三维有序大孔材料的制备、表征与应用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维有序大孔(3DOM)材料是近年来刚刚兴起的多孔材料领域一项重要研究课题。3DOM材料不仅具有通常多孔材料的一般特点,如比表面积大、孔隙率高等,而且还具有孔结构排列周期性强、孔径分布窄、大孔尺寸均匀可调等一系列的自身特点,在光子晶体、大分子吸附分离、催化剂及载体、传感器及电极材料等多个领域具有广泛的应用前景。目前,3DOM材料的主要制备方法是胶晶模板法,本文在综述大量文献的基础上,以胶晶模板技术为核心,制备了多种3DOM氧化物、炭材料,并以3DOM炭材料作为载体进行了应用性研究。
     胶晶模板的制备与组装是胶晶模板法制备3DOM材料的前提。首先采用无皂乳液聚合技术合成了粒径分别为270nm、300nm、350nm、480nm和700nm的聚苯乙烯(PS)胶体微球和粒径为360nm的聚甲基丙烯酸甲酯(PMMA)胶体微球,用传统的St(o|¨)ber法合成了粒径分别为190nm、300nm和550nm的SiO_2胶体微球,以自然沉积、离心沉积和垂直沉积三种方式将制备的胶体微球组装为具有蛋白石结构的胶晶模板。组装好的胶晶模板布拉格(Bragg)衍射现象明显,宏观上具有绚丽的彩光,微观上胶体微球排列具有面心立方(fcc)结构。
     以金属醇盐为前驱体,利用溶胶-凝胶技术对PS胶晶模板进行填充,制备了3DOMZrO_2、SiO_2和TiO_2材料。以柠檬酸存在下的硝酸铈、硝酸镍和硝酸铝溶液为前驱体,成功制备了3DOM CeO_2、NiO和Al2O3材料。以硝酸锰和氧氯化锆溶液直接作为前驱体对胶晶模板进行填充,成功制备了3DOM MnO_2和ZrO_2材料。3DOM材料大孔通过小窗口相连通,形成三维交联的大孔网络结构,可以认为是对胶晶模板的逆复制。根据不同的目标产物来选择合适的胶晶模板和填充过程,与金属醇盐相比,金属盐类作为前驱体成本更为低廉。
     以廉价易得的蔗糖为炭源,溶于水中并滴加1.5ml浓硫酸作为催化剂,配制成浓度10%、20%和30%的炭源前驱体溶液,利用浸渍过程对SiO_2胶晶模板进行填充,研究发现当蔗糖溶液浓度为30%时,获得了长程有序的3DOM炭材料,并且强度较高,比表面积较大。以该3DOM炭材料为二次模板,将氧氯化锆溶液填充到其中,高温氧化燃烧除去炭后得到了3DOM ZrO_2材料,二次模板过程获得的3DOM ZrO_2材料具有较小的孔径收缩率。另外,以蔗糖为前驱体制备的3DOM炭具有良好的强度和韧性,以是一种理想的载体材料。除了蔗糖外,苯蒸气为炭源,利用化学气相沉积(CVD)过程对二氧化硅胶晶模板进行填充,制备了三维有序排列的大孔炭球。由于前驱体的区别,蔗糖获得的3DOM炭材料孔壁为无定型结构,具有较高的表面积,大孔壁上具有较为丰富的微孔和中孔。而当使用苯为炭源时,3DOM炭球出现明显的石墨化结构,表面积明显降低。这种晶型结构上的差别主要来源于前驱体本质结构上的区别。
     以浓度30%蔗糖溶液为前驱体获得的3DOM炭材料作为催化剂载体,通过结合溶胶-凝胶和浸渍过程,成功制备了3DOM TiO_2/C复合材料。以钛酸四丁酯为钛源,与乙醇、盐酸和二次蒸馏水配成浓度分别为0.4mol/l、0.8 mol/l和1.2 mol/l的溶胶溶液,然后将3DOM炭浸渍于不同浓度溶胶中,固化煅烧后得到了具有锐钛矿晶型的3DOM TiO_2/C复合材料,并将其作为一种新型光催化剂对甲基橙模拟废水进行了降解研究,发现3DOM TiO_2/C复合材料具有良好的光催化性能,并且由于纳米TiO_2颗粒镶嵌于3DOM结构中,不易脱落,具有良好的再生和循环使用能力。
     在能源方面,以3DOM炭材料为载体,通过电化学沉积技术将导电聚合物聚苯胺负载在大孔壁上,合成了3DOM PANI/C复合材料,该复合材料具有良好的电容存储性能。不同的沉积条件对最终的沉积量和聚苯胺膜厚度有明显影响,聚苯胺膜比较薄时更有利于其发挥氧化还原储电能力,循环伏安法的测试说明,3DOM PANI/C复合材料电极的氧化还原反应可逆性良好,是作为超级电容器的理想候选材料。
Recently,three-dimensional ordered macroporous (3DOM) materials have been a hot research topic. 3DOM materials not only have the properties of ordinary porous materials, such as high surface area and porosity, but have a series of self-characters of uniform pore size which can be adjusted easily, narrow distribution and periodical structure. 3DOM materials have displayed wide and potential applications in the fields of photonic crystals, separation and adsorption, catalysts and supports, sensors, and electrode materials, etc. So far, colloidal crystal templating method is the main method to prepare 3DOM materials. In this paper, many kinds of 3DOM materials were prepared by colloidal crystal templating process on the basis of reviewing many literatures. And then, 3DOM carbon materials were chosen as supports to upload other activated materials as catalysts or electrode materials.
