新型硅纳米晶材料的制备及其发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从英国科学家L.T.Canham成功制备出具有可见光发射性能的多孔硅(PS)后,以电子领域最重要的半导体硅(Si)作为发光材料的研究引起了广泛关注。而Si纳米晶作为零维纳米材料以其特有的量子限制效应成为所有Si纳米结构发光研究中的热点。本论文通过改变Si的晶体结构实现了Si纳米晶材料的高效发光,通过硅-银(Si-Ag)键表面钝化PS实现Si纳米晶材料的高强度稳定发光,并欲通过实现Si纳米晶有序分布实现Si纳米晶材料发光均匀化。
     研究发现,采用低成本、无污染的偏压溅射法可以制备出具有蓝光和紫外光发射的面心立方结构Si(fcc-Si)纳米晶材料。同时通过对比金刚石结构Si(dc-Si)纳米晶材料的发光性能和吸收性能发现,虽然fcc-Si纳米晶仍然属于间接带隙半导体,但fcc-Si纳米晶/Si氧化物系统的发光效率更高,约为dc-Si纳米晶/Si氧化物系统的1.2~1.6倍。
     另外,通过低成本、工艺简单的电化学阳极氧化和电化学沉积二步法制备出具有Si-Ag键表面钝化的PS。研究结果表明,具有最佳钝化效果的PS的发光强度是普通PS的3倍,且具有更高的发光稳定性。钝化后PS的发光强度与表面Si-Ag键的数量紧密相关:首先随着表面键数量的增多而强度增大,表面键饱和后强度达到最大,随后随着沉积Ag数量的增多,PS的发光发生淬灭。
     本论文同时通过理论和试验对Si纳米晶的有序分布做了初步探讨。首次用Monte Carlo方法模拟了应变场作用下Si原子在非晶氧化硅隔离层上的分布状态。结果表明,应变场确实对Si原子最终分布的区域具有调控作用,从理论上证明在非晶基体中, Si纳米晶同样可以实现应变场驱动的有序分布。试验方面,通过偏压共溅射加后续退火的方法成功制备了目前最高面密度的Si纳米晶(约7×1012 cm-2,比当前文献报道的Si/氧化硅系统的最高密度高5~10倍)。高分辨电镜照片显示Si纳米晶呈现部分有序化,发光谱显示只存在一个发光峰,初步显现了发光均匀性特征。
Si, as the most semiconductor materials in the field of electronic industry, has attracted wide interest since porous silicon (PS) with visible-light emission has been fabricated by L.T.Canham who is an English scientist. And luminescent Si nanocrystals (nc-Si), as 0-dimensional materials, have become one of the hottest issues in the research on Si nanostructres due to their unique quanum confinement effect.
     In this thesis, we improved photoluminescence (PL) efficiency through changing the crystalline structure of nc-Si, enhanced PL intensity and stability through passivation of Si-Ag bonds in surface of PS, and realized PL simplification, which means PL spectrum with single and narrow peak, through ordering of nc-Si.
     The research results indicate that fcc nc-Si with blue- and violet-light emission can be prepared by magnetron sputtering with substrate bias, one kind of low-cost and free-pollution method. After comparing characterization between fcc nc-Si and dc nc-Si, we can conclude that although fcc nc-Si contain the intrinsic character of indirect band gap, PL efficiency of fcc nc-Si/SiO2 system is higher than that of dc nc-Si/SiO2 system and the former is latter’s 1.2 to 1.6 times.
     PS with Si-Ag bonds passivation can be prepared by using low-cost, simple two-step technique, combining electrochemical anodization and electrochemical deposition. The research results reveal that PL intensity of passivated PS is 3 times of that of normal PS and PL stability of passivated PS is much better than that of normal PS. PL intensity of passivated PS depend on the number of Si-Ag bonds: at first, PL intensity increase with number of Si-Ag bonds, then PL intensity reach the maximum when Si-Ag bonds are saturated, at last, PL vanish due to superfluous Si-Ag bonds.
     In addition, we discussed ordering of nc-Si in both theoretical and experimental aspects. In theoretical aspect, we firstly simulated distribution of Si atoms on the amorphous SiO2 buffer layer under the effect of strain field by using Monte Carlo method. The results indicate that Si atoms tend to congregate in some particular zones due to existence of strain field. Therefore, we proved that ordering of nc-Si can be realized under strain field. In experimental aspect, we prepared nc-Si with highest area density (about be 7×1012 cm-2, and is 5 to 10 times of highest density which be reported up to now) by using magnetron sputtering with substrate bias combined with post-annealing. High resolution transmission electron microscope (HRTEM) images and PL spectra with only one PL peak respectively show that partial ordering and PL simplication of nc-Si have been realized.
