal particles.Ⅶ.Silica on hematite[J].Journal of colloid and interface science,1992,150:594-594.
    [9]郭宁,张明艳,张晓虹.环氧树脂/有机蒙脱土纳米复合材料的制备与表征[J].绝缘材料,2007.40:4-7.
    [10]梁玉蓉,谭英杰.PP/黏土纳米复合材料的结构与性能[J].化工学报,2008,59:1572-1576.
    [11]Sheng Y,Zhao J Z,Zhou B,et al.In situ preparation of CaCO_3/polystyrene composite nanoparticles[J].Materials letters,2006,60:3248-3250.
    [12]Tsai S H,Lee C L,Chao C W,et al.A novel technique for the formation of carbon-encapsulated metal nanoparticles on silicon.[J].Carbon,2000,38:775-785.
    [13]Ruoff R S,Lorents D C,et al.Single crystal metals encapsulated in carbon nanoparticles[J].Science,1993,259:346-348.
    [14]Dong X L,Zhang Z D,Jin S R,et al.Surface characterizations of ultrafine Ni particles[J].Nanostructured materials,1998,10(4):585-592.
    [15]Dong X L,Zhang Z D,Jin S R,et al.Characterization of ultrafine Fe-Co particles and Fe-Co(C) nanocapsules[J].Physica]review B,1999,60(5):3017-3020.
    [16]肖华亭,许昌清,雷有华,等.电磁兼容原理[M].北京:电子工业出版社,1985.
    [17]吴明忠.雷达吸波材料的现状和发展趋势[J].磁性材料及器件,1997,28(2):26-30.
    [18]赵清荣.雷达隐身涂料的发展现状[J].雷达与对抗,2001,31:21.
    [19]Shi H Z,Bi H J,Yao H J,et al.Dissolution of Au nanoparticles in hydrochloric acid solution as studied by optical absorption[J].Applied surface science,2000,161:276-278.
    [20]Arnim H,Michael G,Optical and chemical observationson gold-mercury nanoparticles in aqueous solution[J].Journal of Physics Chemistry B,2000,104(21):5056-5060.
    [21]Maeda T,Sugimoto S,Kagotani T,et al.Electomagnetic microwave absorption of alpha-Fe microstructure produced by disproportionation reaction of Sm_2Fe_(17) compound[J].Mater.Trans.,JIM,2000,41:1172-1175.
    [22]Suzuki M,Hasegawa Y,Aizawa M.Characterization of silicon carbide-silicon nitride composite ultrafine particles synthesized using a CO_2 laser by silicon 2p magic angle spinning NMR and ESR[J].Jounal of the American Caramic Society-Cesarano and Askay,1995,78(1):83-89.
    [23]孟凡君,茹淼焱,等.Si-C-N陶瓷在雷达吸收方面的应用研究[J].材料科学与工艺,2003,11(1):94-96.
    [24]张卫东,冯小云,等.国外隐身材料研究进展[J].宇航材料工艺,2000,3:1-4.
    [25]Stomer A R.Stealth aircraft Technology from world war Ⅱ to the gulf[J].Sample journal,1991,27(4):9-12.
    [26]孙晓刚,余扬帆,刘勇,等.稀土改性碳纳米管宽带吸波材料[J].机械工程材料,2006,30(1):66-68.
    [27]Zhao N Q,Zou T C,et al.Microwave absorbing properties of activated carbon-fiber felt screens(vertical-arranged carbon fibers)/epoxy resin composites[J].Materials Science and Engineering B,2006,127(2-3):207-211.
    [28]Fan Z J,Luo G H,Zhang Z F,et al.Electro-magnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites[J].Materials Science and Engineering B,2006,132(1-2):85-89.
    [29]黄婉霞,家钊,毛健,等.纳米级对电磁波的吸收效能研究[J].功能材料,1999,30:105-106.
    [30]王达,胡湘岳,贝承训,等.La_(0.8)Sr_(0.2)Mn_(1-x)Ni_xO_3微波吸收特性[J].中国稀土学报,2007,25:6-8.
    [31]吁霁,庄稼,迟燕华,等.纳米ZnFe_2O_4的低温固相合成及其电磁损耗特性[J].材料科学与工程学报,2004,22(1):111-112.
    [32]Xiao H M,Liu X M,Fu S Y.Synthesis magnetic and microwave absorbing properties of core-shell structured MnFe204/TiO2 nanocomposites[J].Composites Science Technology,2006,66:2003-2008.
    [33]Shiraknwa H,Edwin J,et al.Synthesis of electrically conducting organic polymers:Halogen derivatives of polyacetylene,(CH)x[J].J Chen Soc,Chem Commun,1977,578-580.