     Monodisperse polystyrene (PS) spheres were prepared by emulsifier-free polymerization technology. Through changing the quantity of initiator, the diameter of obtained PS spheres was 270nm, 300nm, 350nm, 480nm, and 700nm, respectively. Another polymer spheres of Poly(methyl methacrylate) (PMMA) with 360 nm was also prepared. Besides polymer spheres, silica spheres with 190nm, 300nm, and 550nm were prepared by traditional St(o|¨)ber method. The prepared spheres were assembly to colloidal crystal templates by the methods of gravitational sedimentation, centrifugal sedimentation, and vertical sedimentation. After assembly, the colloidal crystal templates displayed beautiful colors in sunlight, which was the result of Bragg diffraction. Through the observation of SEM images, the spheres arrayed as face centered cubic structure (fcc) structure.
     Various metal alkoxides were used as precursors to infiltrate the PS templates, and 3DOM ZrO_2, SiO_2, and TiO_2 materials were successfully prepared. The cheap nitrates were used as precursor at the existence of citric acid, and 3DOM CeO_2, NiO, and Al2O3 materials were prepared. In addition, the solutions of manganese nitrate and zirconium oxychloride were directly used as precursor to infill the templates, and 3DOM MnO_2 and ZrO_2 materials were prepared. 3DOM materials can be looked as the inverse replica of colloidal crystal templates. The macropores were connected through small windows and formed three dimensional networks. Compared with metal alkoxides, metal salts used as precursors are in favor of decreasing costs.
     Besides 3DOM oxides, 3DOM carbon materials were also prepared by colloidal crystal templating process. Sucrose solutions with concentration of 10%, 20%, and 30% were prepared to be used as precursors, and then infiltrated the silica templates via soaking process. The concentration of precursor had important effects to final structure. When the concentration of precursor was 30%, amorphous 3DOM carbon materials were prepared and had a higher intensity and surface area. 3DOM carbon was used as twice template and zirconium oxychloride solution was infiltrated in it. After calcinations in air, 3DOM ZrO_2 materials with smaller shrinkage were obtained. On the other hand, benzene vapor was used as carbon source to infiltrate the silica template through CVD method, and carbon spheres with 3DOM structure were prepared. Due to the difference of carbon source, carbon spheres obtained from CVD process had obvious graphite property and lower surface area.
     3DOM carbon materials from sucrose precursor were used as catalyst support. Combining sol-gel technique with soaking process, 3DOM TiO_2/C composites were prepared successfully. Sols of TiO_2 with concentrations of 0.4 mol/l, 0.8 mol/l, and 1.2 mol/l from Ti(OBu)4 were prepared, then 3DOM carbon materials were soaked in sols with different concentration, respectively. After solidification and calcinations, 3DOM TiO_2/C composites with anatase were obtained, which could be looked as a new-type photocatalyst. 3DOM TiO_2/C composites displayed well catalytic ability and regenerated ability when they were used to decompose methyl orange solution which was as the organic waste-water.
