高模量树脂基体及高抗压复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树脂基复合材料已在主承力构件中得到了应用,结构材料更多的是承受
    压缩和弯曲载荷,在实际中对抗压复合材料提出了越来越高的要求,研究和
    解决树脂基复合材料压缩强度和弯曲强度偏低的问题,更能有效地发挥树脂
    基复合材料的优越性能。提高树脂基复合材料压缩性能的关键问题是提高树
    脂基体的模量。
     根据国外学者利用反增塑法提高树脂基体的模量,发现模量的提高与自
    由体积之间有着密切的关系,首次提出了采用高密度树脂制备高模量基体的
    新方法。选择高密度的环氧树脂TDE-85作为基体的主要组分,分别以间苯二
    胺(MPD),改性间苯二甲胺(A-50),4.4′-二基氨基二苯基甲烷(DDM),4.4′-二
    氨基二苯基砜(DDS),2-甲基4-乙基咪唑(2.4-MI),双氰胺(DICY)为固化
    剂,研制出了三种高模量高强度的树脂基体,其拉伸模量大于5.0GPa,压缩
    模量大于6.0GPa,拉伸强度大于80MPa。一般环氧树脂基体的压缩模量通常
    为4.21GPa左右,本文研究结果高于国外利用反增塑法制备的压缩模量为4.6GPa
    的树脂基体,完全满足了高抗压复合材料(例如深潜壳体用材)对树脂基体
    的性能要求。
     通过力学性能及DTA分析,系统研究了TDE-85/胺体系的最佳配比、固化
    工艺及动力学参数,为高模量树脂基体的实际应用提供了理论依据。研究了
    浇铸体密度、线膨胀系数、玻璃化温度与模量的关系,探讨了模量大幅度提
    高的机理。研究表明,体系的化学键密度是支配模量高低的主要因素,随着
    密度增大,基体模量与玻璃化温度升高,线膨胀系数降低。
     研究了基体模量对玻璃纤维增强复合材料单向板各项性能的影响。结果
    表明,随着基体模量的提高,复合材料的拉伸性能、压缩性能、弯曲性能、
    剪切性能显著提高。玻璃纤维复合材料的压缩强度达1337.5MPa,与T300/环
    氧树脂复合材料的压缩强度(1378MPa)接近:弯曲强度达2324.6MPa,远高
    于T800/环氧树脂复合材料及各种高性能复合材料的弯曲强度。利用SEM对复
    合材料的压缩、剪切断口进行了观察,发现高模量树脂基复合材料承受压缩
    载荷时,出现纤维压断;承受剪切载荷时,分层不明显。
     利用纳米材料SiO_2、TiO_2、α-Al_2O_3改性双酚A型环氧树脂。采用表面处
    理与超声波、均质高速分散机结合,解决了纳米粒子均匀分散的技术难题,
    
    
    摘要
    使纳米粒于较均匀地分散于树脂基体中。本文采用的三种纳米粒子均使环氧
    树脂的模量与玻璃化温度提高,在低含量范围内,拉伸模量的变化规律,符
    合Einstein公式;当含量较高时,纳米粒子与基体的热膨胀系数不同而产生少
    量内应力,未分散的团聚体中存在少量气泡,使模量降低。
     以纳米m、高强玻璃纤维共同增强环氧树脂,制备纳米纤维环氧树脂
    复合材料。发现纳米粒子的加入,使纤维复合材料的各项性能得以提高,尤
    其是弯曲强度,而对复合材料的工艺性没有影响。这一研究在国内尚未见报
    道。
     利用正电子淹没技术测试了自由体积,首次用实验验证了模量与自由体
    积的密切关系。对于tilE.85/胺体系,在环氧基/胺摩尔比相同的条件下,固
    化剂交联点距离增大,堆砌密度降低,浇铸体密度降低,自由体积的尺寸与
    浓度增大,浇铸体的模量与玻璃化温度降低。对于TDE{5/A50体系,完全反
    应时,分子堆砌密度最大,自由体积的尺寸与浓度最低,模量最高:体系中
    有未反应的单体时,自由体积尺寸与浓度增大,模量降低;对于环氧树脂
    CYD.128,采用不同的固化剂,在配比不同的条件下,自由体积浓度降低,
    模量升高。纳米粒子的加入,使自由体积尺寸增大,自由体积浓度降低,模
    量与玻璃化温度升高。
Polymer composite has been used in structure. The structural composites
     endure compression and bending load. In practice, more and more desiral
     perfomance is put forward. In order to exert the high perfomance for composite, we
     must study and resolve the technology for the low compression and bending
     properties. The key technology is to enhance the modulus of matrix.
