基于纳米结晶纤维素复合材料的性能机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用催化乙醇法分离获得高纯度木质纤维素,并与酸水解等手段结合制备纳米结晶纤维素(NCC),然后用硅烷偶联剂接枝改性NCC以提高其分散性并制备复合材料,通过对复合材料结构和性能的表征研究其改良机理。
     含有4-甲基-2-戊酮、二甲亚砜和甲酸的新型催化剂体系导致传统乙醇法的木质纤维素提取分离温度显著降低,可在130℃条件下分离获得高纯度、高结晶度的纤维素样品,在与酸水解法等配合使用后可初步实现以木片为原料的NCC连续生产工艺。利用FT-IR、XRD、TG、DSC(?)口TEM等对以催化乙醇法分离纤维素为原料制备的NCC进行表征后发现落叶松NCC的聚合度高、结晶结构致密而且失重温度比毛白杨NCC高5.1%,也表现出较均一的外观形态;利用硅烷偶联剂改性落叶松NCC以改善其疏水性能,并与脲醛树脂、丙烯酸酯涂料、聚氨酯水性木器漆和酚醛树脂制成复合材料,研究改性剂种类、NCC用量等因素对复合材料结构和性能的影响规律,结论如下:
     将经过3-氨丙基三乙氧基硅烷(APTES)和3-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)改性的NCC与脲醛树脂复配制成复合材料,APTES改性NCC与脲醛树脂基材间的接触角下降了26.4%,而MPS改性NCC与脲醛树脂基材间的接触角下降了24.1%。经过APTES改性处理的NCC具有较强的物理和化学吸附能力,导致胶合板的游离甲醛释放量下降53.2%,而MPS改性NCC的添加仅使游离甲醛释放量下降21.3%;添加改性NCC对纤维板游离甲醛释放量的改善效果不明显。通过形成稳定的交联网络结构,APTES改性NCC使胶合板的内结合强度提高了23.6%,而MPS改性NCC使胶合板的内结合强度仅提高7.0%;APTES和MPS改性NCC的添加使得纤维板的抗弯强度分别提高了46.1%和35.7%。
     利用3-(2,3-环氧丙氧)丙基三甲氧基硅烷(GPTMS)(?)口3-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)改性的NCC与丙烯酸酯涂料复配制成复合材料,两种改性剂分别导致NCC与丙烯酸酯基材间的接触角下降22.8%和19.6%。添加了GPTMS改性NCC的丙烯酸酯复合材料镜面光泽度提高了33.3%,明显高于MPS改性NCC;利用GPTMS改性NCC与丙烯酸酯制成的复合材料耐磨性提高59.4%,而经过MPS改性的NCC对复合材料耐磨性的改善效果为45.3%;NCC改性剂的不同种类对丙烯酸酯复合材料铅笔硬度的影响较小;改性NCC对复合材料水分吸收率的影响明显强于乙醇吸收率。
     分别以3-氨丙基三乙氧基硅烷(APTES)和3-(2,3-环氧丙氧)丙基三甲氧基硅烷(GPTMS)为改性剂处理NCC,并将改性NCC添加到聚氨酯水性木器漆中复配。相比GPTMS改性NCC,经过APTES改性的NCC表面疏水性基团的接枝率更高、其在木器漆基材中的分散状态也更加均匀,而且改性NCC的结晶结构相对稳定。分析APTES改性NCC/水性木器漆复合材料的性能可知表面改性NCC的添加导致复合材料的耐黄变性能比对照组提高超过50%,镜面光泽度的增强达到164.8%,复合材料的力学性能也得到明显改善。
     利用3-(2-氨乙基)-氨丙基甲基二甲氧基硅(MCPS)和3-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)改性NCC复配酚醛树脂。相比MPS,MCPS改性导致NCC疏水性能提高更加明显。通过NCC晶须与酚醛树脂分子链间形成的共价键或者氢键连接使基材的机械性能得到明显改善:MCPS改性NCC导致酚醛树脂复合材料的抗张强度和抗弯强度分别增强155.5%和23.8%,显著高于MPS改性NCC;但是NCC的表面改性剂种类对复合材料冲击强度的改善效果影响较小。
The cellulose of wood was separated by the catalytic ethanol in this paper and the nano crystalline cellulose (NCC) was prepared by acid hydrolysis with the separated cellulose. The silane coupling agent was able to improve the hydrophobic property of NCC. The surface-modified NCC was used to synthesize composites and the mechanism was studied.
     The new catalyst system containing4-methyl-2-pentanone, dimethyl sulfoxide and formic acid was able to decrease the temperature of separation of cellulose. The maximum temperature of the separation process was130℃and the separation process combined with acid hydrolysis was able to produce the NCC with wood chips continuously. NCC produced with the separated cellulose was characterized by DP, FT-IR, XRD, TG, DSC and TEM, and the results showed that the NCC from larch was more steady and uniform than that from poplar. The NCC modified by silane coupling agent was used to synthesize composites with urea-formaldehyde resin, acrylic resin, waterborne polyurethane and phenolic resin. The improvements of the composites resulted from the silane coupling agents and the contents of NCC were studied and the results were summarized as follows:
     NCC modified by APTES and MPS was used to synthesize composites with the urea-formaldehyde resin. Compared with the control group, the contact angle between APTES-modified NCC and urea-formaldehyde resin was decreased by26.4%, while the contact angle of MPS-modified NCC was reduced by24.1%. The prominent physical adsorption and chemisorptions of NCC modified by APTES led to a53.2%reduction of the free formaldehyde in plywood, which was more than the reduction resulted from the MPS-modified NCC. The improvements resulted from modified NCC in fibreboard were inconspicuous. With the formation of crosslinked network, the bonding strength of plywood with APTES-modified NCC was improved by23.6%and the improvement led by NCC modified by MPS was7.0%. The bending strength of fibreboard was enhanced by46.1%and35.7%with the additions of APTES and MPS modified NCC, respectively.
     GPTMS-modified NCC and MPS-modified NCC were synthesized composites with acrylic resin, and the surface-modifcations resulted in the22.8%decrease and19.6%decrease of the contact angles of NCC particles, respectively. The specular gloss of composite with GPTMS-modified NCC was improved by33.3%, which was more obvious than that with NCC modified by MPS. The abrasive resistance of acrylic resin with GPTMS and MPS-modified NCC was enhanced by59.4%and45.3%. The pencil hardness of the composites was affected by the surface modifiers of NCC inconspicuously, and the water absorption rate of the composites was affected by the modified NCC more significantly than the ethanol absorption rate.
     APTES and GPTMS-modified NCC were used to prepare the composites with waterborne polyurethane. The grafting ratio of APTES-modified NCC was more than that of the NCC modified by GPTMS, and the crystal structure of well-dispersed APTES-modified NCC was destroyed. Taked the case of APTES-modified NCC/waterborne polyurethane composites, the anti-yellowing property of the composites were improved by more than50%and the specular gloss was enhanced by164.8%. Mechanical properties of the composites were improved by the APTES-modified NCC significantly.
     MCPS and MPS were treated as the modifiers of NCC, and the composites were synthesized with the two kinds of modified NCC and phenolic resin. Compared with MPS, MCPS led to the great improvement of the hydrophobicity of NCC. For the covalent bonds and hydrogen bonds between NCC and phenolic resin, the tensile and bending strengths of composites with MCPS-modified NCC were improved by155.5%and23.8%, which were more than the improvements of composites with NCC modified by MPS. The impact strength of the composites was affected by the modifiers inconspicuously.