     In the application of electrode materials, the other 3DOM composites of polyaniline/C were prepared by electrideposited method. Aniline was electropolymerized on 3DOM carbon surface by different scan rates of 1mv/s, 5mv/s, and 50mv/s. The composites had EDLC capacitance from 3DOM carbon and faradic capacitance from polyaniline. The specific capacitances of the composites are higher than that of pure 3DOM carbon. 3DOM polyaniline/C composite is an very promising candidate material of supercapacitance.
引文
[1] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992, 359(6397): 710-712.
    [2] Beck J. S., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society. 1992, 114(27): 10834-10843.
    [3] Tanev P. T., Chibwe M., Pinnavaia T. J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature. 1994, 368(6469): 321-323.
    [4] Imhof A., Pine D. J. Ordered macroporous materials by emulsion templating. Nature. 1997, 389(6654): 948-951.
    [5] Arnout Imhof D. J. P. Uniform Macroporous Ceramics and Plastics by Emulsion Templating. Advanced Materials. 1998, 10(9): 697-700.
    [6] Velev O. D., Jede T. A., Lobo R. F., et al. Porous silica via colloidal crystallization. Nature. 1997, 389(6650): 447-448.
    [7] Wijnhoven J. E., nbsp, G., et al. Preparation of Photonic Crystals Made of Air Spheres in Titania. Science. 1998 August 7, 1998, 281(5378): 802-804.
    [8] Holland B. T., Blanford C. F., Stein A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids. Science. 1998 July 24, 1998, 281(5376): 538-540.
    [9] Holland B. T., Blanford C. F., Do T., et al. Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites. Chemistry of Materials. 1999, 11(3): 795-805.
    [10] Dionigi C., Nozar P., Di Domenico D., et al. A simple geometrical model for emulsifier free polymer colloid formation. Journal of Colloid and Interface Science. 2004, 275(2): 445-449.
    [11] St(o|¨)er W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 1968, 26(1): 62-69.
    [12] Bogush G. H., Tracy M. A., Zukoski Iv C. F. Preparation of monodisperse silica particles: Control of size and mass fraction. Journal of Non-Crystalline Solids. 1988, 104(1): 95-106.
    [13] Markus Antonietti, Beate Berton, Christine G(?)tner, et al. Synthesis of Mesoporous Silica with Large Pores and Bimodal Pore Size Distribution by Templating of Polymer Latices. Advanced Materials. 1998, 10(2): 154-159.
    [14] Hernán Míguez F. M., Cefe López,álvaro Blanco, JoséS. Moya, Joaquín Requena, Amparo Mifsud, Vicente Fornés,. Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO_2 Spheres by Sintering. Advanced Materials. 1998, 10(6): 480-483.
    [15] Zhu J., Li M., Rogers R., et al. Crystallization of hard-sphere colloids in microgravity. Nature. 1997, 387(6636): 883-885.
    [16] Schroden R. C., Al-Daous M., Blanford C. F., et al. Optical Properties of Inverse Opal Photonic Crystals. Chemistry of Materials. 2002, 14(8): 3305-3315.
    [17] Holgado M., Garcia-Santamaria F., Blanco A., et al. Electrophoretic Deposition To Control Artificial Opal Growth. Langmuir. 1999, 15(14): 4701-4704.
    [18] Sang Hyun Park D. Q., Younan Xia,. Crystallization of Mesoscale Particles over Large Areas. Advanced Materials. 1998, 10(13): 1028-1032.
    [19] Byron Gates D. Q., Younan Xia,. Assembly of Nanoparticles into Opaline Structures over Large Areas. Advanced Materials. 1999, 11(6): 466-469.
    [20] Park S. H., Xia Y. Assembly of Mesoscale Particles over Large Areas and Its Application inFabricating Tunable Optical Filters. Langmuir. 1999, 15(1): 266-273.