    
     The increase in the modulus of matrix can be realized by using antiplastics
     agents, if we found that there were connections between modulus and free volume.
     The new methods which can prepare the high modulus matrix with high density
     resin are reported domestically for the first time. A special epoxy resin called
     TDE-85 which has high density corresponding to some curing agents, such
     as MPD, A-SO, DDM, DDS, 2.4-MI, DICY can enhance the module of
     crosslinked epoxy matrix. Its Youngs module is up to 5.0 GPa. The compression
     module is more than 6.OGPa. The compression module of normal resin is about
     4.2 1GPa. It can be used to composites with higher compression strength.
    
     By measuring the mechanical and thermal properties , the best ratio of epoxy/
     amine, the technique processes as well as the kinetics of reaction are studied. The
     theoretical basis is to provide practical application of high module matrix. The
     connections of density, liner expanding coefficient and module are studied. The
     results indicated that module is controlled by chemical band, and the modules Tg
     increases , and liner expanding coefficient decreases with the density decrease.
    
     The influence of matrix module on the properties of composite is studied. As a
     result, the physical properties of tensile,compression, bending and cuting enhance
     with the increase of matrix module . The compress strength of glass fibre
     composite is 1337.5MIPa, which is closed to T300/epoxy composite. The bending
     strength is 2324.6MPa, which is bigger than that of T800/epoxy composite and
     other high performance composites. The breaking section of compression and
     cuting are observed. When composites with high module matrix endure compress
     loading, the fibres are broken off. When it endures cuting load, the matrix
     delamination is not distinctive.
    
    
    Nanometer SiO, TiQ and Q -Al2O3 are used to increase phySical properties of
    BPA ePOxy resin. Suffoce treatment, ultrasonic and high sPeed dispersion machine
    are used to dispose the nanometer in resin matrix. As a result, three kinds of
    nanometer materials show to increase the module and Ts of matrix. When the
    content of nanometer is small, the variations of Youngs module is accord with
    Einstein fOrmula. When the content of nanometer is large, the different liner
    expanding coefficient betWeen nanometer and matrix can cause a inner stress,
    increasing air bubbles which exist in rewhted nanomCter, these two points can
    decrease module.
    Nano-fibre-comPOsite is Prepared with SiQ, S-GF and epoxy resin. The
    performance are increased with nanometer. Nanometer brings no influence on
    prepimion tecndcs. All of this is not rePOrted domestically.
    The data of free volume are tested by Positron technique. The connection
    between module and free volume data is first tested by exPeriment. When the mole
    ratio of TDE-85/arnine systems is the same, the far the distance of curing agent is,
    the smaller the heap density is, when the cast density decreases, the free volume
    data increases, as a result, the cast module and Ts decrease. When TDE-85/A-50
    system reacts completely, the molecule heaP density is the biggest, the free volume
    becomes the smallest,and the moduIe will be the biggest. When there is unrated
    monomer, the free volume increases and the module decreases. For CYD-l28
    ePOxy resin, when the curing agen
引文
1. 陈祥宝等.先进树脂基结构复合材料的发展.材料工程,1996(6) :5.