引文
1. 蔡阿满.纳米TiO2/丙烯酸酯复合乳液的制备与表征[D].广州华南理工大学学位论文,2010:62-63.
    2. 才红,韦春,陆绍荣SF/PF复合材料冲击性能的研究[J].现代塑料加工应用,2004,16(4):1-3.
    3. 陈洪章.纤维素生物技术[M].北京:化学工业出版社,2011:2-3.
    4. 陈立军,史鸿鑫,武宏科,等.Si02改性丙烯酸酯树脂涂料的方法及研究进展[J].合成树脂及塑料,2009,26(1):77-80.
    5. 董洪波,王海青,王胜利.以有机硅改性丙烯酸树脂为基料制备道路标线漆的研究[J].山东化工,2003,32(4):42-43.
    6. 杜庆栋,孙洁,吕海宁.提高纳米纤维素分散性能的研究进展[J].工程塑料应用,2013,41(6):117-120.
    7. 樊慧明,张成,刘建安,等.阴离子自交联苯丙乳液的成膜抗水性能研究[J].中国造纸,2012,31(8):8-12.
    8. 费鹏,蔡杰,熊汉国.球磨-酶解法制备纳米竹纤维的结构表征[J].林业科技开发,2012,26(2):16-19.
    9. 高洁,汤烈贵.纤维素科学(第二版)[M].北京:科学出版社,1999:24-25,197-199.
    10.高晓敏,刘永华,杨雪海.聚氨酯老化及分析表征和模拟研究进展[J].高分子材料科学与工程,2005,21(5):33-36.
    11.郭婷,刘雄.纳米纤维素的改性及其在复合材料中的应用进展[J].食品科学,2014,35(3):285-289.
    12.杭志喜,崔海丽.稀酸降解植物纤维素的研究[J].安徽工程科技学院学报,2005,20(2):16-19.
    13.何建新,唐予远,王善元.醋酸纤维素的结晶结构与热性能[J].纺织学报,2008,29(10):12-16.
    14.何文,尤骏,蒋身学,等.毛竹纳米纤维素晶体的制备及特征分析[J].南京林业大学学报(自然科学版),2013,37(4):95-98.
    15.何文,张苏京,蒋身学,等.插层处理纳米蒙脱土改性脲醛树脂对胶合板性能的影响[J].中国人造板,2012,11:19-22.
    16.蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    17.蒋玲玲,陈小泉.纤维素酶解天然棉纤维制备纳米纤维素晶体及其表征[J].化学工程与装备,2008,10:1-4.
    18.李本刚,曹绪芝,顾洪宇,等.纳米纤维素晶体和柠檬酸改性聚乙烯醇薄膜的制备及性能[J].高分子材料科学与工程,2012,28(8):178-182.
    19.李翠珍,黄斌,罗太安.纤维素的酸预处理研究[J].浙江化工,2004,35(11):4-5.
    20.李金玲,周刘佳,叶代勇.硫酸铜助催化制备纳米纤维素晶须[J].精细化工,2009,26(9):844-849.
    21.李金玲,陈广祥,叶代勇.纳米纤维素晶须的制备及应用的研究进展[J].林产化学与工 ,2010,30(2):121-125.
    22.李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002:44-45.
    23.李松栋,吴跃焕,张翠梅,等MMA,HEMA和EDA对水性聚氨酯硬度的影响[J].山西化工,2008,28(4):13-15.
    24.李西忠.无机硅化物接枝脲醛树脂木材胶粘剂[J].林产工业,1998,25(2):32-33.
    25.廖庆玲,李轩科,左小华.有机硅改性酚醛树脂的研究[J].重庆文理学院学报(自然科学版),2011,30(4):54-58.
    26.林巧佳,杨桂娣,刘景宏.纳米二氧化硅改性脲醛树脂的应用及机理研究[J].福建林学院学报,2005,25(2):97-102.
    27.林松.纤维素纳米晶的乙酰化修饰研究[J].安徽化工,2012,38(5):48-49.
    28.刘玲玲,田云波,唐楚楚,等.酸酶法制备纳米豆渣纤维素[J].食品与发酵工业,2011,37(9):124-128.
    29.刘仁庆.纤维素化学基础[M].北京:科学出版社,1985:118-122,160.
    30.刘志明,谢成,王海英,等.(中国)碱/甲苯法制备纳米纤维素的方法[P].CN102182087A,2011.
    31.刘志明,谢成,吴鹏,等.间硝基苯磺酸钠助催化硫酸水解制备芦苇浆纳米纤维素[J].生物质化学工程,2012,46(5):1-6.
    32.卢麒麟,黄彪,唐丽荣,等.响应面法优化制备巨菌草纳米纤维素及其性能表征[J].功能材料,2013,20(44):2985-2989.
    33.苗蔚,程文喜,伊振斌.空心包里微球改性酚醛树脂的研究[J].工程塑料应用,2009,37(12):12-14.
    34.平清伟,谭国民,赵群祝,等.过氧化氢在芦苇乙醇法制浆中的催化作用[J].中国造纸学报,2008,23(3):28-31.
    35.卿彦,蔡智勇,吴义强,等.纤维素纳米纤丝研究进展[J].林业科学,2012,48(1):145-152.
    36.仇诗其,张旭东,廖阳飞,等.自交联型聚氨酯-丙烯酸酯复合乳液的合成研究[J].现代涂料与涂装,2008,11(1):5-9.
    37.佘颖,张浩,宋舒苹,等.改性纳米结晶纤维素对水性聚氨酯浸润性的研究[J].林产化学与工业,2013,33(2):77-80.
    38.沈慧芳,彭文奇,宁蕾,等.聚氨酯结晶性的研究进展[J].中国胶粘剂,2010,19(7):59-63.
    39.唐丽荣,黄彪,戴达松,等.纳米纤维素晶体的制备及表征[J].林业科学,2011,47(9):119-122.
    40.唐丽荣,黄彪,戴达松,等.纳米纤维素碱法制备及光谱分析[J].光谱学与光谱分析,2010,30(7):1876-1879.
    41.唐丽荣,欧文,林雯怡,等.酸水解制备纳米纤维素工艺条件的响应面优化[J].林产化学与工业,2011,31(6):61-65.
    42.唐文睿,缪昌文,丁蓓.微晶纤维素增韧混凝土的性能研究及机理分析[J].新型建筑材料,2010,7:4-6.
    43.唐植贤,王君瑞,郑修斌.丙烯酸酯乳胶膜透明度和光泽度的影响因素探讨[J].上海涂料,2013,51(1):53-56.
    44.万怡灶.高川,翟云敬.(中国)细菌纤维素/明胶/羟基磷灰石复合材料及其制备方法[P].CN101947335A,2011.
    45.吴开丽.纳米纤维素晶体的制备及其在造纸中的应用[D].济南山东轻工业学院学位论文,2010:5-18.
    46.汪长春,包启宇.丙烯酸酯涂料[M].北京:化学工业出版社,2005:1-3.
    47.王海峰,李仲谨,黄永如.插层有机纳米蒙脱土对脲醛树脂胶粘剂性能的影响[J].中国胶粘剂,2009,18(10):1-3.
    48.王建清,徐梅,金政伟,等.纳米SiO2/纤维素包装薄膜结构形态及性能研究[J].包装工程,2009,30(9):1-4.
    49.王树荣,廖艳芬,文丽华,等.钾盐催化纤维素快速热裂解机理研究[J].燃料化学学报,2004,32(6):694-698.
    50.王文俊,冯蕾,邵自强,等.纳米纤维素晶须/硝化纤维素复合材料的制备与力学性能研究[J].兵工学报,2012,33(10):1173-1177.