    [21] Vlasov Y. A., Bo X.-Z., Sturm J. C., et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature. 2001, 414(6861): 289-293.
    [22] Gu Z.-Z., Fujishima A., Sato O. Fabrication of High-Quality Opal Films with Controllable Thickness. Chemistry of Materials. 2002, 14(2): 760-765.
    [23] Zhou Z., Zhao X. S. Flow-Controlled Vertical Deposition Method for the Fabrication of Photonic Crystals. Langmuir. 2004, 20(4): 1524-1526.
    [24] Ma X., Li B., Chaudhari B. S. Fabrication and annealing analysis of three-dimensional photonic crystals. Applied Surface Science. 2007, 253(8): 3933-3936.
    [25] Rogach A. L., Kotov N. A., Koktysh D. S., et al. Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals:  A Technique for Rapid Production of High-Quality Opals. Chemistry of Materials. 2000, 12(9): 2721-2726.
    [26] Stein A. Sphere templating methods for periodic porous solids. Microporous and Mesoporous Materials. 2001, 44-45: 227-239.
    [27] Y. Xia B. G., Y. Yin, Y. Lu,. Monodispersed Colloidal Spheres: Old Materials with New Applications. Advanced Materials. 2000, 12(10): 693-713.
    [28] Tang F., Uchikoshi T., Sakka Y. A practical technique for the fabrication of highly ordered macroporous structures of inorganic oxides. Materials Research Bulletin. 2006, 41(2): 268-273.
    [29] Gundiah G., Rao C. N. R. Macroporous oxide materials with three-dimensionally interconnected pores. Solid State Sciences. 2000, 2(8): 877-882.
    [30] S. Kuai S. B., G. Bader, R. Brüing, X. Hu, V.-V. Truong,. Preparation of Large-Area 3D Ordered Macroporous Titania Films by Silica Colloidal Crystal Templating. Advanced Materials. 2003, 15(1): 73-75.
    [31] Wijnhoven J. E. G. J., Bechger L., Vos W. L. Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania. Chemistry of Materials. 2001, 13(12): 4486-4499.
    [32] Wang D., Caruso R. A., Caruso F. Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres A Novel Route to Tune Pore Morphology. Chemistry of Materials. 2001, 13(2): 364-371.
    [33] Dionigi C., Calestani G., Ferraroni T., et al. Template evaporation method for controlling anatase nanocrystal size in ordered macroporous TiO2. Journal of Colloid and Interface Science. 2005, 290(1): 201-207.
    [34] Yi G.-R., Moon J. H., Yang S.-M. Ordered Macroporous Particles by Colloidal Templating. Chemistry of Materials. 2001, 13(8): 2613-2618.
    [35] Velev O. D., Jede T. A., Lobo R. F., et al. Microstructured Porous Silica Obtained via Colloidal Crystal Templates. Chemistry of Materials. 1998, 10(11): 3597-3602.
    [36] Li S., Zheng J., Yang W., et al. Preparation of Three-dimensionally Ordered Macroporous Oxides by Combining Templating Method with Sol–Gel Technique. Chemistry Letters. 2007, 36(4): 542-543.
    [37] Li S., Zheng J., Yang W., et al. Preparation and characterization of three-dimensional ordered macroporous rare earth oxide—CeO2. Journal of Porous Materials. 2008, 15(5): 589-592.
    [38] Yan H., Blanford C. F., Holland B. T., et al. General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion. Chemistry of Materials. 2000, 12(4): 1134-1141.
    [39] Zhang Y., Lei Z., Li J., et al. A new route to three-dimensionally well-ordered macroporous rare-earth oxides. New Journal of Chemistry. 2001, 25(9): 1118-1120.
    [40] Wu Q. Z., Shen Y., Liao J. F., et al. Synthesis and characterization of three-dimensionally orderedmacroporous rare earth oxides. Materials Letters. 2004, 58(21): 2688-2691.
    [41] Li S., Zheng J., Yang W., et al. A new synthesis process and characterization of three-dimensionally ordered macroporous ZrO2. Materials Letters. 2007, 61(26): 4784-4786.