    2. 国家高技术新材料领域专家委员会.新材料研究领域预测及对策.材料导报, 1999,13(1) :1
    3. 吴人杰.下世纪复合材料发展趋势.工程塑料应用,1999,27(2) :28
    4. 牧癀.先进复合材料的产业化与功能复合思想.纤维复合材料,1998(3) :55
    5. G.卢宾等著.哈尔滨玻璃钢研究所等译,增强塑料手册.北京:中国建筑工业出版 社,1975
    6. 黄振中著.鱼雷的总体设计.西安:西北工业大学出版社,1997
    7. W.C.Dale and E.Baer, Fiber-Buckling in Composite Systems:A model for the ultrastructure of uncallified collagen tissues, J.Mat.Sci.,1974,Vol.9,No.3,369
    8. A.M.Skudra, Micromechanics of Failure of Rein-forced Plastics, Failure Mechanics of Composites, Vol.3, Ed.G.C.Sih and A.M.Skudra,1985
    9. 赵庆钏.复合材料在鱼雷各系统中的应用.现代舰船,1998(4) :45
    10. 彭艳萍.军用新材料的应用现状及发展趋势(续).材料导报,2000,14(1) : 13
    11. 彭艳萍.军用新材料的应用现状及发展趋势.材料导报,2000,14(2) :14
    12. 郑宗光等.碳纤维缠绕复合材料在潜水外压容器上的应用.船舶工程,1997(4) :43
    13. 林德春.固体火箭发动机材料现状和前景展望.宇航材料工艺,1999,29(4) :1
    14. 梁德鹏.国外的潜艇深潜救生器材.现代兵器,1992(8) :31
    15. 鱼雷结构强度和动力学展望.水中兵器,1984(2) :105
    16. 王惠民等.碳纤维复合材料压缩性能的研究.宇航材料工艺,1989(3) :40
    17. 梁伟荣等.基体性能对碳/玻混杂复合材料压缩性能的研究.宇航材料工艺,1990 (1) : 47
    18. 孙曼灵.增强塑料的细观结构与力学性能.西安:两北工业大学出版社,1990
    19. 王惠民.S-玻璃纤维/环氧树脂复合材料压缩破坏机理.热同性树脂,1993(4) :9
    20. C.C.Chamis, Simplified Composite Micromechanics Equations for Strenth, Fracture, Toughness and Environmental Effects, SAMPE Quarterly, 1984,7,41-45
    21. I.M.Daniel, Methods of Testing Composite Materials, Failure Mechanics of Composites,Ed.G.C.Sih and A.M.Skudra,1985
    22. M.Weinberg, Shear Testing of Neat Thermoplastic Resins and Their Unidirectional Graphite Composites, Composites, 1987,18(5) :386
    23. 张留成.聚合物增塑原理及工艺.北京:轻工业出版社,1990
    24. W.T.K.Stevenson, A.Carton, and D.M.Miles, JPolym.Sci., Polym.Physics Ed.,24,717(1986)
    
    
    25. Andrew Garton, Paul D. Mclean, Additives for Improving the Strength, Stiffness, and Ductility of Epoxy Reisens, Polymer Engineering and Science, Novermber, 1987, Vol.27, No.20
    26. J.Daly, A.Britten, A.Garton, and P.D.Mclean, J.Appl.Polym.Sci., 29, 1403(1984)
    27. J.S.Vrentas, J.L.Duda, Antiplasticization and Volumetric Behavior in Glassy Polymers, Macromolecules, Vol.21, No.5, 1988
    28. K.L.Ngai and P.W.Rendell, Antiplasticization Effects on a Secondary Relaxation in Plasticized Glassy Polycarbonates, Macromolecules, 1991, 24, 61-67
    29. 卓启疆.聚合物自由体积.成都:成都科技大学出版社,1986
    30. 蓝立文.高分子物理。西安:两北工业大学出版社,1990:104
    31. WON HO JO and KYOUNG JIN KO The Effects of Physical Aging on the Thermal and Mechanical Properties of an Epoxy Polymer Polymer Engineering and science 1991,31(4) :239.
    32. EL1ANE URBACZEWSKI-ESPUCHE, Influence of Chain Flexibility and Crosslink Density on Mechanical Properties of Epoxy/Amine Networks, POLYMER ENGINEERING AND SCIENCE, 1991,31(22) : 1572.
