石英基多孔陶瓷制备及其与纤维体连接
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要进行了石英/漂珠复合多孔陶瓷的制备及其与石英纤维编织体的连接实验,目的是利用石英基多孔陶瓷的轻质、隔热性及纤维编织体的可压缩性,制备高温密封隔热构件。实验首先以漂珠为造孔剂,采用凝胶注模成型工艺制备石英/漂珠多孔陶瓷,研究了漂珠量、烧结温度等因素对制品强度、密度等性能的影响,并最终确定连接用石英基轻质复合隔热材料的最佳配方;然后研究了石英纤维及其编织体在不同温度下的力学性能,以确定石英纤维编织体合适的的连接、使用温度;最后实验选择了三种中间层物质进行连接实验,研究了不同中间层对连接性能的影响,并探讨了各自的连接机理;论文还用有限元分析了同样两种材料连接时采用陶瓷/编织体连接和陶瓷/陶瓷连接时各自的应力分布,尝试总结了陶瓷/纤维编织体连接体系与现有陶瓷连接体系的异同。
     实验表明:通过添加45 wt.%的漂珠,采用凝胶注模成型,可以成功制备密度为0.94 g/cm~3、强度为15.6 MPa、气孔率达60%、常温热导率0.21 W/ (m·K)的轻质隔热材料;漂珠在制品中不仅起到造孔剂的作用,还能促进石英烧结,搭建的莫来石晶须骨架能够对制品起到增强作用;体积分数为45%的三维四向石英纤维编织体最大可压缩60%,800℃仍具有5%回弹量;采用硅酸钠600-800℃可以实现基体与编织体的良好连接,连接机理为扩散烧结,连接件强度为基体强度3倍,应变量是原来的6倍,断裂发生在纤维层;采用B_2O_3为中间层可通过B_2O_3与基体的低共熔实现连接,但B_2O_3对纤维损害大,采用B_2O_3/SiO_2混合物做中间层可减小损害程度,连接温度随SiO_2含量增加而增大;采用Na_2CO_3为中间层,可通过800℃Na_2CO_3与基体反应及粉末烧结实现连接,但连接强度低,断裂发生在中间层;陶瓷/纤维编织体连接体系与其它连接体系相比,主要区别在于纤维编织体结构的疏松多孔性,纤维编织体疏松多孔的结构一方面导致对液态浆料的吸附性较强,另一方面能一定程度减小基体材料的热应力。
This paper prepared silica based porous composites and realized the joining between the s ilica ba sed composite a nd quartz fiber w aves t o make a s ealed component w ith good heat insulation at high temperature. Firstly, silica based porous composites were prepared by gel-casting with fused silica as raw material and fly ash cenosphere (FAC) as pore-forming agent. And the effects of FAC on the properties of silica based composites were discussed to obtain the optimal formula of s ilica/FAC composites. Secondly, the mechanical pr operties o f q uartz fiber a nd q uartz fiber waves treated at different temperatures were studied to determine the temperature at which for joining and working. And then, the joining between silica based composite and quartz fiber waves was made with three materials (B_2O_3, Na_2CO_3 and Na_2SiO_3) as interlayers. At last, the ceramic/fiber wave joint was compared with the existing joint systems.
     Results showed that the silica based light-weight porous composite with the density of 0.94 g/cm~3, the bending strength of 15.6 MPa, the porosity of 60% and the conductivity of 0.21 W/( m·K) was prepared by adding 45 wt.% fly ash cenonsphere after s intered a t 1200℃. In t he p rocess o f s intering, FACs not o nly a cted a s a pore-forming agent but also as a sintering aid to promote the densification o f s ilica. An interlaced microstructure of lath-like and needle-like mullite crystals was found in the composites, which was a beneficial factor for strengthening of framework. Quartz fiber’s strength decreased as the temperatures i ncreased. There w as still 60% compressibility and 5% resilience in 3D silica fiber braid when treated at 800℃. During three interlayer materials (B_2O_3, Na_2CO_3, Na_2SiO_3), the joint with Na_2SiO_3 performed best as its easy process, high joining intensity and small damage to quartz fiber. The joining mechanism of using Na_2SiO_3 as joining interlayer was diffusion sintering bonding (600-800℃), and it was brazing for B_2O_3 and B_2O_3/SiO_2 mixed powders i nterlayer and reaction j oining ( 800℃) for Na_2CO_3 interlayer. What’s different about ceramic/fiber wave joint was that the loose and porous structure in fiber wave could release the stress in the joining substrate.