    51.汪晓东,励杭泉.酚醛树脂增容聚甲醛/丁腈橡胶共混物的亚微相态与增韧机理研究[J].高分子材料科学与工程,2001,17(3):29-33.
    52.汪新民.常温交联丙烯酸酯乳胶涂料研究[J].化学建材,2002,2:22-24.
    53.夏松华,李黎,李建章.纳米TiO2改性脲醛树脂性能研究[J].粘接,2008,29(7):21-23.
    54.肖安国,张儒祥,郝爱平,等.纳米SiO2和CaCO3改性脲醛树脂甲醛含量及性能研究[J].湖南文理学院学报(自然科学版),2006,18(4):39-41.
    55.徐钦昌,黄笔武,雍涛,等.纳米二氧化硅对丙烯酸酯紫外光固化涂料性能的影响[J].精细石油化工,2013,30(5):41-44.
    56.徐永伟,严川伟.紫外光对涂层的老化作用[J].中国腐蚀与防护学报,2004,24(3):168-173.
    57.许云辉,许宇岳,林红.氧化纤维素的研究进展及发展趋势[J].苏州大学学报(工科版),2006,26(2):1-6.
    58.薛璐,杨谦,唐艳.利用大豆乳清生产细菌纤维素的研究[J].高技术通讯,2004,14(6):28-31.
    59.严薇,鲁琴,胡荣涛,等.有机硅改性丙烯酸酯涂料的性能研究[J].化学与生物工程,2011,28(9):32-35.
    60.杨淑蕙.植物纤维化学(第三版)[M].北京:中国轻工业出版社,2001:177-180.
    61.杨桂娣,林巧佳,刘景宏.超声波在纳米Si02与脲醛树脂共混中的应用[J].福建农林大学学报(自然科学版),2004,33(4):538-541.
    62.杨桂娣,林巧佳,刘景宏.纳米二氧化硅对脲醛树脂胶性能的影响[J].福建林学院学报,2004,24(2):114-117.
    63.叶代勇.纳米纤维素的制备[J].化学进展,2007,19(10):1568-1575.
    64.于顺洋,张宪康.不同有机硅/丙烯酸乳胶漆性能研究[J].上海大学学报(自然科学版),2002,8(6):495-497.
    65.于晓芳,王喜明.胶合板用脲醛树脂胶粘剂的纳米改性[J].中国胶粘剂,2013,22(4):29-32.
    66.詹怀宇.制浆原理与工程(第三版)[M].北京:中国轻工业出版社,2009:2-8.
    67.詹茂盛,肖威,李智.酚醛树脂基蒙脱土纳米复合材料的力学性能与增强增韧机理[J],航空材料学报,2003,23(1):34-43.
    68.张长生,赵晓东,罗世凯,等.聚合物/纳米SiO2复合材料的研究进展[J].塑料利技,2005,15(5):45-47.
    69.张浩,张静,宋舒苹,等.纳米结晶纤维素改性产物对脲醛树脂浸润性的研究[J].中国造纸学报,2011,26(4):5-8.
    70.张贺,张连红,梁红玉,等.氟硅改性丙烯酸树脂及涂料的研究进展[J].化学与粘合,2011,33(5):57-60.
    71.张力平,唐焕威,曲萍,等.一种棒状纳米纤维素及其光谱性质[J].光谱学与光谱分析,2011,31(4):1097-1100.
    72.张美云,徐永建,蒲文娟.非木材纤维自催化乙醇制浆的研究进展[J].中华纸业,2007,28(6):77-79.
    73.章毅鹏,朱长风,桂红星,等.纳米晶纤维素补强天然橡胶的研究[J].热带农业科学,2008,28(3):16-18.
    74.赵临五,王春鹏.脲醛树脂胶黏剂-制备、配方、分析及应用[M].北京:化学工业出版社,2005:159-161.
    75.赵世海,蒋秀明,淮旭国,等.玄武岩纤维增强酚醛树脂基摩擦材料的摩擦磨损性能[J].机械工程材料,2010,34(5):52-55.
    76.赵煦,刘志明,张生义.芦苇浆纳米纤维素的微波辅助酸水解制备优化[J].广东化工,2012,39(14):3-4.
    77.甄文娟,单志华.纳米纤维素在绿色复合材料中的应用研究[J].现代化工,2008,28(6):85-88.
    78.周刘佳,叶代勇.丙烯酸单体接枝纳米纤维素晶须[J].精细化工,2010,27(7):720-725.
    79. Abdullah Z A, Park B D. Influence of acrylamide copolymerization of urea-formaldehyde resin adhesives to their chemical structure and performance [J]. Journal of Applied Polymer Science,2010, 117(6):3181-3186.
    80. Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls [J]. Bioresource Technology,2008,99(6):1664-1671.
    81. Alemdar A, Sain M. Biocomposites from wheat straw nanofibers:morphology, thermal and mechanical properties [J]. Composites Science and Technology,2008,68(2):557-565.
    82. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials [J]. Materials Science and Engineering Reports,2000,28(1-2):1-63.
    83. Amen-Chen C, Pakdel H, Roy C. Separation of phenols from Eucalyptus wood tar [J]. Biomass and Bioenergy,1997,13(1-2):25-37.
    84. Araki J, Wada M,Kuga S, et al. Birefringent glassy phase of a cellulose microcrystal suspension [J]. Langmuir.2000,16(6):2413-2415.
    85. Araki J, Wada M, Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting [J]. Langmuir,2001,17(1):21-27.
    86. Aziz S, Sarkanen K. Organosolv pulping-a review [J]. Tappi Journal,1989,72(3):169-175.
    87. Azizi S, Fannie A, Sanchez J Y, et al. Cellulose nanocrystals reinforced poly(oxyethylene) [J]. Polymer,2004,45(12):4149-4157.
    88. Barba C, Scott S, Roddick-Lanzilotta A, et al. Restoring important hair properties with wool keratin proteins and peptides [J]. Fibers and Polymers,2010,11(7):1055-1061.
    89. Basta A H, El-Saied H, Winandy J E, et al. Performed amide-containing biopolymer for improving the environmental performance of synthesized urea-formaldehyde in agro-fiber composites [J]. Journal of Polymers and the Environment,2011,19(2):405-412.
    90. Beecher J F. Organic materials:wood, trees and nanotechnology [J]. Nature Nanotechnology,2007, 2(8):466-467.
    91. Bian L P, Xiao J Y, Zeng J C, et al. Effects of thermal treatment on the mechanical properties of poly(p-phenylene benzobisoxazole) fiber reinforced phenolic resin composite materials [J]. Materials & Design,2014,54:230-235.
    92. Bledzki A K, Aszkiewicz A. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fiber-A comparative study to PP [J]. Composites Science and Technology,2010, 70(12):1687-1696.
    93. Bonini C, Heux L, Cavaille J Y. Rodlike cellulose whiskers coated with surfactant:a small-angle neutron scattering characterization [J]. Langmuir,2002,18(8):3311-3314.
    94. Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J]. Cellulose,2006,13(2):171-180.
    95. Brahim S B, Cheikh R B. Influence of fiber orientation and volume fraction on the tensile properties of unidircetion alfa-polyester composite [J]. Composites Science and Technology,2007, 67(1):140-147.
    96. Cao G H, Xia Z B, Lei L, et al. Crystallinity evolution of soft segments during the synthesis of polyester-based waterborne polyurethane [J]. Journal of Applied Polymer Science,2014,131(10):1-9.
    97. Cao X D, Dong H, Li C M. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane [J]. Biomacromolecules,2007,8(3):899-904.