    33. F.Fdez de Nograro, Dynamic and mechanical properties of epoxy networks obtained with PPO based amines/mPDA mixed curing agents, POLYMER ,1996,37(9) : 1589
    34. Anthony E.Mayr,Yielding behaviour in model epoxy thermosets-Ⅰ. Effect of strain rate and composition, POLYMER, 1998,39(16) :3719
    35. Wayne D.Cook,Yielding behaviour in model epoxy thermosets-Ⅱ Temperature depence,POLYMER, 1998,39( 16) :3725
    36. G.R.PALMESE ,Effect of Epoxy-Amine Stoichiometry on Cured Resin Material Properties,J.of Applied Poltmer Science, 1992,46(10) : 1863
    37. U.M.VAKIL,Crosslinked Epoxies:Network Structure Characterization and Physical-Mechanical Properties,Journal of Applied Polymer Science, 1992,46:2089
    38. M.R.VANLANDINGHAM,Relationships between Stiochiometry 、 Microsture 、 and Properties for Amine-Cured Epoxies,Journal of Applied Polymer Science, 1999,71:699
    39. 严东生、冯瑞 材料新星:纳米材料科学.湖南:湖南科学技术出版社,1997
    40. Song Guojun, Polymeric Nano-Metered Composites. Material Report, 1996(4) :57
    41. Sakovich G V et al.Production of diamond clusters by explosion and their practical atilization. Zhumal Vsesoyznogo Khimicheskogo Obshchestva IM.D.I.Mendeleeva, 1990. 35(5) :600-602
    42. Chepovetskii I Kh et al. Effect of mental lubricants containing ultradisperse diamond on wear resistance elements. Sverkhtverd Mater., 1994(3) :62--63
    
    
    43. Guo weihong, Study of PMMA/SiO2 Biend System: I Filling of PMMA Composite by Nano-meter SiO2 CHINA PLASTICS INDUSTRY, 1998,26(5) : 10
    44. Mascia L. The Role of Additives in Plastics. London: Edword td, 1974,80
    45. Ge Heyi, Study of up Resins Modified with Naumi Material. Fiber Reinforced Plastics/Composites, 1999(3) : 13
    46. Zhu zenghui, NANOTECHNOLOGY IN COMPOSITES. Chemical New Materials, 1999, 27 (10) : 28
    47. 董元彩等.环氧树脂/二氧化钛纳米复合材料的制备及性能.塑料工业,1999,27 (6) :37
    48. 郑亚萍,宁荣昌.高模量树脂基体研究现状.材料导报,2000(4) :
    49. 王采林 高聚物微观结构特性的正电了谱学研究.上海:复旦大学博士学位论文, 1994
    50. [欧]欧洲航天局,复合材料设计手册.北京:航空航天部飞机强度研究所,航空航天部 第四研究院.1992
    51. Fu Qiang, Factors Affecting the Toughness of HDPE/CaCO3 Blends.Polymer Materials and Science, 1992 (1) : 107
    52. 欧玉春等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料的研究.高分子 学报,1997(1) :199
    53. 欧玉春.刚性粒子填允聚合物的增强增韧与界面相结构。高分子材料科学与工程, 1998,14(2) :12
    54. 张凤翻.航空结构复合材料对碳纤维的需求.材料导报,2000,14(11) :5
    55. Jean Y C.Positron annihilation spectroscopy for chemical analysis:A novel probe for microstructual analysis of polymers. Microchemical Journal, 1990,(42) :72
    56. C.L.Wang et al. Positron annihilation study on PP/EPDM polymer blend. Phys.Stat.Sol. 1994,141:253-260
    57. SJ.Wang et al. Structural characteristics of HDPE/CaCO3 polymer composites probed by positron annihilation. Phys.Stat.Sol. 1994,142:275-280
    58. S.J.Wang, Investigation of polymer deformation by positron annihilation.Colloque C4, Supplement au Journal de Physique Ⅱ,1993,(3) :275-278
    59. Z.Tang and S.J.Wang, PC-CONTIN and some aspects of determination of positron annihilation rate distribution.Materials Science Forum. 1995,(175-178) : 1001-1004