引文
[1]Y.Dong, A.Bapat, S.Hilchie et al., Generation of nano-sized free standing single crystal silicon particles, Journal of Vacuum Science & Technology B, 2004, 22 (4): 1923-1930
    [2]D.Dragoman, M.Dragoman, Micro/nano-optoelectromechanical systems, Progress in Quantum Electronics, 2001, 25 (5-6): 229-290
    [3]S.M.Zakharov, V.B.Fedorov, V.V.Tsvetkov, Optoelectronic integrated circuits utilizing vertical-cavity surface-emitting semiconductor lasers, Quantum Electronics, 1999, 29 (9): 745-761
    [4]A.D.Yoffe, Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems, Advances in Physics, 2001, 50 (1): 1-208
    [5]L.Pavesi, Z.Gaburro, L.D.Negro, et al., Nanostructured silicon as a photonic material, Optics and Lasers in Engineering, 2003, 39 (3): 345-368
    [6]彭英才,X.W.Zhao,傅广生,Si基纳米发光材料的研究进展,科学通报,2002, 47 (10): 721-730
    [7]G.Sek, M.Ciorga, L.Bryja, et al., Optical characterization of strained-layer InxGa1-xAs/GaAs MQW LED grown by MOVPE, Optica Applicata, 2000, 30 (1): 183-188
    [8]Y.B.Li, J.W.Cockburn, J.P.Duck, et al., Photoluminescence spectroscopy of intersubband population inversion in a GaAs/AlxGa1-xAs triple-barrier tunneling structure, Physical Review B, 1998, 57 (11): 6290-6293
    [9]I.M.Huygens, W.P.Gomes, K.Strubbe, Defect luminescence at n-GaN electrodes-A comparative study between n-GaN on sapphire substrates and on Si substrates, Journal of the Electrocheemical Society, 2006, 153 (1): G72-G77
    [10]H.Ishikawa, K.Asano, B.Zhang, et al., Improved characteristics of GaN-based light-emitting diodes by distributed Bragg reflector grown on Si, Physica StatusSolidi A-Applied Research, 2004, 201 (12): 2653-2657
    [11]C.H.Yang, C.J.Bhongale, C.H.Chou, et al., Synthesis and light emitting properties of sulfide-containing polyfluorenes and their nanocomposites with CdSe nanocrystals: A simple process to suppress keto-defect, Polymer, 2007, 48 (1): 116-128
    [12]H.Mattoussi, L.H.Radzilowski, B.O.Dabbousi, et al., Electroluminescence from heterostructures of poly (phenylene vinylene) and inorganic CdSe nanocrystals, Journal of Applied Physics, 1998, 83 (12): 7965-7974
    [13]P.Carrier, L.J.Lewis, M.W.C.Dharma-wardana, Optical properties of structurally relaxed Si/SiO2 superlattices: The role of bounding at interfaces, Physical Review B, 2002, 65 (16): 165339
    [14]L.T.Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, 1990, 57 (10): 1046-1048
    [15]Q.Wang, C.Z.Gu, J.J.Li, et al., Enhanced photoluminescence from porous silicon by hydrogen-plasma etching, Journal of Applied Physics, 2005, 97 (9): 093501
    [16]M.Fujiwara, T.Matsumonto, H.Kobayashi, et al., Strong enhancement and long-time stabilization of porous silicon photoluminescence by laser irradiation, Joural of Luminescence, 2005, 113 (3-4): 243-248
    [17]B.Gelloz, A.Kojima, N.Koshida, Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure watere vapor annealing, Applied Physics Letters, 2005, 87 (3): 031107
    [18]R.Rolver, O.Winkler, M.Forst, et al., Light emission from Si/SiO2 superlattices fabricated by RPECVD, Microelectronics Reliability, 2005, 45 (5-6): 915-918
    [19]P.Boucaud, M.EI Kurdi, J.M.Hartmann, Photoluminescence of tensilely strained silicon quantum well on a relaxed SiGe buffer layer, Applied Physics Letters, 2004, 85 (1): 46-48
    [20]W.Wu, X.F.Huang, K.J.Chen, et al., Room temperature visible electroluminescence in silicon nanostructures, Journal of Vacuum Science & Technology A, 1999, 17 (1): 159-163
    [21]A.V.Sachenko, D.V.Korbutyak, Y.V.Kryuchenko, et al., Exciton photoluminescence in doped quasi-1D structure based on silicon, Semiconductors, 2004, 38 (4): 461-467
    [22]X.Zianni, A.G.Nassiopoulou, Directional dependence of the spontaneous emission of Si quantum wires, Physical Review B, 2002, 65 (3): 035326
    [23]D.P.Yu, Z.G.Bai, J.J.Wang, et al., Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires, Physical Review B, 1999, 59 (4): R2498-R2501