    98. Cardona F, Kin-Tak A L, Fedrigo J. Novel phenolic resins with improved mechanical and toughness properties [J]. Journal of Applied Polymer Science,2012,123(4):2131-2139.
    99. Chan C H, Chia C H, Zakaria S, et al. Production and characterization of cellulose and nanocrystalline cellulose from kenaf core wood [J]. Bioresources,2013,8(1):785-794.
    100. Chazeau L, Gauthier C, Vigier G, et al. Relashionships between microstructural aspects and mechanical properties of polymer-based nanocomposites [M]. American Scientific Publishers, Los Angles,2003.
    101. Cheng K C, Catchmark J M, Demirci A. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property [J]. Cellulose,2009,16(6): 1033-1045.
    102. Cheng Q, Wang S Q, Rials T G. Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication [J]. Composites:Part A,2009,40(2):218-224.
    103. Cheng Q, Wang S Q, Rials T G, et al. Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers [J]. Cellulose,2007,14(6):593-602.
    104. Choi H Y, Bae C Y, Kim B K. Nanoclay reinforced UV curable waterborne polyurethane hybrids [J]. Progress in Organic Coatings,2010,68(4):356-362.
    105. Chu C C, Fischer T E. Evaluation of sunlight stability of polyurethane elastomers for maxillofacial use. I [J]. Journal of Biomedical Materials Research,1978,12(3):347-359.
    106. Chuayjuljit S, Su-uthai S, Tunwattanaseree C, et al. Preparation of microcrystalline cellulose from waste-cotton fabric for biodegradability enhancement of natural rubber sheets [J]. Journal of Reinforced Plastics and Composites,2009,28(10):1245-1254.
    107. Craciun E, Ioncea A, Jitaru I, et al. Nano oxides UV protectors for transparent organic coatings [J]. Revista De Chimie,2011,62(1):21-26.
    108. Cranston E D, Gray D G. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose [J]. Biomacromolecules,2006,7(9):2522-2530.
    109. Czaja W, Krystynowicz A, Bielecki S, et al. Microbial cellulose-the natural power to heal wounds [J]. Biomaterials,2006,27(2):145-151.
    110. De Paiva J M F, Frollini E. Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites:thermal analyses of fibers and composites [J]. Macromolecular Materials and Engineering,2006,291(4):405-417.
    111.De Souza I J, Bouchard J, Methot M, et al. Carbohydrates in oxygen delignification, Part I: Changes in cellulose crystallinity [J]. Journal of Pulp and Paper Science,2002,28(5):167-170.
    112. De S L M M, Borsali R. Rodlike cellulose microcrystals:structure, properties, and applications [J]. Macromolecular Rapid Communications,2004,25(7):771-787.
    113. Dieter S, Werner F. Resin for coatings [M]. Cincinati:Hanser/Gardner Publications Inc.1996, 332-335.
    114. Dinand E, Chanzy H, Vignon R M. Suspensions of cellulose microfibrils from sugar beet pulp [J]. Food Hydrocolloids,1999,13(3):275-283.
    115. Dolatzadeh F, Moradian S, Jalili M M. Influence of various surface treated silica nanoparticles on the electrochemical properties of SiO2/polyurethane nanocoatings [J]. Corrosion Science,2011.53(12): 4248-4257.
    116. Douglas J G, Gloria S O, Ryan M, et al. Adhesion and surface issues in cellulose and nanocellulose [J]. Journal of Adhesion Science and Technology,2008,22:545-567.
    117. Dziurka D, Mirski R. UF-PMDI hybrid resin for waterproof particleboards manufactured at a shortened pressing time [J]. Drvna Industrija,2010,61(4):245-249.
    118. Eichhorn S J, Baillie C A, Zafeiropoulos N, et al. Current international research into cellulosic fibers and composites [J]. Journal of Materials Science,2001,36(9):2107-2131.
    119. Eichhorn S J, Dufresne A, Aranguren M, et al. Review:current international research into cellulose nanofibers and nanocomposites [J]. Journal of Materials Science,2010,45(1):1-33.
    120. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose [J]. Biomacromolecules,2008,9(1):57-65.
    121.Eyholzer C, Bordeanu N, Lopez-Suevos F, et al. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form [J]. Cellulose,2010,17(1):19-30.
    122. Eyley S, Thielemans W. Imidazolium grafted cellulose nanocrystals for ion exchange applications [J]. Chemical Communications,2011,14(47):4177-4179.
    123. Fan J S, Li Y H. Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber [J]. Carbohydrate Polymers,2012,88(4):1184-1188.
    124. Fang Z H, Shang J J, Huang Y X, et al. Preparation and characterization of the heat-resistant UV curable waterborne polyurethane coating modified by bisphenol A [J]. Express Polymer Letters,2010, 4(11):704-711.
    125. Fei J, Li H J, Fu Y W, et al. Effect of phenolic resin content on performance of carbon fiber reinforced paper-based friction material [J]. Wear,2010,269(7-8):534-540.
    126. Franco H, Ferraz A, Milagres A M F, et al. Alkaline sulfite/anthraquinone pretreatment followed by disk refining of Pinus radiata and Pinus caribaea wood chips for biochemical ethanol production [J]. Journal of Chemical Technology and Biotechnology,2012,87(5):651-657.
    127. Gao M, Zhou D L, Hu X, et al. Two-stage in situ intercalation polymerization of acrylic copolymer/montmorillonite nanocomposites [J]. Industrial & Engineering Chemistry Research,2011, 50(13):7784-7790.
    128. Gao X Y, Zhu Y C, Zhou S, et al. Preparation and characterization of well-dispersed waterborne polyurethane/CaCO3 nanocomposites [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2011,377(1-3):312-317.
    129. Garcia M, Vliet G V, Jain S, et al. Polypropylene/SiO2 nanocomposites with improved mechanical properties [J]. Reviews on Advanced Materials Science,2004,2(6):169-175.
    130. George J, Sreekala M S, Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites [J]. Polymer Engineering and Science,2001,41(9): 1471-1485.
    131. Gousse C, Chanzy H, Excoffier G, et al. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents [J]. Polymer,2002,43(9):2645-2651.
    132. Goyal G C, Lora J H, Pye E K. Autocatalyzed organosolv pulping of hardwoods:effects of pulping conditions on pulp properties and characteristics of soluble and residual lignin [J]. Tappi Journal,1992, 75(2):110-116.
    133. Gray D G, Roman M. Self-assembly of cellulose nanocrystals:parabolic focal conic films [J]. ACS Symposium Series-Cellulose Nanocomposites,2006,938:26-32.
    134. Gu J, Lin L, Luo Y F, et al. The effects of nanocrystalline cellulose in the mechanical and dynamic properties of natural rubber reinforced by carbon black [J]. Acta Polymerica Sinica,2012,8:852-860.
    135. Gumuskaya E, Usta M, Kirct H. The effects of various pulping conditions on crystalline structure of cellulose in cotton linters [J]. Polymer Degration and Stability,2003,81(3):559-564.
    136. Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals:chemistry, self-assembly, and applications [J]. Chemical Reviews,2010,110(6):3479-3500.
    137. Hamad W. On the development and applications of cellulosic nanofibrillar and nanocrystalline materials [J]. Canadian Journal of Chemical Engineering,2006,84(5):513-519.
    138. Han J S, Rowell J S. Chemical composition of fibers, in paper and composites from agro-based resources [M]. London:CRC Press,1996:82-131.