    [42] Gu Z.-Z., Hayami S., Kubo S., et al. Fabrication of Structured Porous Film by Electrophoresis. Journal of the American Chemical Society. 2001, 123(1): 175-176.
    [43] G. Subramanian V. N. M., J. D. Thorne, D. J. Pine,. Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials. Advanced Materials. 1999, 11(15): 1261-1265.
    [44] Subramania G., Constant K., Biswas R., et al. Optical photonic crystals fabricated from colloidal systems. Applied Physics Letters. 1999, 74(26): 3933-3935.
    [45] B. Gates Y. X. Photonic Crystals That Can Be Addressed with an External Magnetic Field. Advanced Materials. 2001, 13(21): 1605-1608.
    [46] Hongwei Yan C. F. B., Brian T. Holland, Michael Parent, William H. Smyrl, Andreas Stein,. A Chemical Synthesis of Periodic Macroporous NiO and Metallic Ni. Advanced Materials. 1999, 11(12): 1003-1006.
    [47] Jiang P., Cizeron J., Bertone J. F., et al. Preparation of Macroporous Metal Films from Colloidal Crystals. Journal of the American Chemical Society. 1999, 121(34): 7957-7958.
    [48] Velev O. D., Tessier P. M., Lenhoff A. M., et al. Materials: A class of porous metallic nanostructures. Nature. 1999, 401(6753): 548-548.
    [49] Tessier P. M., Velev O. D., Kalambur A. T., et al. Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society. 2000, 122(39): 9554-9555.
    [50] Blanco A., Chomski E., Grabtchak S., et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature. 2000, 405(6785): 437-440.
    [51] Golubev V. G., Hutchison J. L., Kosobukin V. A., et al. Three-dimensional ordered silicon-based nanostructures in opal matrix: preparation and photonic properties. Journal of Non-Crystalline Solids. 2002, 299-302(Part 2): 1062-1069.
    [52] Gates B., Yin Y., Xia Y. Fabrication and Characterization of Porous Membranes with Highly Ordered Three-Dimensional Periodic Structures. Chemistry of Materials. 1999, 11(10): 2827-2836.
    [53] Park S. H., Xia Y. Fabrication of Three-Dimensional Macroporous Membranes with Assemblies of Microspheres as Templates. Chemistry of Materials. 1998, 10(7): 1745-1747.
    [54] Sang Hyun Park Y. X. Macroporous Membranes with Highly Ordered and Three-Dimensionally Interconnected Spherical Pores. Advanced Materials. 1998, 10(13): 1045-1048.
    [55] Jiang P., Hwang K. S., Mittleman D. M., et al. Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids. Journal of the American Chemical Society. 1999, 121(50): 11630-11637.
    [56] Huaitian Bu J. R., Zhenzhong Yang,. Template Synthesis of Polyacrylonitrile-Based Ordered Macroporous Materials and Their Derivatives. Macromolecular Rapid Communications. 2002, 23(8): 460-464.
    [57] K. Sumioka H. K., T. Tsutsui,. Tuning the Optical Properties of Inverse Opal Photonic Crystals by Deformation. Advanced Materials. 2002, 14(18): 1284-1286.
    [58] Bartlett P. N., Birkin P. R., Ghanem M. A., et al. Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates. Journal of Materials Chemistry. 2001, 11(3): 849-853.
    [59] M. Deutsch Y. A. V., D. J. Norris,. Conjugated-Polymer Photonic Crystals. Advanced Materials. 2000, 12(16): 1176-1180.
    [60] Sumida T., Wada Y., Kitamura T., et al. Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids. Chemical Communications. 2000, (17): 1613-1614.
    [61] D. Wang F. C. Fabrication of Polyaniline Inverse Opals via Templating Ordered Colloidal Assemblies. Advanced Materials. 2001, 13(5): 350-354.
    [62] T. Cassagneau F. C. Semiconducting Polymer Inverse Opals Prepared by Electropolymerization. Advanced Materials. 2002, 14(1): 34-38.
    [63] T. Cassagneau F. C. Conjugated Polymer Inverse Opals for Potentiometric Biosensing. Advanced Materials. 2002, 14(24): 1837-1841.