引文
[1]陈肇友,熔融石英陶瓷,耐火材料,1973,3:11-28
    [2]李玉书,熔融石英的石英陶瓷研究,中国陶瓷,1994,(1):6-12
    [3]王杰,潘燕芳,朱定松等,石英陶瓷辊在硅钢连续退火炉中的应用,电工材料,2006, (3):23
    [4]袁向东,崔文亮,熔融石英陶瓷的开发及应用,玻璃,1999,26 (3):44-46
    [5]刘恒波,蒋述兴,石英陶瓷材料的研究进展,玻璃,2008,4:16-19
    [6]吴兵,石英陶瓷的应用,建材世界,2010,6:10-11
    [7]吕锋,高致密度熔融石英陶瓷研究:[硕士学位论文],山东;山东大学,2005
    [8]石成利,石英陶瓷的研究进展及其应用,陶瓷,2007,1:54-56
    [9] Janney MA, Omatete OO, Method for Molding Ceramic Powders Using a Water-Based Gel Casting, U.S.Patent, 5145908, 1991-5-3
    [10]高燕,谢志鹏等,熔融石英陶瓷凝胶注模成型及烧结工艺,稀有金属材料与工程,2005,6:438-442
    [11]张漠杰,陶瓷天线罩的增强方法,上海航天,1994,4:15-17
    [12]耿启亮,陈虹,陈达谦等,注凝成型技术在制备石英纤维—石英复合陶瓷中的应用,陶瓷工程,2001,(5):3-5
    [13]贾光耀,陈虹,胡利明等,三向石英复合材料的研制,硅酸盐通报,2002,(1):3-6
    [14]吴国庭,碳纤维增强石英作辐射防热盖板的评估与研究,中国空间技术,1994,(3):61-69
    [15]曾剑平,梨义,吴元秀等,有机硅胶树脂在SiO2基复合材料中的应用研究,宇航材料工艺,1997,(3):26-31
    [16]贾德昌,石墨颗粒增韧SiO2基复合材料韧化机理,固体火箭技术,2000,(3):61-69
    [17]卜景龙,王志发,窦光涛等,熔融石英陶瓷材料的晶化抑制研究,稀有金属材料与工程,2007,36(1):357-360
    [18]杨德安,沈继耀,朱海强,加入物对石英陶瓷烧结和析晶的影响,耐火材料,1994,28(4):201-203
    [19] Kolay PK, Singh DN, Physical, Chemical, mineralogical and thermal properties of cenospheres from an ash lagoon, Cem.Concr.Res., 2001, 31(4):539–542
    [20] Varughese K T, Chaturvedi BK, Fly Ash as Fine Aggregate in Polyester Based Polymer Concrete, Cem.Concr.Compos., 1996, 18(2):105-108
    [21] Yilmaz B, Olgun A, Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic lime stone, Cem.Concr.Compos, 2008, 30 (3): 194-201
    [22] Mondal DP, Das S, Ramakrishnan N, Bhasker KU, Cenosphere filled aluminum syntactic foam made through stir-casting technique, Composites: Part A, 2009, 40(3):279-288
    [23] Rohatgi PK, Daoud A, Schultz BF et al, Microstructure and mechanical behavior of die casting AZ91D-Fly ash cenosphere composites, Composites: Part A , 2009, 40(6-7):883–896
    [24] Rohatgi PK, Kim JK, Gupta N et al, Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique, Composites: Part A, 2006, 37(3): 430-437
    [25] Chand N, Sharma P, Fahim M, Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene, Mater. Sci. Eng. A, 2010, 527(21-22): 5873-5878
    [26] K ulkarni S M, K ishore, Studies o n F ly Ash–Filled Epoxy-Cast S labs Under Compression, J. Appl. Polym. Sci., 2002, 84(13): 2404-2410
    [27] Kishore, Kulkarni SM, Sunil D, On the use of an instrumented set-up to characterize the impact behavior of an epoxy system containing varying fly ash content, Polym. Test, 2002, 21(7): 763-771
    [28] Shao YF, Jia DC, Liu BY, Characterization of porous silicon nitride ceramics by pressureless s intering using fly ash cenosphere as a por e-forming agent, J. Eur. Ceram. Soc., 2009, 29(8): 1529–1534
    [29] Matsuzaki K, Arai D, Taneda N et al, Continuous silica glass fiber produced by sol-gel process, J. Non-Cryst. Solids, 1989, 112(2):437-441