    139. Hapuarachchi T D, Ren G, Fan M, et al. Fire retardancy of natural fiber reinforced sheet moulding compound [J]. Applied Composite Materials,2007,14(4):251-264.
    140. Hayashi N, Kondo T, Ishihara M. Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains [J]. Carbohydrate Polymers,2005,61(2):191-197.
    141. Henriksson M, Henriksson G. Berglund L A, et al. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers [J]. European Polymer Journal,2007,43(8):3434-3441.
    142. Hiltunen M, Siirila J, Aseyev V, et al. Cellulose-g-PDMAam copolymers by controlled radical polymerization in homogeneous medium and their aqueous solution properties [J]. European Polymer Journal,2012,48(1):136-145.
    143. Hinterstoisser B, Salmen L. Application of dynamic 2D FTIR to cellulose [J]. Vibrational Spectroscopy,2000,22(1-2):111-118.
    144. Holbery J, Houston D. Natural-fiber reinforced polymer composites in automotive application [J]. Journal of the Minerals, Metals and Materials Society,2006,58(11):80-86.
    145. Hse C Y, Higuchi M. Melamine-bridged alkyl resorcinol modified urea-formaldehyde resin for bonding hardwood plywood [J]. Journal of Applied Polymer Science,2010,116(5):2840-2845.
    146. Hubbe M A. Rojas O J, Lucia L A, et al. Cellulosic nanocomposites:a review [J]. Bioresources, 2008,3(3):929-980.
    147.Jacoba M, Thomasa S, Varugheseb K T. Mechanical properties of sisal/oil palm hybrid fiber reinforced natural composites [J]. Composites Science and Technology,2004,64(7-8):955-965.
    148. Jana R N, Bhunia H. Accelerated hygrothermal and UV aging of thermoplastic polyurethanes [J]. High Performance Polymers,2010,22(1):3-15.
    149. Jiang Y F, Wu G F, Song S P, et al. Synthesis and application of a modifier with low formaldehyde emission to enhance general wood properties [J]. Advanced Materials Research,2010,129-131: 1018-1021.
    150. Jonas R, Farah L F. Production and application of microbial cellulose [J]. Polymer Degradation Stability,1998,59(1-3):101-106.
    151. Kakola J, Alen R, Matilainen R. A fast analysis method for aliphatic carboxylic acids in alkaline non-wood cooking liquors [J]. Cellulose Chemistry and Technology,2008,42(4-6):213-222.
    152. Kamel S. Nanotechnology and its applications in lignocellulosic composites, a mini review [J]. Express Polymer Letters,2007,1(9):546-575.
    153. Kaynak C, Cagatay O. Rubber toughening of phenolic resin by using nitrile rubber and amino silane [J]. Polymer Testing,2006,25(3):296-305.
    154. Ke J, Singh D, Chen S. Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki) [J]. International Biodeterioration and Biodegradation,2011,65(6):744-756.
    155. Khalaf M N, Hanoosh W S, Hadad A I. Thermal, flexural, and impact strength studies on phenolic novolac resin/acrylonitrile-butadine rubber blends [J]. Composite Interfaces,2012,19(7):453-460.
    156. Kim H J, Kwon Y, Kim C K. Mechanical property and thermal stability of polyurethane composites reinforced with polyhedral oligomeric silsesquioxanes and inorganic flame retardant filler [J]. Journal of Nanoscience and Nanotechnology,2014,14(8):6048-6052.
    157. Kim U J, Eorn S H, Wada M. Thermal decomposition of native cellulose:influence on crystallite size [J]. Polymer Degradation and Stability,2010,95(5):778-781.
    158. Klemm D, Heublein B, Fink H P, et al. Cellulose:fascinating biopolymer and sustainable raw material [J]. Angewandte Chemie-International Edition,2005,44(22):3358-3393.
    159. Kloser E, Gray D G. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media [J]. Langmuir,2010,26(16):13450-13456.
    160. Krenchel H. Fibre reinforcement[M]. Akademisk Forlag, Copenhagen,1964.
    161. Krishnaprasad R, Veena N R, Maria H J, et al. Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposites [J]. Journal of Polymer and the Environment, 2009,17(2):109-114.
    162. Krouit M, Bras J, Belgacem M N. Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry [J]. European Polymer Journal,2008,44(12):4074-4081.
    163. K.U H, Trade M, Nixon R, et al. Flexural properties of phenolic resin reinforced with glass powder: preliminary results [J]. Journal of Applied Polymer Science,2010,116(1):347-354.
    164. Kumar V, Bhardwaj Y K, Goel N K, et al. Coating characteristics of electron beam cured bisphenol a diglycidyl ether diacrylate-co-aliphatic urethane diacrylate resins [J]. Surface & Coatings Technology, 2008,202(21):5202-5209.
    165. Kurta S A, Fedorchenko S V, Chaber M V. Investigation of the stability of the modified urea-formaldehyde resin [J]. Polimery,2004,49(1):49-51.
    166. Kvien D, Tanem B S, Oksman K. Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy [J]. Biomacromolecules,2005,6(6):3160-3165.
    167. Kyung H H, Liu N, Sun G. UV-induced graft polymerization of acrylamide on cellulose by using immobilized benzophenone as a photo-initiator [J]. European Polymer Journal,2009,45(8):2443-2449.
    168. Lan T, Padmananda D K, Thomas J P. Synthesis, characterization and mechanical properties of epoxy-clay nanocomposites [J]. Polymeric Materials Science and Engineering Fall Meeting,1994,71: 527-528.
    169. Lan T, Wang Z, Shi H Z, et al. Clay-epoxy nanocomposites:relationship between reinforcement properties and the extent of clay layer exfoliation [J]. Polymeric Materials Science and Engineering Fall Meeting,1995,73:296-297.
    170. Lee S K, Yoon S H, Chung I, et al. Waterborne polyurethane nanocomposites having shape memory effects [J]. Journal of Polymer Science Part a:Polymer Chemistry,2011,49(3):634-641.
    171. Lee S Y, Mohan D J, Kang I A, et al. Nanocellulose reinforced PVA composite films:effects of acid treatment and filler loading [J]. Fibers and Polymers,2009,10(1):77-82.
    172. Levendis D, Pizzi A, Ferg E. The correlation of strength and formaldehyde emission with the crystalline amorphous structure of UF resin [J]. Holzforschung,1992,46(3):263-269.
    173. Li C, Fan H, Wang D Y, et al. Novel silicon-modified phenolic novolacs and their biofiber-reinforced composites:Preparation, characterization and performance [J]. Composites Science and Technology,2013,87:189-195.
    174. Li J B, Zhang M Y, Yang Y L, et al. Research on pollution-free separation of wheat straw cellulose by ethanol/acetic acid solvent system [J]. Advanced Materials Research,2011,284-286:786-790.
    175. Li W, Chen Z H, Li J, et al. Flexible towpreg preparing carbon fiber-reinforced phenolic resin composites [J]. Journal of Applied Polymer Science,2008,109(1):577-583.
    176. Li Y, Ren H F, Ragauskas A J. Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties [J]. Journal of Nanoscience and Nanotechnology,2011, 11(8):6904-6911.
    177. Liao Y C, Wu X F, Wang Z, et al. Composite thin film of silica hollow spheres and waterborne polyurethane:excellent thermal insulation and light transmission performances [J]. Materials Chemistry and Physics,2012,133(2-3):642-648.
    178. Lin N, Huang J, Chang R P, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid) [J]. Carbohydrate Polymers,2011,83(4):1834-1842.
    179. Liu J, Ma D Z. Study on synthesis and thermal properties of polyurethane-imide copolymers with multiple hard segments [J]. Journal of Applied Polymer Science,2002,84(12):2206-2215.