    60. Z.Tang and S.J.Wang, Defect properties off-doped bi(Pb)2223 superconductors studied by positron annihilation. Materials Science Forum .1995,(175-178) :565-568
    61. B.Wang , Structural transition of polyethylene oxide networks studied by positron annihilation.Colloque C4,Supplement au Journal de Physique Ⅱ.1993,(3) :257-260
    62. C.L.Wang et al, Interficial interaction in PP/EPDM polymer blend studied by positron annihilation. Colloque C4,Supplement au Journal de Physique Ⅱ. 1993,(3) :261-264
    
    
    63. C.L.Wang and S.J.Wang, Changes in the microstructure of polyvinyl chloride polymer during the process of stress relation probed by positron annihilation. J.Phys. 1994,(6) :3593-3598
    64. C.L.Wang, Effects of deformation on the microstructure of PTFE polymer studied by positron annihilation.J.Phys.l993,(5) :7515-7520
    65. C.L.Wang, Interaction of two phases in PP/EPDM polymer blend probed by positron annihilation:CONTIN analysis.Journal of Polymer Science B.1996,(34) :193-199
    66. Z.L.Peng et al, Studt of polyaniline by positron annihilation technique.Synthetic Metals. 1994,64:33
    67. C.L.Wang and S.J.Wang, The evolution of microstructure of polystyrene following pressure relation:a positron study.Polymer 1997,38(1) : 173-176
    68. C.L.Wang and S.J.Wang, Scaling behavior of free-volume holes in polymer probed by positron annihilation. Physical Review B.1995,51:23-27
    69. 徐璋.间苯二胺的液化.工程塑料应用,1981(4) :14
    70. 徐纵雄.TDE-85环氧树脂在高温胶粘剂中的应用.黏结,1983,4(3) :28
    71. 邢雅清等.复合材料用高性能环氧树脂基体的新发展.纤维复合材料,1996(2) :1
    72. 贺福.高性能复合材料的基体-环氧树脂.化工新型材料,1984,12(11) :10
    73. 宋焕成.混杂纤维复合材料.北京:北京航空航天大学出版社.1988:12
    74. 陈平.硼胺络合物/环氧树脂体系同化反应机理极其动力学的研究.中国胶粘剂, 1993,2(6) :27
    75. 张多太.用DSC以外推法求复杂反应的动力学参数-EMI-2. 4同化环氧树脂的研究。 中国胶粘剂,1997,6(5) :38
    76. 陈平等.酸酐固化环氧树脂潜伏性促进体系的研究.纤维复合材料,1993(1) :1
    77. 刘振海.热分析导论.北京:化学工业出版社,1991:118
    78. 山下晋三等.交联剂手册.北京:化学工业出版社,1989:341
    79. 粱平辉.侧链型脂环族环氧树脂合成与应用.涂料工业,1999(10) :37
    80. F.J.麦奎林,M.S贝尔德,脂环化学.北京:高等教育出版社,1993:11
    81. Zhang Baolong. Curing Characteristics, Kinetics and Reactivities of Various Epoxy Resin Systems Cured. ACTA POLYMERICA SINICA. 1988(4) :278
    82. 赵玉庭等.复合材料聚合物基体.武汉:武汉工业大学出版社,1996:82
    83. 陈正钧等.耐蚀非金属材料极其应用.北京:化学工业出版社,1990
    84. 冼杏娟等.复合材料破坏分析及微观图谱.北京:科学出版社,1993
    85. Smith C S. Design of Marine Structured in Composite Materials. Elsevier Alpplied Science Publishers. London: 1990
    86. Hom K &Couch W P. Investigation of Eilament Reinforced Plastics for Deep Submergence Application. David Taylor Model Basin Report 1824,1966
    87. Lee S,Munro M.Eraluation of in-plane shear test method for advanced composite materials by the aecision analysis technique. Composites, 1986:17(1) : 13-22
    
    
    88. 宋焕成.聚合物基复合材料.北京:国防工业出版社,1986
    89. Wang Hui-min, Mechanism of Compression Rupture of S-Glass Fiber/Epoxy Resin Composite. Thermosetting Resin, 1993(4) :9
    90. Hom K & Couch W P. Investigation of Eilament Reinforced Plastics for Deep Submergence Application. David Taylor Model Basin Report 1824, 1966.