    [30] Kenji I, Toshiyuki O, Michitaka S et al, Preparation of silica fibers and non-woven cloth by electro spinning, Adv. Powder Technol., 2010,21:64-68
    [31] Mao P, Sun QJ, Ma QL et a l, Mesoporous s ilica fibers pr epared by e lectro blowing o f a po ly(methylmethacrylate)/tetraethoxysilane mixture in N ,N- dimethylformamide, Microporous Mesoporous Mater., 2008,115: 562-567
    [32] Dan L , Xia YN, Direct Fabrication of Composite and Ceramic Hollow Nano fibers by Electrospinning, Nano Lett., 2004, 4(5):933-938
    [33] Xu Q, Li JB, Peng Q et al, Novel and simple synthesis of hollow porous silica fibers with hierarchical structure using silk as template, Mater. Sci. Eng. B, 2006, 127: 212-217
    [34] Huang ZF, Chen YW, Zhou WH et al, Preparation of silica hollow fibers by surface-initiated atom transfer radical polymerization from e lectrospun f iber templates, Mater. Lett., 2009, 63:1803-1806
    [35] Porro S, Musso S, Giorcelli M et al, Optimization of a thermal-CVD system for carbon nanotube growth, Physica E, 2007, 37:13-16
    [36] Wang JX, Wen LX, Liu RJ et al, Needle-like calcium carbonate assisted self-assembly of mesostructured hollow silica nanotubes, J. Solid State Electrochem, 2005, 178: 2383-2389
    [37] Patel AC, Li SX, Wang C et al, Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications, Chem.Mater, 2007, 19(6): 1231-1238
    [38]中国人民解放军总装备部军事训练教材编辑工作委员会,高超声速气动热和热防护,北京:国防工业出版社,2003, 58-62
    [39] James C F, Howard EG, Marnell S et a l, Silica r eusable surface insulation, U.S.Patent, 3952083,1976-4-20
    [40] Robert A F, Daniel BL, Howard EG et a l, Fibrous Refractory C omposite Insulation, U.S. Patent, 4148962, 1979-4-10
    [41] Banas RP, Processing aspects of space shuttle orbiter’s ceramic reusable surface insulation, Cera. Eng. Sci. Pro., 1981, 2(7): 591~610
    [42] James C F, Daniel BL, Victor W K, Reaction c ured glass and gl ass c oatings, U.S.Patents, 4093771, 1978-6-6
    [43] Wang L, Huang YD, Liu L et a l, The influence o f P BO c oating o n room temperature mechanic properties of heat-treated quartz fiber-reinforced methyl silicon resin composites, Mater. Sci. Eng. A, 2007, 465: 22-28
    [44] Parmer JF, Zupancic JJ, Wissuchek DJ, Electron paramagnetic resonance studies of interfacial solvent absorption in quartz fibre-reinforced epoxy composites, J. Non-Cryst. Solids, 1994, 24(7):516-523
    [45] Xu CM, Wang SW, Huang XX et a l, Processing and properties of unidirectional SiO2f/SiO2 composites, Ceram. Int., 2007,33(4): 669-673
    [46]田焕芳,石英增强磷酸盐复合材料制备和组织结构及力学性能,哈尔滨:哈尔滨工业大学,2003.168-172
    [47] Qi GJ., Zhang CR, Hu HF et al, Preparation of three-dimensional silica fiber reinforced silicon nitride composite using perhydropolysilazane as precursor, Mater. Lett., 2005, 59 (26):3256-3258
    [48]张大海,黎义,高文等,高温天线罩材料研究进展,宇航材料工艺,2001,(6):1-3