    180. Liu L, Ye Z P. Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin [J]. Polymer Degradation and Stability,2009,94(11): 1972-1978.
    181. Liu X H, Zhao Y, Liu Z, et al. Preparation and characterization of modified nano carbon black/polyurethane composites [J]. Chemical Journal of Chinese Universities,2008,29(10):2096-2100.
    182. Ljungberg N, Bonini C, Bortolussi F, et al. New nanocomposite materials reinforced with cellulose whiskers in stactic polypropylene:effect of surface and dispersion characteristics [J]. Biomacromolecules,2005,6(5):2732-2739.
    183. Luo X G, Liu S L, Zhou J P, et al. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery [J]. Journal of Materials Chemistry,2009,19(21):3538-3545.
    184. Ma G Z, Liu W, Liu X G, et al. Preparation and properties of polymerizable silica hybrid nanoparticles with tertiary amine structure [J]. Progress in Organic Coatings,2011,71(1):83-88.
    185. Ma H Y, Wei G S, Zhang X H, et al. Study on modification of phenolic resin by elastomeric nanoparticles of nitrile butadiene [J]. Acta Polymerica Sinica,2005,1(3):467-470.
    186. Ma Z W, Hong Y, Nelson D M, et al. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments:effects of crystallinity, molecular weight, and composition on mechanical properties [J]. Biomacromolecules,2011,12(9):3266-3274.
    187. Majoinen J, Walther A, Mckee J R, et al. Poly electrolyte brushes grafted from cellulose nanocrystals using cumediated surface-initiated controlled radical polymerization [J]. Biomacromolecules,2011,12(8):2997-3006.
    188. Mansouri H R, Thomas R R, Gamier S, et al. Fluorinated polyether additives to improve the performance of urea-formaldehyde adhesive for wood panels [J]. Journal of Applied Polymer Science, 2007,106(3):1683-1688.
    189. Mathur V K. Composite materials from local resources [J]. Construction and Building Materials, 2006,20(7):470-477.
    190. Migneault S, Koubaa A, Riedl B, et al. Potential of pulp and paper sludge as a formaldehyde scavenger agent in MDF resins [J]. Holzforschung,2011,65(3):403-409.
    191. Mills D J, Jamali S S, Paprocka K. Investigation into the effect of nano-silica on the protective properties of polyurethane coatings [J]. Surface and Coatings Technology,2012,209:137-142.
    192. Mirski R, Dziurka D, Lecka J. Properties of phenol-formaldehyde resin modified with organic acid esters [J]. Journal of Applied Polymer Science,2008,107(5):3358-3366.
    193.Mishra A K, Chattopadhyay D K, Sreedhar B, et al. FT-IR and XPS studies of polyurethane-urea-imide coatings [J]. Progress in Organic Coatings,2006,55(3):231-243.
    194. Mohanty A K, Khan M A, Hinrichsen G. Influence of chemical surface modification on the properties of biodegradable jute fabrics-polyester amide composites [J]. Composites Part A:Applied Science and Manufacturing,2000,31(2):143-150.
    195. Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world [J]. Journal of Polymer and the Environment, 2002,10(1-2):19-26.
    196. Mohebby B, Tavassoli F, Kazemi-Najafi S. Mechanical properties of medium density fiberboard reinforced with metal and woven synthetic nets [J]. European Journal of Wood and Wood Products, 2011,69(2):199-206.
    197. Moiser N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005,96(6):673-686.
    198.Mondal S, Hu J L. Structural characterization and mass transfer properties of dense segmented polyurethane membrane:Influence of hard segment and soft segment crystal melting temperature [J]. Polymer Engineering and Science,2008,48(2):233-239.
    199. Moon R J, Frihart C R, Wegner T H. Nanotechnology applications in the forest products industry [J]. Forest Products Journal,2006,56(5):4-10.
    200. Newman R H. Estimation of the lateral dimensions of cellulose crystallites using 13C-NMR signal strength [J]. Solid State Nuclear Magnetic Resonance,1999,15(1):21-29.
    201.Nickerson R F, Habrle J A. Cellulose intercrystalline structure [J]. Industrial & Eanineering Chemistry Research,1947,39(1):1507-1512.
    202. Nikje M M A, Tehrani Z M. Synthesis and characterization of waterborne polyurethane-chitosan nanocomposites [J]. Polymer-Plastics Technology and Engineering,2010,49(8):812-817.
    203. Nitta K, Asuka K, Liu B P, et al. The effect of the addition of silica particles on linear spherulite growth rate of isotactic polypropylene and its explanation by lamellar cluster model [J]. Polymer,2006, 47(18):6457-6463.
    204. Nogi M, Iwamoto S, Nakagaito A N, et al. Optically transparent nanofiber paper [J]. Advanced Materials,2009,21(16):1595-1598.
    205. Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry [J]. Advanced Materials,2008, 20(10):1849-1852.
    206. Nonaka H, Ariffin H, Funaoka M. Basic characteristics of cellulase immobilized on lignophenol [J]. Kobunshi Ronbunshu,2011.68(5):315-319.
    207. Parameswaran P S, Bhuvaneswary M G, Thachil E T. Control of microvoids in resol phenolic resin using unsaturated polyester [J]. Journal of Applied Polymer Science,2009,113(2):802-810.
    208. Park B D, Kang E C, Park J Y. Thermal curing behavior of modified urea-formaldehyde resin adhesives with two formaldehyde scavengers and their influence on adhesion performance [J]. Journal of Applied Polymer Science,2008,110(3):1573-1580.
    209. Park C H, Kang Y K, Im S S. Biodegradability of cellulose fabrics [J]. Journal of Applied Polymer Science,2004,94(1):248-253.
    210. Park J M, Wang Z J, Kwon D J, et al. Optimum dispersion conditions and interfacial modification of carbon fiber and CNT-phenolic composites by atmospheric pressure plasma treatment [J]. Composites Part B:Engineering,2012,43(5):2272-2278.
    211.Pasi R, Paivi R, Juha A. Sustainable pulp production from agricultural waste [J]. Resources, Conservation and Recycling,2002,35(1-2):85-103.
    212. Pathak S S, Sharma A, Khanna A S. Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy [J]. Progress in Organic Coatings,2009,65(2):206-216.
    213.Pervaiz M, Sain M M. Sgeet-molded polyolefin natural fiber composites for automotive applications [J]. Macromolecular Materials and Engineering,2003,288(7):553-557.
    214. Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials [J]. Composites Science and Technology,2007,67(11-12): 2535-2544.
    215. Pirani S, Hashaikeh R. Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production [J]. Carbohydrate Polymers,2013,93(1):357-363.
    216. Pirayesh H, Khanjanzadeh H, Salari A. Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard [J]. Composites Part B-Engineering, 2013,45(1):858-863.
    217. Podczeck F, Maghetti A, Newton J M. The influence of non-ionic surfactants on the rheological properties of drug/microcrystalline cellulose/water mixtures and their use in the preparation and drug release performance of pellets prepared by extrusion/spheronization [J]. European Journal of Pharmaceutical Sciences,2009,37(3-4):334-340.
    218. Poreba R, Spirkova M, Pavlicevic J, et al. Aliphatic polycarbonate-based polyurethane nanostructured materials. The influence of the composition on thermal stability and degradation [J]. Composites Part B-Engineering,2014,58:496-501.
    219. Qiu F X, Zhang J L, Wu D M, et al. Waterborne polyurethane and modified polyurethane acrylate composites [J]. Plastics Rubber and Composites,2010,39(10):454-459.