    [64] T. Cassagneau F. C. Inverse Opals for Optical Affinity Biosensing. Advanced Materials. 2002, 14(22): 1629-1633.
    [65] J. E. G. J. Wijnhoven S. J. M. Z., M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, W. L. Vos,. Electrochemical Assembly of Ordered Macropores in Gold. Advanced Materials. 2000, 12(12): 888-890.
    [66] Braun P. V., Wiltzius P. Microporous materials: Electrochemically grown photonic crystals. Nature. 1999, 402(6762): 603-604.
    [67] P. V. Braun P. W. Electrochemical Fabrication of 3D Microperiodic Porous Materials. Advanced Materials. 2001, 13(7): 482-485.
    [68] Yurii A. Vlasov N. Y., David J. Norris,. Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots. Advanced Materials. 1999, 11(2): 165-169.
    [69] Zakhidov A. A., Baughman R. H., Iqbal Z., et al. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths. Science. 1998 October 30, 1998, 282(5390): 897-901.
    [70] Ryoo R., Joo S. H., Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B. 1999, 103(37): 7743-7746.
    [71] Jun S., Joo S. H., Ryoo R., et al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical Society. 2000, 122(43): 10712-10713.
    [72] Lei Z., Zhang Y., Wang H., et al. Fabrication of well-ordered macroporous active carbon with a microporous framework. Journal of Materials Chemistry. 2001, 11(8): 1975-1977.
    [73] Gundiah G., Govindaraj A., Rao C. N. R. Macroporous carbons prepared by templating silica spheres. Materials Research Bulletin. 2001, 36(9): 1751-1757.
    [74] Yu J.-S., Yoon S. B., Chai G. S. Ordered uniform porous carbon by carbonization of sugars. Carbon. 2001, 39(9): 1442-1446.
    [75] Su F., Zhao X. S., Wang Y., et al. Synthesis of Graphitic Ordered Macroporous Carbon with a Three-Dimensional Interconnected Pore Structure for Electrochemical Applications. The Journal of Physical Chemistry B. 2005, 109(43): 20200-20206.
    [76] G.S. Chai I. S. S., J.-S. Yu,. Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells. Advanced Materials. 2004, 16(22): 2057-2061.
    [77] Kim P., Joo J. B., Kim W., et al. A novel method for the fabrication of ordered and three dimensionally interconnected macroporous carbon with mesoporosity. Carbon. 2006, 44(2): 389-392.
    [78] Chai G. S., Yoon S. B., Yu J.-S., et al. Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell. The Journal of Physical Chemistry B. 2004, 108(22): 7074-7079.
    [79] Yu J.-S., Kang S., Yoon S. B., et al. Fabrication of Ordered Uniform Porous Carbon Networks andTheir Application to a Catalyst Supporter. Journal of the American Chemical Society. 2002, 124(32): 9382-9383.
    [80] Geraud E., Prevot V., Ghanbaja J., et al. Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template. Chemistry of Materials. 2006, 18(2): 238-240.
    [81] Chen F., Xia C., Liu M. Preparation of Ordered Macroporous Sr0.5Sm0.5CoO3 as Cathode for Solid Oxide Fuel Cells. Chemistry Letters. 2001, 30(10): 1032-1033.
    [82] Kim Y. N., Kim S. J., Lee E. K., et al. Large magnetoresistance in three dimensionally ordered macroporous perovskite manganites prepared by a colloidal templating method. Journal of Materials Chemistry. 2004, 14(11): 1774-1777.
    [83] Sadakane M., Takahashi C., Kato N., et al. Three-Dimensionally Ordered Macroporous (3DOM) Materials of Spinel-Type Mixed Iron Oxides. Synthesis, Structural Characterization, and Formation Mechanism of Inverse Opals with a Skeleton Structure. Bulletin of the Chemical Society of Japan. 2007, 80(4): 677-685.
    [84] Sadakane M., Asanuma T., Kubo J., et al. Facile Procedure To Prepare Three-Dimensionally Ordered Macroporous (3DOM) Perovskite-type Mixed Metal Oxides by Colloidal Crystal Templating Method. Chemistry of Materials. 2005, 17(13): 3546-3551.