    [24]L.Y.Chen, W.H.Chen, F.C.N.Hong, Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix, Applied Physics Letters, 2005, 86 (19): 193506
    [25]I.Sychugov, R.Juhasz, J.Linnros, et al., Luminescence blinking of a Si quantum dot in SiO2 shell, Physical Review B, 2005, 71 (11): 074312
    [26]K.S.Cho, N.M.Park, T.Y.Kim, et al., High efficiency visible electroluminescence from silicon nanocrysltals embedded in silicon nitride using a transparent doping layer, Applied Physics Letters, 2005, 86 (7): 071909
    [27]P.M.Fauchet, Light emission from Si quantum dots, Materialstoday, 2005, 8 (1): 26-33
    [28]M.S.Hybertsen, Absorption and emission of light in nanoscale silicon structures, Physical Review Letters, 1994, 72 (10): 1514-1517
    [29]Y.A.Chen, N.Y.Liang, L.H.Laih, et al., Improvement of electroluminescence charaterisitics of porous silicon LED by using amorphous silicon layers, Electronics Letters, 1997, 33 (17): 1489-1490
    [30]L.Pavesi, L.Dal Negro, C.Mazzoleni, et al., Optical gain in silicon nanocrystals, Nature, 2000, 408 (6811): 440-444
    [31]G.R.Lin, C.J.Lin, C.K.Lin, Enhanced fowler-nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids, Optics Express, 2007, 15 (5): 2555-2563
    [32]N.Lalic, J.Linnros, Light emitting diode structure based on Si nanocrystals formed by implantation into thermaloxide, Journal of Luminescence, 1998, 80 (1-4): 263-267
    [33]L.Rebohle, T.Gebel, R.A.Yankov, et al., Microarrays of silicon-based light emitters for novel biosensor and lab-on-a-chip applications, Optical Materials, 2005, 27 (5): 1055-1058
    [34]I.N.Germanenko, S.T.Li, M.S.El-Shall, Decay dynamics and quenching of photoluminescence from silicon nanocrystals by aromatic nitro compounds, Journal of Physical Chemistry B, 2001, 105 (1): 59-66
    [35]M.Porti, M.Avidano, M.Nafria, et al., Nanoscale electrical characterization of Si-nc based memory metal-oxide-semiconductor devices, Journal of Applied Physics, 2007, 101 (6): 064509
    [36]Y.K.Cha, S.Park, Y.Park, et al., Effect of hydrogenation on the memory properties of Si nanocrystals obtained by inductively coupled plasma chemical vapor deposition, Applied Physics Letters, 2006, 89 (20): 202112
    [37]M.C.Beard, K.P.Knutsen, P.R.Yu, et al., Multiple excition generation in colloidal silicon nanocrystals, Nano Letters, 2007, 7 (8): 2506-2512
    [38]G.Conibeer, M.Green, R.Corkish, et al., Silicon nanostructures for third generation photovoltaic solar cells, Thin Solid Films, 2006, 511-512: 654-662
    [39]R.K.Baldwin, K.A.Pettigrew, J.C.Garno, et al., Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals, Journal of the American Chemical Society, 2002, 124 (7): 1150-1151
    [40]J.Zou, P.Sanelle, K.A.Pettigrew, et al., Size and spectroscopy of silicon nanoparticles prepared via reduction of SiCl4, Journal of Cluster Science, 2006, 17 (4): 565-578
    [41]D.Neiner, H.W.Chiu, S.M.Kauzlarich, Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon naoparticles, Journal of the American Chemical Society, 2006, 128 (34): 11016-11017
    [42]R.D.Tilley, K.Yamamoto, The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals, Advanced Materials, 2006, 18 (15): 2053-2056
    [43]J.H.Warner, A.Hoshino, K.Yamamoto, et al.,Water-soluble photoluminescent silicon quantum dots, Angewandte Chemie-International Edition, 2005, 44 (29): 4550-4554
    [44]J.H.Warner, H.Rubinsztein-Dunlop, R.D.Tilley, Surface morphology dependent photoluminescence from colloidal silicon nanocrystals, Journal of Physical Chemistry B, 2005, 109 (41): 19064-19067
    [45]Z.H.Kang, C.H.A.Tsang, Z.D.Zhang, et al., A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: From quantum dots to nanowires, Journal of the American Chemical Society, 2007, 129 (17): 5326-5327