    220. Rahman M M, Lee W K. Properties of isocyanate-reactive waterborne polyurethane adhesives: Effect of cure reaction with various polyol and chain extender content [J]. Journal of Applied Polymer Science,2009,114(6):3767-3773.
    221. Raj M M, Raj L M, Dave P N. Glass fiber reinforced composites of phenolic-urea-epoxy resin blends [J]. Journal of Saudi Chemical Society,2012,16(3):241-246.
    222. Rashvand M, Ranjbar Z, Rastegar S. Nano zinc oxide as a UV-stabilizer for aromatic polyurethane coatings [J]. Progress in Organic Coatings,2011,71(4):362-368.
    223. Roman M, Winter W T. Cellulose nanocrystals for thermoplastic reinforcement:effect of filler surface chemistry on composite properties [J]. ACS Symposium Series-Cellulose Nanocomposites, 2006,938:99-113.
    224. Rosa M F, Medeiros E S, Malmonge J A, et al. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior [J]. Carbohydrate Polymers,2010,81(1):83-92.
    225. Rosu D, Rosu L, Cascaval C N. IR-change and yellowing of polyurethane as a result of UV irradiation [J]. Polymer Degradation and Stability,2009,94(4):591-596.
    226. Rus A Z M, Kemp T J, Clark A J. Degradation studies of polyurethanes based on vegetable oils, part 1. photodegradation [J]. Progress in Reaction Kinetics and Mechanism,2008,33(4):363-391.
    227. Saadat-Monfared A, Mohseni M, Tabatabaei M H. Polyurethane nanocomposite films containing nano-cerium oxide as UV absorber. Part 1. Static and dynamic light scattering, small angle neutron scattering and optical studies [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2012,408:64-70.
    228. Sadeghifar H, Filpponen I, Clarke S P, et al. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface [J]. Journal of Materials Science,2011,46(22): 7344-7355.
    229. Saha S, Kocaefe D, Boluk Y, et al. Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering [J]. Applied Surface Science,2013, 276(1):86-94.
    230. Saito T, Nishiyama Y, Putaux J L, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose [J]. Biomacromolecules,2006,7(6):1687-1691.
    231. Salla J, Pandey K K, Srinivas K. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles [J]. Polymer Degradation Stability,2012,97(4):592-596.
    232. Samarzija-Jovanovic S, Jovanovic V, Konstantinovic S, et al. Thermal behavior of modified urea-formaldehyde resins [J]. Journal of Thermal Analysis and Calorimetry,2011,104(3):1159-1166.
    233. Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites [J]. Current Opinion in Solid State and Materials Science,2002,6(3):205-212.
    234. Schutz M R, Sattler K, Deeken S. et al. Improvement of thermal and mechanical properties of a phenolic resin nanocomposite by in situ formation of silsesquioxanes from a molecular precursor [J]. Journal of Applied Polymer Science,2010,117(4):2272-2277.
    235. Scortanu E, Priscariu C, Caraculacu A A. Study of the mechanical properties of dibenzyl-based polyurethane containing a molecularly dispersed UV absorber [J]. High Performance Polymers,2004, 16(1):113-121.
    236. Sha S, Kocaefe D, Krause C, et al. Effect of titania and zinc oxide particles on acrylic polyurethane coating performance [J]. Progress in Organic Coatings,2011,70(4):170-177.
    237. Sharkh B F A, Hamid H. Degradation study of date palm fiber/polypropylene composites in natural and artificial weathering:mechanical and thermal analysis [J]. Polymer Degradation and Stability,2004, 85(3):967-973.
    238. Shulga G, Vitolina S, Shakels V, et al. Lignin separated from the hydrolyzate of the hydrothermal treatment of birch wood and its surface properties [J]. Cellulose Chemistry and Technology,2012, 46(5-6):307-318.
    239. Siimer K, Kaljuvee T, Pehk T, et al. Thermal behaviour of melamine-modified urea-formaldehyde resins [J]. Journal of Thermal Analysis and Calorimetry,2010,99(3):755-762.
    240. Singh K P, Palmese G R. Enhancement of phenolic polymer properties by use of ethylene glycol as diluents [J]. Journal of Applied Polymer Science,2004,91(5):3096-3106.
    241. Singha A S, Kaith B S, Kaur I, et al. Study of mechanical properties of waste biomass reinforced urea-resorcinol-formaldehyde composites [J]. E-Journal of Chemistry,2011,8(4):1478-1489.
    242. Singha A S, Thakur, V. K. Grewiaoptiva fiber reinforced novel, low cost polymer composites [J]. E-Journal of Chemistry,2009,6(1):71-76.
    243. Singha A S, Thakur, V. K. Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder [J]. Bioresources,2009,4(1):292-308.
    244. Spence K L, Venditti R A, Habibi Y, et al. The effect of chemical composition on microfibrillar cellulose films from wood pulps:mechanical processing and physical properties [J]. Bioresource Technology,2010,101(15):5961-5968.
    245. Sturcova A, Davies G R, Eichhorn S J. Elastic modulus and stress-transfer properties of tunicate cellulosewhiskers [J]. Biomacromolecule,2005,6(2):1055-1061.
    246. Su C H, Xu Y Q, Gong F, et al. The abrasion resistance of a superhydrophobic surface comprised of polyurethane elastmer [J]. Soft Matter,2010,6(24):6068-6071.
    247. Summersclales J, Dissanayake N P J, Virk A S, et al. A review of based fibers and their composites. Part 1 fibers as reinforcement [J]. Composites Part A:Applied Science and Manufacturing,2010,41(10): 1329-1335.
    248. Sun D X, Miao X, Zhang K J, et al. Triazole-forming waterborne polyurethane composites fabricated with silane coupling agent functionalized nano-silica [J]. Journal of Colloid and Interface Science,2011,361(2):483-490.
    249. Sun Y, Lin L, Deng H B, et al. Structure of changes of bamboo cellulose in formic acid [J]. Bioresources,2008,3(2):297-315.
    250. Tan J, Ding Y M, He X T, et al. Abrasion resistance of thermoplastic polyurethane materials blended with ethylene-propylene-diene monomer rubber [J]. Journal of Applied Polymer Science,2008, 110(3):1851-1857.
    251. Tang Y J, Yang S J, Zhang N, et al. Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis [J]. Cellulose,2014,21(1):335-346.
    252. Tasan C C, Kaynak C. Mechanical performance of resol type phenolic resin/layered silicate nanocomposites [J]. Polymer Composites,2009,30(3):343-350.
    253. Tay G S, Shannon-Ong S H, Goh S W, et al. Thermoplastic-lignocellulose composites enhanced by chemically treated alcell lignin as compatibilizer [J]. Journal of Thermoplastic Composite Materials, 2013,26(6):733-746.
    254. Thakur V K, Singha A S. Natural fibers-based polymers:Part I-Mechanical analysis of Pine needles reinforced biocomposites [J]. Bulletin of Materials Science,2010,33(3):257-264.
    255. Trindade W G, Hoareau W, Razera I A T, et al. Phenolic thermoset matrix reinforced with sugar cane bagasse fibers:attempt to develop a new fiber surface chemical modification involving formation of quinones followed by reaction with furfuryl alcohol [J]. Macromolecular Materials and Engineering, 2004,289(8):728-736.
    256. Ugur S S, Sariisik M, Aktas A H. Nano-TiO2 based multilayer film deposition on cotton fabrics for UV-protection [J]. Fibers and Polymers,2011,12(2):190-196.