    [49] Gilreath MC, Castellow SL, High-temperature dielectric properties of candidate space- shuttle thermal-protection-system an d antenna-window materials, D-7523, NASA Tech. Note, 1974
    [50] Favaloro M, Starett S, Brian’s J , High te mperature d ielectric c omposites, Proceedings of the 6th DoD Electromagnetic Windows Symposium, Huntsville AL, 1995.78-81
    [51]肖永栋,刘红影,方晓敏,新型无机烧蚀材料的性能及潜在用途,玻璃钢/复合材料,2002,(3):46-47
    [52] Qi GJ, Zhang CR, Hu HF et a l, Effects of precoating on mechanical properties and microstructures o f 3D SiO2f/Si3N4 composites using polyhydridomethylsilazane, Mater. Sci. Eng. A, 2006, 416:317–320
    [53] Qi GJ, Zhang CG, Hu HF, High strength three-dimensional silica fiber reinforced silicon nitride-based c omposites via po lyhydridomethylsilazane p yrolysis, Ceram. I nt., 2007, 33: 891–894
    [54] Manocha LM, Panchal CN, Manocha S, Silica/silica c omposites t hrough electrophoretic infiltration, Cera. Eng. Sci. Pro., 2002, 23: 655-661
    [55]姜勇刚,张长瑞,曹峰等,短切石英纤维增强氮化物基复合材料的微观结构及强韧化机理,稀有金属材料与工程,2007,36(1):696-699
    [56] Qi GJ, Zhang CR, Hu HF, Continuous s ilica fiber reinforced silica composites densified by po lymer-derived silicon nitride: M echanical p roperties and microstructures, J. Non-Cryst. Solids, 2006,352: 3794–3798
    [57] Prasad NE, Kumari S, Kamat SV et al, Fracture behaviour of 2D-weaved silica–silica continuous fibre-reinforced, ceramic–matrix composites (CFCCs), Eng. Fract. Mechanics, 2004, 71: 2589-2605
    [58]李杰,许斌,冯志海,2.5D石英/酚醛复合材料的性能研究,宇航材料工艺,2002,(1):35-37
    [59] Brazel JP, Fenton R, a s ilica/silica composite for hardened antenna windows,Proceedings o f t he 13t h symposium on e lectromagnetic windows, Atlanta GA,1976.134-142
    [60]周清,焦亚男,李嘉禄,三维编织预制件的工艺参数设计,天津工业大学学报,2004,23(1):15-17
    [61]张美忠,李贺军,李克智,三维编织复合材料的力学性能研究现状,材料工程,2004,(2):44-48
    [62]甄强,张大海,王金明,石英纤维热损伤机制,复合材料学报,2008,25(1):105-110
    [63]邢建申,王树彬,张跃,石英纤维析晶行为,复合材料学报,2006,23(6):75-79
    [64]陈帮,张长瑞,王思青等,石英纤维的表面处理,硅酸盐通报,2006,25(6):187-190
    [65]周燕,邓诗峰,黄发荣,磷酸盐基复合材料中石英纤维的表面处理,玻璃钢/复合材料,2009,(2):37-41
    [66]王树彬,邢建申,张跃,石英纤维表面氮化硼涂层的制备及表征,稀有金属材料与工程, 2007,36(2):715-718
    [67] Hayashi M, Takahashi Y, Imazato S et al, Fracture resistance of pulpless teeth restored with post-cores and crowns, Dent. Mater., 2006, 22: 477-485
    [68] Francesca M, Manuel T, Raquel O et al, Effect of temperature on the silane coupling agents when bonding core resin to quartz fiber posts, Dent. Mater., 2006,22:1024-1028
    [69] Murat Y, Safak K, Effects of chemical surface treatments of quartz and glass f?ber posts on the retention o f a composite resin, J. Prost. Dentistry, 2008, 99 : 38-45
    [70] Qiu YQ, Shen YH, Investigation on the spectral characteristics of bismuth doped silica fibers, Opt. Mater., 2009, 31: 223-228