    [46]Z.H.Kang, C.H.A.Tsang, N.-B. Wong, et al., Silicon quantum dots: A general photocatalyst for reduction, decomposition, and selective oxidation reactions, Journal of the American Chemical Society, 2007, 129 (40): 12090-12091
    [47]Z.R.Yu, M.Aceves-Mijares, A.Luna-Lopez, et al., Formation of silicon nanoislands on crystalline silicon substrates by thermal annealing of silicon rich oxide deposited by low pressure chemical vapour deposition, Nanotechnology, 2006, 17 (19): 4962-4965
    [48]A.Salonidou, A.G.Nassiopoulou, K.Giannakopoulos, et al., Growth of two-dimensional arrays of silicon nanocrystals in thin SiO2 layers by low pressure chemical vapour deposition and high temperature annealing/oxidation: Investigation of their charging properties, Nanotechnology, 2004, 15 (9): 1233-1239
    [49]F.Mazen, T.Baron, G.Bremond, et al., Influence of carrier and doping gasses on the chemical vapor deposition of silicon quantum dots, Materials Science and Engineering B, 2003, 101 (1-3): 164-168
    [50]F.Mazen, T.Baron, A.M.Papon, et al., A two steps CVD process for the growth of silicon nano-crystals, Applied Surface Science, 2003, 214 (1-4): 359-363
    [51]A.Benami, G.Santana, A.Ortiz, et al., Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3, Nanotechnology, 2007, 18 (15): 155704
    [52]G.R.Lin, C.J.Lin, C.K.Lin, et al., Oxygen defect and Si nanocrystals dependent white-light and near-infrared electroluminescence of Si-implanted plasma-enhanced chemical-vapor deposition-growth Si-rich SiO2, Journal of Applied Physics, 2005, 97 (9): 094306
    [53]W.A.Saunders, P.C.Sercel, R.B.Lee, et al., Synthesis of luminescent silicon clusters by spark ablation, Applied Physics Letters, 1993, 63 (11): 1549-1551
    [54]R.E.Hummel, A.Morrone, M.Ludwig, et al., On the origin of photoluminescence in spark-eroded (porous) silicon, Applied Physics Letter, 1993, 63 (20): 2771-2773
    [55]S.Yerci, I.Yildiz, M.Kulakci, et al., Depth profile investigations of silicon nanocrystals formed in sapphire by ion implantation, Journal of Applied Physics, 2007, 102 (2): 024309
    [56]L.Ding, T.P.Chen, Y.Liu, et al., Influence of nanocrystals size on optical properties of Si nanocrystals embedded in SiO2 synthesized by Si ion implantation, Journal of Applied Physics, 2007, 101 (10): 103525
    [57]S.Yerci, U.Serincan, I.Dogan, et al., Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence, Journal of Applied Physics, 2006, 100 (7): 074301
    [58]N.Galiana, P.P.Martin, C.Munuera, et al., MBE fabrication of self-assembled Si and metal nanostructures on Si surfaces, Surface Science, 2006, 600 (18): 3956-3963
    [59]J.R.Rani, V.P.M.Pillai, R.S.Ajimsha, et al., Effect of substrate roughness on photoluminescence spectra of silicon nanocrystals grown by off axis pulsed laser deposition, Journal of Applied Physics, 2006, 100 (1): 014302
    [60]M.H.Wu, R.Mu, A.Ueda, et al., Production of silicon quantum dots for photovoltaic application by picosecond pulsed laser ablation, Materials Science and Engineering B, 2005, 116 (3): 273-277
    [61]I.Umezu, K.Matsumoto, M.Inada, et al., Correlation between suface oxide and photoluminescence properties of Si nanoparticles prepared by pulsed laser ablation,Applied Physics A: Materials Science & Processing, 2004, 79 (4-6): 1545-1547
    [62]K.I.Han, Y.M.Park, S.Kim, et al., Enhancement of memory performance using doubly stacked Si-nanocrystal floating gates prepared by ion beam sputtering in UHV, IEEE Transactions on Electron Devices, 2007, 54 (2): 359-362
    [63]K.Ma, J.Y.Feng, Z.J.Zhang, Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering, Nanotechnology, 2006, 17 (18): 4650-4653
    [64]Y.He, L.Bi, J.Y.Feng, et al., Properteis of Si-rich SiO2 films by RF magnetron sputtering, Journal of Crystal Growth, 2005, 280 (3-4): 352-356
    [65]A.Zunger, L.W.Wang, Theory of silicon nanostructures, Applied Surface Science, 1996, 102: 350-359