    257. Vassiliou A, Bikiaris D, Pavlidou E. Optimizing melt-processing conditions for the preparation of iPP/fumed silica nanocomposites:morphology, mechanical and gas permeability properties [J]. Macromolecular Reaction Engineering,2007,1(4):488-501.
    258. Vincent J F V. Structural biomaterials [M]. Macmillan Press Ltd, London,1982.
    259. Virk A S, Hall W, Summerscales J. Failure strain as the key design criterion for fracture of natural fiber composites [J]. Composites Science and Technology,2010,70(6):995-999.
    260. Wang B, Sain M. Dispersion of soybean stock-based nanofiber in a plastic matrix [J]. Polymer International,2007,56(4):538-546.
    261. Wang N, Ding E Y, Cheng R. Surface modification of cellulose nanocrystals [J]. Frontiers of Chemical Engineering in China,2007,1(3):228-232.
    262. Wegner T H, Jones P E. Advancing cellulose-based nanotechnology [J]. Cellulose,2006,13(2): 115-118.
    263. Wu C S. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic:characterization and biodegradability [J]. Polymer Degradation and Stability.2009,94(7): 1076-1084.
    264. Wu G M, Kong Z W, Chen J, et al. Preparation and properties of waterborne polyurethane/epoxy resin composite coating from anionic terpene-based polyol dispersion [J]. Progress in Organic Coatings, 2014,77(2):315-321.
    265. Wu J B, Ma G Z, Li P, et al. Surface modification of nanosilica with acrylsilane-containing tertiary amine structure and their effect on the properties of UV-curable coating [J]. Journal of Coatings Technology and Research,2014,11(3):387-395.
    266. Xiao B, Sun X F, Sun R. Chemical structural and thermal characterizations of alkali-soluble lignins and hemicelluloses and cellulose from maize stems rye straw and rice straw [J]. Polymer Degradation and Stability,2001,74(2):307-319.
    267. Xu G, Shi W F. Synthesis and characterization of hyperbranched polyurethaneacrylates used as UV curable oligomers for coatings [J]. Progress in Organic Coatings,2005,52(2):110-117.
    268. Xu P J, Yang F P. Modification of phenolic resin composites by hyperbranched polyborate and polybenzoxazine [J]. Polymer Composites,2012,33(11):1960-1968.
    269. Xu Q H, Gao Y, Qin M H, et al. Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp [J]. International Journal of Biological Macromolecules,2013,60:241-247.
    270. Xu S H, Gu J, Luo Y F, et al. Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites [J]. Express Polymer Letters, 2012,6(1):14-25.
    271. Yang J, Ye D Y. Liquid crystal of nanocellulose whiskers grafted with acrylamide [J]. Chinese Chemical Letters,2012,23(3):367-370.
    272. Yang X M, Dai T Y, Lu Y. Polymerization of pyrrole on a polyelectrolyte hollow-capsule microreactor [J]. Polymer,2006,47(13):4596-4602.
    273. Yi G W, Yan F Y. Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers [J]. Wear,2007,262(1-2):121-129.
    274. Yi J, Xu Q X, Zhang X F, et al. Temperature-induced chiral nematicphase changes of suspensions of poly(N,N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals [J]. Cellulose,2009, 16(6):989-997.
    275. Yoonessi M, Toghiani H, Wheeler R, et al. Neutron scattering, electron microscopy and dynamic mechanical studies of carbon nanofiber/phenolic resin composites [J]. Carbon,2008,46(4):577-588.
    276. Yu M J, Yang R D, Huang L H, et al. Preparation and characterization of bamboo nanocrystalline cellulose [J]. Bioresources,2012,7(2):1802-1812.
    277. Yu Y L, Huang X A, Yu W J. High performance of bamboo-based fiber composites from long bamboo fiber bundles and phenolic resins [J]. Journal of Applied Polymer Science,2014,131(12):1-8.
    278. Yuan H, Wang C G, Zhang S, et al. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite [J]. Applied Surface Science,2012,259:288-293.
    279. Yue X, Chen F, Zhou X. Synthesis of lignin-g-MMA and the utilization of the copolymer in PVC/wood composites [J]. Journal of Macromolecular Science Part B:Physics,2012,51(2):242-254.
    280. Zaman M, Xiao H N, Chibante F, et al. Synthesis and characterization of cationically modified nanocrystalline cellulose [J]. Carbohydrate Polymers,2012,89(1-5):163-170.
    281.Zeng H, Li J, Liu J P, et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly [J]. Nature,2002,420(6914):395-398.
    282. Zhang H, Chen H Y, She Y, et al. Anti-yellowing property of polyurethane improved by the use of surface-modified nanocrystalline cellulose [J]. Bioresources,2014,9(1):673-684.
    283. Zhang H, She Y, Song S P, et al. Improvements of mechanical properties and specular gloss of polyurethane by modified nanocrystalline cellulose [J]. Bioresources,2012,7(4):5190-5199.
    284. Zhang H, She Y, Song S P, et al. Particulate reinforcement and formaldehyde adsorption of modified nanocrystalline cellulose in urea-formaldehyde resin adhesive [J]. Journal of Adhesion Science and Technology,2013,27(9):1-9.
    285. Zhang H, She Y, Zheng X, et al. Efficient organic solvent system used to separate the cellulose and lignin of poplar [J]. Vegetos,2014,27(1):1-4.
    286. Zhang H, Zhang J, Pu J W. The properties of organosolv pulp and cellulose from eucalyptus with MK2 [J]. Advanced Materials Research,2011,194-196:2499-2502.
    287. Zhang H, Zhang J, Song S P, et al. Cellulose purified by an efficient and environmental friendly method for the production of NCC [J]. Advanced Materials Research,2012,393-395:637-640.
    288. Zhang H, Zhang J, Song S P, et al. Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resin adhesive [J]. Bioresources,2011,6(4):4430-4438.
    289. Zhang S G, Guo Q, Zhao Z P, et al. Microcrystalline cellulose modified waterborne polyurethane [J]. Materials Performance,2012,51(4):35-39.
    290. Zhang Y H, Gu J Y, Tan H Y, et al. Straw based particleboard bonded with composite adhesives [J]. Bioresources,2011,6(1):464-476.
    291. Zhang Y J, Li X F, An Y, et al. Polyimide modified phenolic foam [J]. Acta Polymerica Sinica, 2013,0(8):1072-1079.
    292. Zhong L X, Fu S Y, Li F, et al. Chlorine dioxide treatment of sisal fibre:surface lignin and its influences on fibre surface characteristics and interfacial behaviour of sisal fibre/phenolic resin composites [J]. Bioresources,2010,5(4):2431-2446.
    293. Zhou J T, Yao Z J, Chen Y X, et al. Mechanical and thermal properties of grapheme oxide/phenolic resin composite [J]. Polymer Composites,2013,34(8):1245-1249.
    294. Zhu J Y. Sabo R, Luo X L. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers [J]. Green Chemistry,2011,13(5):1339-1344.
    295. Zhu X F, Xu E G, Lin R H, et al. Decreasing the formaldehyde emission in urea-formaldehyde using modified starch by strongly acid process [J]. Journal of Applied Polymer Science,2014,131(9): 1-6.
    296. Zhu X L, Jiang X B, Zhang Z G, et al. Preparation and characterization of waterborne polyurethanes modified with bis(3-(1-methoxy-2-hydroxy-propoxy)propyl) terminated polysiloxanes [J]. Chinese Journal of Polymer Science,2011,29(2):259-266.
    297. Zoppe J O, Habibi Y, Rojas O J, et al. Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization [J]. Biomacromolecules,2010,11(10):2683-2691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700