    [71] Jiang BQ, Xiao L, Hua SF et al, Optimization and kinetics of electroless Ni–P–B plating of quartz optical fiber, Opt. Mater.,2009,31:1532-1539
    [72] Castrellon J, Paez G, S trojnik M, Remote t emperature s ensor em ploying erbium-doped silica fiber, Infra. Physic. Technol., 2002, 43: 219–222
    [73] Abdelghani A, Chovelon JM, Renault NJ et al, Optical fibre sensor coated with porous silica layers for gas and chemical vapour de tection, Sens. Actuators B, 1997,44: 495–498
    [74] Sarma TVS., Tao SQ, An active core fiber optic sensor for detecting trace H2S at high temperature using a cadmium oxide doped porous silica optical fiber as a transducer, Sens.Actuators B, 2007,127: 471–479
    [75] Zhang JS, Luo RY, Jiang M et al, The preparation and performance o f a novel room-temperature-cured heat-resistant adhesive for ceramic bonding, Mater. Sci. Eng. A, 2011, 528: 2952-2959
    [76] Cemy J, Morscher G, Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems, Ceram. Eng. Sci. Proc., 2008, 27(2): 1101-1109
    [77] Lin YJ, Tu SH, Joining of mullite ceramics with yttrium aluminosilicate glass interlayers, Ceram. Int., 2009, 35: 1311–1315
    [78] Esposito L, Bellosi A, Joining ZrB2-SiC composites using glass interlayers, J. Mater. Sci., 2005, 40: 4445-4453
    [79] Foroutan I, Mamoory RS, Hosseinabadi N, Alumina–copper j oining b y t he sintered metal powder process, Ceram. Int., 2010, 36: 741-747
    [80] Ventrella A, Salvo M, Avalle M et al, Comparison of shear strength tests on AV119 epoxy-joined ceramics, J. Mater. Sci., 2010, 45: 4401–4405
    [81] Yu MH, Zhou B, Bi DB et al, Preparation of graded multilayer materials and evaluation of residual stresses, Mater. Des., 2010, 31(5): 2478-2482
    [82] Nogi K, The role of wettability in metal–ceramic jo ining, Scripta.Mater., 2010, 62: 945-948
    [83] He Y M, Z hang J, L iu CF et a l, Microstructure and mechanical properties of Si3N4/Si3N4 joint brazed with Ag–Cu–Ti + SiC composite filler, Mater. Sci. Eng. A, 2011, 527: 2819-2825
    [84] Song XG, Cao J, Wang YF et al, Effect of Si3N4-particles addition in Ag-Cu-Ti filler alloy on Si3N4/TiAl brazed joint, Mater.Sci.Eng. A, 2011, 528(15): 5135-5140
    [85] Yang M, Lin T, He P et al, In situ synthesis of TiB whisker reinforcements in the joints of Al2O3/TC4 during brazing, Mater. Sci. Eng. A, 2011, 528:3520-3525
    [86] Mao YW, Mombello D, Baroni C, Wettability of Ni–Cr filler on SiC ceramic and interfacial reactions for t he S iC/Ni–51Cr system, Scripta Mater., 2011, 64(12): 1087-1090
    [87] Gurauskis A, S′anchez AJ, Baud′?n C, Joining green ceramic tapes made from water-based slurries by applying low p ressures a t a mbient te mperature, J. Eur. Ceram. Soc., 2005, 25(15): 3403-3411
    [88] Wakai F, Sakaguchi S, Matsuno Y, Superplasticity of yttria-stabilized tetragonal zirconia polycrystals, Adv. Ceram. Mater., 1986, 1(3): 259-263