    91. Smith C S. Design of Marine Structured in Composite Materials. Elsevier Alpplied Science Rublishers. London: 1990
    92. Ferry R. North American Aviation. Automatic Division. New York: 1964
    93. 李小兵,超声波在制备nmSiO2/环氧树脂复合材料中的应用.热同性树脂,1999 (2) :19
    94. Nielsen L E. Mechanical Properties of Polymer and Composites. Marcel Dekker, New York, 1974
    95. YOSHFNOBU NAKAMURA, Effects of Particale Size on Mechanical and Impact Properties of Epoxy Resin Filled with Spherical Silica. Journal of Applied Polymer Science, 1992,45:1281-1289
    96. Shang S W, William J W and Soderholm K J M. Work of adhesion influence on the rheological properties of sillicafilled polymer composites. Journal of Materials Science, 1995,(30) :4323-4334
    97. Shang S W, William J W and Soderholm K J M. Using the bond energy density to predict the reinforced ability of a composite. Journal of Materials Science, 1992,(27) :4949-4956
    98. 罗忠富等.纳米CaCO3增强增韧HDPE复合材料的研究.中国塑料,2000,14(8) : 25
    99. 吕彦梅.刚性增韧材料.塑料科技,1999(1) :33
    100. 郑强.聚合物增韧机理研究进展.高分子材料科学与工程,1998(4) :12
    101. 刘引峰.聚合物在纳米微粒中的应用.1998(1) :11
    102. 王立新等.PPy/SiO2纳米复合材料的合成与表征.合成树脂及塑料,1998,15 (2) :52
    103. 扬军.有机-无机纳米复合材料的合成与性质.化工新型材料,1999(4) :3
    104. 舟山明日纳米材料有限公刊.纳米SiO2改性彩色橡胶制品.化工新型材料,1999 (4) :18
    105. 胡圣飞等.超微刚性无机粒子极其填充塑料.现代塑料加工应用,1998(2) :61
    106. 傅强等.聚合物分子复合材料研究进展.高分子材料科学与工程,1999,15(2) : 10
    107. 井新利.PMMA-SiO2原位复合材料的制备及性能研究.高分子材料科学与工程, 1998(4) :62
    108. 赵世琦.刚性粒子增韧环氧树脂的研究.中国塑料,1999(9) :35
    
    
    109. Wang xu. Study on Nano-CaCO3 reinforced Polypropylene. CHINA PLASTICS, 1999(10) :22
    110. 严海标.聚合物无机纳米复合材料的制备及应用.工程塑料应用,1999(8) :28
    111. 华道本.纳米技术和纳米高分子复合材料.现代塑料加工应用,1999(6) :52
    112. 扬中文.纳米技术在高分子材料改性中的应用.现代塑料加工与应用,1999(6) : 38
    113. 任显诚.纳米级CaCO3粒子增韧增强聚丙烯的研究.中国塑料,2000(1) :22
    114. 易昌风.有机无机复合材料的制备技术.材料导报,2000(1) :17
    115. 胡圣飞.纳米级CaCO3填允PVC/CPE复合材料研究.塑料工业,2000,28(1) :14
    116. 王立新.EP树脂/Mt纳米复合材料的制备与性能研究.合成树脂及塑料,2000,17 (2) :19
    117. 雄传溪.超微细Al2O3增韧增强聚苯乙烯的研究.高分子材料科学与工程,1994 (4) :69
    118. 欧玉春等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料的研究.高分 子学报,1997(1) :199
    119. Emmanuel P. Giannelis. Polymer-layered silicate nanocomposites: synthesis, properties and applications. Applied Organometallic Chemistry. 1998,12(10-11) : 675-680
    120. 欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构。高分子材料科学与工 程,1998,14(2) :12
    121. E. Petrovicova, R. Knight, L. S. Schadler, T. E. Twardowski. Nylon 11/silica nanocomposite coatings applied by the HVOF process. Ⅱ. Mechanical and barrier properties. Journal of Applied Polymer Science. 2000,78(13) :2272-2289
    122. R. Perez, J. Gomez. Characterization of nanostructured materials using SEM and HREM techniques. Microscopy Research and Technique. 1998,40(1) : 10-21