    [85] Madhavi S., Ferraris C., White T. Synthesis and characterization of three-dimensionally ordered macroporous ternary oxide. Journal of Solid State Chemistry. 2006, 179(3): 866-872.
    [86] Ergang N. S., Lytle J. C., Yan H., et al. Effect of a Macropore Structure on Cycling Rates of LiCoO2. Journal of The Electrochemical Society. 2005, 152(10): A1989-A1995.
    [87] Wang C., Geng A., Guo Y., et al. Three-dimensionally ordered macroporous Ti1-xTaxO2+x/2 (x=025, 0.05, and 0.075) nanoparticles: Preparation and enhanced photocatalytic activity. Materials Letters. 2006, 60(21-22): 2711-2714.
    [88] Busch K., John S. Photonic band gap formation in certain self-organizing systems. Physical Review E. 1998, 58(3): 3896.
    [89] Doosje M., Hoenders B. J., Knoester J. Photonic bandgap optimization in inverted fcc photonic crystals. J Opt Soc Am B. 2000, 17(4): 600-606.
    [90] Dong W., Marlow F. Tuning of ordered porous skeleton structures. Microporous and Mesoporous Materials. 2007, 99(3): 236-243.
    [91] Hung D., Liu Z., Shah N., et al. Finite Size Effects in Ordered Macroporous Electrodes Fabricated by Electrodeposition into Colloidal Crystal Templates. The Journal of Physical Chemistry C. 2007, 111(8): 3308-3313.
    [92] Aliev A. E., Lee S. B., Zakhidov A. A., et al. Superconductivity in Pb inverse opal. Physica C: Superconductivity. 2007, 453(1-2): 15-23.
    [93] Bing Liu Z. J., Xiaozhong Qu, Zhenzhong Yang,. A General Approach toward Opal-Inverse Opal Interlocked Materials. Macromolecular Rapid Communications. 2007, 28(3): 322-328.
    [94] W. Dong H. B., B. Tesche, F. Marlow,. Inverse Opals with a Skeleton Structure: Photonic Crystals with Two Complete Bandgaps. Advanced Materials. 2002, 14(20): 1457-1460.
    [95] Dong W., Bongard H. J., Marlow F. New Type of Inverse Opals:Titania With Skeleton Structure. Chemistry of Materials. 2003, 15(2): 568-574.
    [96] J.S. King D. P. G., E. Graugnard, C.J. Summers,. Conformally Back-Filled, Non-close-packed Inverse-Opal Photonic Crystals. Advanced Materials. 2006, 18(8): 1063-1067.
    [97] Li F., Wang Z., Ergang N. S., et al. Controlling the Shape and Alignment of Mesopores by Confinement in Colloidal Crystals: Designer Pathways to Silica Monoliths with Hierarchical Porosity.Langmuir. 2007, 23(7): 3996-4004.
    [98] Woo S. W., Dokko K., Sasajima K., et al. Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres. Chemical Communications. 2006, (39): 4099-4101.
    [99] Wang J., Li Q., Knoll W., et al. Preparation of Multilayered Trimodal Colloid Crystals and Binary Inverse Opals. Journal of the American Chemical Society. 2006, 128(49): 15606-15607.
    [100] Wang Z., Li F., Ergang N. S., et al. Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon,Carbon Nanocomposites. Chemistry of Materials. 2006, 18(23): 5543-5553.
    [101] Wang Z., Stein A. Morphology Control of Carbon, Silica, and Carbon/Silica Nanocomposites: From 3D Ordered Macro-/Mesoporous Monoliths to Shaped Mesoporous Particles. Chemistry of Materials. 2008, 20(3): 1029-1040.
    [102] Deng Y., Liu C., Yu T., et al. Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach. Chemistry of Materials. 2007, 19(13): 3271-3277.
    [103] Schroden R. C., Al-Daous M., Sokolov S., et al. Hybrid macroporous materials for heavy metal ion adsorption. Journal of Materials Chemistry. 2002, 12(11): 3261-3267.
    [104] R. W. J. Scott S. M. Y., G. Chabanis, N. Coombs, D. E. Williams, G. A. Ozin,. Tin Dioxide Opals and Inverted Opals: Near-Ideal Microstructures for Gas Sensors. Advanced Materials. 2001, 13(19): 1468-1472.