    [89] Rodriguez AD, Mora FG, Melendo MJ et al, Current understanding of superplastic de formation o f Y-TZP and its application to joining, Mater. Sci.Eng. A, 2011, 302:154-161
    [90] Shuichi N, Nobuyuki A, High Power CO2 Laser Welding of Alumina Ceramics, Reports of industrial technology research institute, 1999, 13:43-47
    [91] Riviere C, Robin M, Fantozzi G, Comparison Between Two Techniques in Laser Welding of Ceramics, J. Phys., 1994, 4(4): 135–138
    [92] Horlock AJ, McCartney DG., Shipway PH et al, Thermally Sprayed Ni(Cr)–TiB2 Coatings using P owder P roduced b y S elf-propagating H igh Temperature Synthesis: Microstructure and Abrasive Wear Behaviour, Mater. Sci. Eng., 2002, A336 (1): 88-98
    [93] Aniruddha B , Porous NiTi by Thermal Explosion Mode of SHS: Processing, Mechanism and Generation of S ingle P hase Microstructure, Acta.Mater., 2005, 53(5): 1415-1425
    [94] Yeh CL, Hsu CC, An Experimental Study on Ti5Si3 Formation by Combustion Synthesis in Self-propagating Mode, J. Alloys Compd., 2005, 395(1-2): 53~58
    [95] Grant O, Carl D, Overview of transient liquid phase and partial transient liquid phase bonding, J. Mater. Sci., 2011,46: 5305–5323
    [96] Peaslee R L, Boam W M, Design P roperties o f Brazed Joints for High-Temperature Applications, Welding J, 1952, 31(8): 651-652
    [97] Iino Y, Partial transient liquid-phase metals layer technique of ceramic-metal bonding, J. Mater. Sci. Letters, 1991, 10: 104-106
    [98] Meek TT, Blake RD, Ceramic/glass/ceramic seal by microwave heating, U.S.Patent, 4529857, 1985-5-18
    [99]李树杰,毛样武,陶瓷材料的微波连接技术进展,粉末冶金技术,2005, 23(3): 219-223
    [100] Peng P, Lu Y, Liu XY et al, Study of preceramic polymer, Microchem. J., 1996, 53: 273-281
    [101]彭志坚,司文杰,林仕伟等,用有机硅聚合物制备高温结构陶瓷材料等研究进展,无机材料学报,1999, 6:23-26
    [102] Ventrella A, Salvo M, Avalle M et al, Comparison of shear strength tests on AV119 epoxy-joined ceramics, J. Mater. Sci., 2010, 45(16): 4401-4405
    [103] Han JH, Joining alumina ceramics in green state using a paste of ceramic slurry, J. Mater. Proc. Technol., 2011, 211 (6): 1191-1196
    [89] Rodriguez AD, Mora FG, Melendo MJ et al, Current understanding of superplastic de formation o f Y-TZP and its application to joining, Mater. Sci.Eng. A, 2011, 302:154-161
    [90] Shuichi N, Nobuyuki A, High Power CO2 Laser Welding of Alumina Ceramics, Reports of industrial technology research institute, 1999, 13:43-47
    [91] Riviere C, Robin M, Fantozzi G, Comparison Between Two Techniques in Laser Welding of Ceramics, J. Phys., 1994, 4(4): 135–138
    [92] Horlock AJ, McCartney DG., Shipway PH et al, Thermally Sprayed Ni(Cr)–TiB2 Coatings using P owder P roduced b y S elf-propagating H igh Temperature Synthesis: Microstructure and Abrasive Wear Behaviour, Mater. Sci. Eng., 2002, A336 (1): 88-98