    123. Jianguo Tang, Keao Hu, Haiyan Liu, Dong Guo, Renjie Wu. Synthesis of 10 nanometric copper clusters in a polymer matrix by a solution-reduction synthesis (SRS). Journal of Applied Polymer Science. 2000,76(13) : 1857-1864
    124. Emmanuel P. Giannelis. Polymer-layered silicate nanocomposites: synthesis, properties and applications. Applied Organometallic Chemistry. 1998,12(10-11) : 675-680
    125. Kazuhiko Fukui, Bobby G. Sumpter, Mike D. Barnes, Donald W. Noid, Joshua U. Otaigbe. Molecular dynamics simulation of the thermal properties of nano-scale polymer particles.Macromolecular Theory and Simulations. 1999,8(1) :38-45
    l26. Yizhong Wang, Liqun Zhang, Chunhong Tang, Dingsheng Yu.Preparation and characterization of rubber-clay nanocomposites. Journal of Applied Polymer Science.2000. 78 (11) : 1879-1883
    127. R. Hauert, J. Patscheider. From Alloying to Nanocomposites-Improved Performance of Hard Coatings. Advanced Engineering Materials.2000,2(5) : 247-259
    
    
    128. Christopher L. Soles, Fernando T. Chang, Brett A. Bolan, Hristo A. Hristov, David W. Gidley, Albert F. Yee. Contributions of the nanovoid structure to the moisture absorption properties of epoxy resins. Journal of Polymer Science Part B: Polymer Physics. 1998,36(17) : 3035-3048
    129. Maarten W. J. van der Wielen, Martien A. Cohen Stuart, Gerard J. Fleer. Controlled Nanometer-Scale Surface Roughening and Its Effect on the Ordering and Stability of Liquid-Crystalline Polymer Films. Advanced Materials. 1999,11(11) : 918-923
    130. Aleksander S. Rosenberg, Gulzhian 1. Dzhardimalieva, Anatolii D. Pomogailo. Polymer composites of nano-sized particles isolated in matrix. Polymers for Advanced Technologies. 1998, 9(8) : 527-535
    131. S. Hild, W. Gutmannsbauer, R. Lhi, J. Fuhrmann, H.-J. Gtherodt. A nanoscopic view of structure and deformation of hard elastic polypropylene with scanning force microscopy. Journal of Polymer Science Part B: Polymer Physics. 1996,34(12) : 1953-1959
    132. J. S. Fodor, R. M. Briber, T. P. Russell, K. R. Carter, J. L. Hedrick, R. D. Miller. Transmission electron microscopy of 3F/PMDA-polypropylene oxide triblock copolymer based nanofoams. Journal of Polymer Science Part B: Polymer Physics. 1997,35(7) : 1067-1076
    133. Sang Wenbin, Qian Yongbiao, Guan Xudong, Wu Wenhai, Liu Yinfeng, Zhang Kejian, Wang Jie, Hua Jiadong. Synthesis and characterisation of nanometre-sized CdS clusters in chitosan film. Advanced Materials for Optics and Electronics. 1996,6(4) : 197-202
    134. 吕锡慈.高分子材料的强度与破坏.四川教育出版社,1988
    135. 潘道成等.高聚物极其共混物的力学性能.上海科学技术出版社,1988
    136. [英]IM沃德.固体高聚物的力学性能,北京:科学出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700