    [105] Sakamoto J. S., Dunn B. Hierarchical battery electrodes based on inverted opal structures. Journal of Materials Chemistry. 2002, 12(10): 2859-2861.
    [106] Kim P., Joo J. B., Kim W., et al. Direct fabrication of Pt-supported macroporous carbon with nanoporous walls. Carbon. 2005, 43(11): 2409-2412.
    [107] K.T. Lee J. C. L., N.S. Ergang, S.M. Oh, A. Stein,. Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries. Advanced Functional Materials. 2005, 15(4): 547-556.
    [108] Jiang P., Bertone J. F., Colvin V. L. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals. Science. 2001 January 19, 2001, 291(5503): 453-457.
    [109] Lei Z., Li J., Ke Y., et al. Two-step templating route to macroporous or hollow sphere oxides. Journal of Materials Chemistry. 2001, 11(12): 2930-2933.
    [110] Zhou Z., Yan Q., Su F., et al. Replicating novel carbon nanostructures with 3D macroporous silica template. Journal of Materials Chemistry. 2005, 15(26): 2569-2574.
    [111] Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges. Langmuir. 1994, 10(1): 8-16.
    [112] Li Z.-Y., Zhang Z.-Q. Fragility of photonic band gaps in inverse-opal photonic crystals. Physical Review B. 2000, 62(3): 1516.
    [113] Dawson D., Reid K. Fatigue, alcohol and performance impairment. Nature. 1997, 388(6639): 235-235.
    [114] Cheng Z., Russel W. B., Chaikin P. M. Controlled growth of hard-sphere colloidal crystals. Nature. 1999, 401(6756): 893-895.
    [115] Dushkin C. D., Lazarov G. S., Kotsev S. N., et al. Effect of growth conditions on the structure of two-dimensional latex crystals: experiment. Colloid & Polymer Science. 1999, 277(10): 914-930.
    [116] C. Lóez. Materials Aspects of Photonic Crystals. Advanced Materials. 2003, 15(20): 1679-1704.
    [117] B. Gates S. H. P., Y. Xia,. Tuning the Photonic Bandgap Properties of Crystalline Arrays of Polystyrene Beads by Annealing at Elevated Temperatures. Advanced Materials. 2000, 12(9): 653-656.
    [118] R. Seshadri F. C. M. Bioskeletons as Templates for Ordered, Macroporous Structures. AdvancedMaterials. 2000, 12(15): 1149-1151.
    [119] Gajbhiye N. S., Prasad S. Thermal decomposition of hexahydrated nickel iron citrate. Thermochimica Acta. 1996, 285(2): 325-336.
    [120] Ao C. H., Lee S. C. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A: Chemistry. 2004, 161(2-3): 131-140.
    [121] Yuan R., Zheng J., Guan R., et al. Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005, 254(1-3): 131-136.
    [122] Xu Y., Langford C. H. Photoactivity of Titanium Dioxide Supported on MCM41, Zeolite X, and Zeolite Y. The Journal of Physical Chemistry B. 1997, 101(16): 3115-3121.
    [123] Xu Y., Zheng W., Liu W. Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. Journal of Photochemistry and Photobiology A: Chemistry. 1999, 122(1): 57-60.
    [124] Li G., Zhao X. S. Characterization and Photocatalytic Properties of Titanium-Containing Mesoporous SBA-15. Industrial & Engineering Chemistry Research. 2006, 45(10): 3569-3573.
    [125] Schmidt T. J., Gasteiger H. A., Behm R. J. Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst. Electrochemistry Communications. 1999, 1(1): 1-4.
    [126] L.-Z. Fan Y.-S. H., J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti,. High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support. Advanced Functional Materials. 2007, 17(16): 3083-3087.
    [127] Zhang H., Cao G., Wang Z., et al. Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochemistry Communications. 2008, 10(7): 1056-1059.
    [128] Y.-G. Wang H.-Q. L., Y.-Y. Xia,. Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. Advanced Materials. 2006, 18(19): 2619-2623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700