    [93] Aniruddha B , Porous NiTi by Thermal Explosion Mode of SHS: Processing, Mechanism and Generation of S ingle P hase Microstructure, Acta.Mater., 2005, 53(5): 1415-1425
    [94] Yeh CL, Hsu CC, An Experimental Study on Ti5Si3 Formation by Combustion Synthesis in Self-propagating Mode, J. Alloys Compd., 2005, 395(1-2): 53~58
    [95] Grant O, Carl D, Overview of transient liquid phase and partial transient liquid phase bonding, J. Mater. Sci., 2011,46: 5305–5323
    [96] Peaslee R L, Boam W M, Design P roperties o f Brazed Joints for High-Temperature Applications, Welding J, 1952, 31(8): 651-652
    [97] Iino Y, Partial transient liquid-phase metals layer technique of ceramic-metal bonding, J. Mater. Sci. Letters, 1991, 10: 104-106
    [98] Meek TT, Blake RD, Ceramic/glass/ceramic seal by microwave heating, U.S.Patent, 4529857, 1985-5-18
    [99]李树杰,毛样武,陶瓷材料的微波连接技术进展,粉末冶金技术,2005, 23(3): 219-223
    [100] Peng P, Lu Y, Liu XY et al, Study of preceramic polymer, Microchem. J., 1996, 53: 273-281
    [101]彭志坚,司文杰,林仕伟等,用有机硅聚合物制备高温结构陶瓷材料等研究进展,无机材料学报,1999, 6:23-26
    [102] Ventrella A, Salvo M, Avalle M et al, Comparison of shear strength tests on AV119 epoxy-joined ceramics, J. Mater. Sci., 2010, 45(16): 4401-4405
    [103] Han JH, Joining alumina ceramics in green state using a paste of ceramic slurry, J. Mater. Proc. Technol., 2011, 211 (6): 1191-11962004, 64 (2): 155 - 170
    [120] Papenburg U, Deyelar M, High performance op to mechanical and structural components in C/SiC– technology, NGST Technology Challenge: NASA Goddard Space Flight Center, 1997.
    [121] Colombo P, Riccardi B, Donato A et al, Joining of SiC/SiCf ceramic matrix composites for fusion reactor blanket applications, J. Nuke. Mater., 2000, 278: 127-135
    [122] Rohatgi PK, Daoud A, Schultz BF et al, Microstructure and mechanical behavior of die casting AZ91D-Fly ash cenosphere composites, Composites: Part A, 2009, 40:883-896
    [123] Dong YC, Wu JD, Feng XF et al, Phase evolution and sintering characteristics of porous mullite ceramics produced from the fly ash-Al(OH)3 coating powders, J. Alloy. Compds., 2008, 60: 651-657
    [124] Oca?a M, Caballero A, González CT et al, Preparation by pyrolysis of aerosols and structural characterization of Fe-doped mullite powders, Mater. Res. Bullm, 2000, 35: 775-788
    [125] Li H , Tomozawa M , Lou V K, Effect s of nitrogen and carbonion implantation on decutrification of silica glasses, J. Non-Cryslalline Solid, 1993,168:56 - 63
    [126] Bihuniak PP, Effect of trace impurities on divitrification of vitreous silica, J. Am. Ceram. Soc., 1983, 66(10):188-198
    [127]温广武,雷廷权,周玉,不同形态石英玻璃的析晶动力学研究,材料科学与工艺,2001,9(1):1-5
    [128]周万城,傅恒志,张立同等,不同方法制备的高纯SiO2纤维的结构及其形成,硅酸盐学报,1995,23(5):565-570

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700