    [34]Pinho M S,Gregori M L,et al.Performance of radar absorbing materials by waveguide measurements for X and Ku-band frequencies[J].European Polymer Journal,2002,38:2321-2327.
    [35]Dhawan S K,Singh N,et al.Shielding effectiveness of conducting polyaniline coated fabrics at 101 GHz[J].Synthetic metals,2002,125:389-393.
    [36]Hong Y K,Lee C Y,Jeong C K,et al.Electromagnetic interference shielding characteristics of fabric complexes coated witheonduetive polypyrrole and thermally evaporated Ag[J].Current applied physics,2001,1(6):439-442.
    [37]Marchant S,Jones F R,Wong T P,et al.Free-space microwave characteristics of polypyrrole coated glass fibre[J].Synthetic metals,1998,96:35-41.
    [38]Kima S S,Kima S T,Ahnb J M,et al.Magnetic and microwave absorbing properties of Co_2Fe thin films plated on hollow ceramic microspheres of low density[J].Journal of magnetism and magnetic materials,2004,271:39-45.
    [39]Electromagnetic wave absorbing film[P].JP2002158486.
    [40]Xu S Q,Duan Y F.Research Progress and prospects of new absorbing materials[J].Journal of air force radar academy,2001,15(1):45248(Ch).
    [41]涂伟萍.水性涂料[M].化学工业出版社.2005.12.
    [42]旺世平.隐身吸波涂料[J].上海涂料.2006.44(5):17-18.
    [43]曾玉燕.纳米TiO_2材料的分散研究[J].中山大学学报(自然科学版),2004,4:18-20.
    [44]李锡凯,李阳.纳米改性抗沾污复合剂墙涂料[J].当代化工,2002,31(4):199-200.
    [45]李昌龙.环保纳米钙塑涂料[P].CN:01130795.1,2001.8.30
    [46]董星龙,左芳,等.纳米镍/聚苯胺复合粒子的制备与表征[J].功能材料,2005,36(10):1558-1560.
    [47]董星龙,孙维民,等.一种自动控制直流电弧金属纳米粉生产设备及方法:中国,1559729[P].2005-01-05.
    [48]王科,张旺玺.导电聚苯胺的研究进展[J].合成技术及应用,2004,19(1):23-27.
    [49]Quillard S,Louarn G,et al.Vibrational analysis of polyaniline:A comparative study of leucoemeraldine,emeraldine,and pernigraniline bases[J].Physical Review B,1994,17(50):12496.
    [50]Jiang J,Li L C,et al.Polyaniline-LiNi ferrite core-shell composite:Preparation,characterization and properties[J].Materials Science and Engineering A,2007,456:300 -304.
    [51]Tseng R J,Huang J X,et al.Polyaniline nanofiber/gold nanoparticle nonvolatile memory [J].Nano Letter,2005,6(5):1077-1080.
    [52]Tseng R J,Baker C O,et al.Charge transfer effect in the polyaniline-gold nanoparticle memory system[J].Applied physics letters,2007,90:053101.
    [53]Dong X L,Zhang X F,et al.Enhanced microwave absorption of Ni/polyaniline nanocomposites by dual dielectric relaxations[J].Applied physics letters,2008,92:013127.
    [54]王军,孙竹,等.PANI/La_2O_3复合纳米材料的合成及其电化学降解的抑制作用[J].化学学报,2007,23(65):2793-2796.
    [55]Gemeay A H,Mansour I A,et al.Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization:Effect of acids[J].European polymer journal,2005,41:2575-2583.
    [56]Ravikiran Y T,Lagare M T,et al.Synthesis,characterization and low frequency AC conduction of polyaniline/niobium pentoxide composites[J].Synthetic Metals,2006,156:1139-1147.
    [57]Liu X,Geng D,Shang P,Meng H,et al.Fluorescence and microwave-absorption properties of multi-functional ZnO-coated α-Fe solid-solution nanocapsules[J].Journal of Physics D:Applied Physics,2008,41:175006.
    [58]Lu B,Dong X L,Huang H,et al.Microwave absorption properties of the core/shell-type iron and nickel nanoparticles[J].Journal of Magnetism and Magnetic Materials,2008,320:1106-1111.
    [59]Zhang X F,Dong X L,Huang H,et al.Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J].Journal of Physics D:Applied Physics,2007,40:5383-5387.
    [60]Zhang X F,Dong X L,Huang H,et al.Microwave absorption properties of the carbon-coated nickel nanocapsules[J].Applied physics letters,2006,89:053115.
    [61]Utsumi S,Kanamaru M,Honda H,et al.RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS.J.Colloid Interface Sci.,2007,38:276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700