    [66]S.Takeoka, M.Fujii, S.Hayashi, Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a week confinement regime, Physical Review B, 2000, 62 (24): 16820-16825
    [67]W.L.Wu, Y.Gu, G.G.Siu, et al., Orange-green emission from porous Si coated with Ge films: The role of Ge-related defects, Journal of Applied Physics, 1999, 86 (1): 707-709
    [68]R.K.Soni, L.F.Fonseca, O.Resto, et al., Size-dependent optical properties of silicon nanocrystals, Journal of Luminescence, 1999, 83-84: 187-191
    [69]J.P.Wilcoxon, G.A.Samara, Tailorable, visible light emission from silicon nanocrystals, Applied Physics Letters, 1999, 74 (21): 3164-3166
    [70]B.G.Fernandez, M.Lopez, C.Garcia, et al., Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2, Journal of Applied Physics, 2002, 91 (2): 798-807
    [71]Z.Y.Ma, L.Wang, K.J.Chen, et al., Blue light emission in nc-Si/SiO2 multilayers fabricated using layer by layer plasma oxidation, Journal of Non-Crysalline Solids, 2002, 299-302 (Part 1): 648-652
    [72]M.V.Wolkin, J.Jorne, P.M.Fauchet, et al., Electronic states and luminescence in porous silicon quantum dots: The role of oxygen, Physcial Review Letters, 1999, 82 (1):197-200
    [73]S.Adachi, M.Oi, Spectroscopic investigation of light-emitting porous silicon photoetched in aqueous HF/I2 solution, Journal of Applied Physics, 2007, 102 (6): 063506
    [74]N.Koshida, N.Matsumoto, Fabrication and quantum properties of nanostructured silicon, Materials Science and Engineering R: Reports, 2003, 40 (5): 169-205
    [75]J.Valenta, R.Juhasz, J.Linnros, Photoluminescence spectroscopy of single silicon quantum dots, Applied Physics Letters, 2002, 80 (6): 1070-1072
    [76]L.Canham, Gaining light from silicon, Nature, 2000, 408: 411-412
    [77]J.D.Holmes, K.J.Ziegler, R.C.Doty, et al., Hgihly luminescence silicon nanocrystals with discrete optical transitions, Journal of the American Chemical Society, 2001, 123 (16): 3743-3748
    [78]A.Y.Liu, K.J.Chang, M.L.Cohen, Theory of electronic, vibrational, and superconducting properties of fcc silicon, Physical Review B, 1988, 37 (11): 6344-6348
    [79]K.J.Chang, M.L.Cohen, Solid-solid phase transitions and soft phonon modes in highly condensed Si, Physical Review B, 1985, 31 (12): 7819-7826
    [80]M.T.Yin, M.L.Cohen, Theory of static structural properties, crystal stability, and phase transformation: Application to Si and Ge, Physical Review B, 1982, 26 (10): 5668-5687
    [81]Y.Zhang, Z.Iqbal, S.Vijayalakshmi, et al., Stable hexagonal-wurtzite silicon phase by laser ablation, Applied Physics Letters, 1999, 75 (18): 2758-2760
    [82]J.Y.Zhang, H.Ono, K.Uchida, et al., Wurtzite silicon nanocrystals deposited by the cluster-beam evaporation technique, Physica Status Solidi B-Basic Solid State Physics, 2001, 223: 41-45
    [83]A.F.i Morral, R.Brenot, E.A.G.Hamers, et al., In situ investigation of polymorphous silicon deposition, Journal of Non-Crystalline Solids, 2000, 266-269 (Part 1): 48-53
    [84]G.Viera, M.Mikikian, E.Bertran, et al., Atomic structure of the nanocrystalline Si particles appearing in nanostructured Si thin films produced in low-temperature radiofrequency plasmas, Journal of Applied Physics, 2002, 92 (8): 4684-4694
    [85]G.Viera, S.Huet, M.Mikikian, et al., Electron diffracton and high-resolution transmission microscopy studies of nanostructured Si thin films deposited by radiofrequency dusty plasmas, Thin Solid Films, 2002, 403-404: 467-470
    [86]S.Sato, N.Yamamoto, H.Yao, et al., Synthesis of three-dimensional silicon cluster superlattices, Chemical Physics Letters, 2002, 365 (5-6): 421-426
    [87]S.Sato, N.Yamamoto, K.Nakanishi, et al., Three-dimensional arrays of Si clusters grown at water surfaces and Si (100) surfaces, Microelectronic Engineering, 2003, 66 (1-4): 159-165
    [88]S.Sato, N.Yamamoto, K.Nakanishi, et al., Intense visible light emission from three-dimensional periodical arrays of Si clusters, Journal of the European Ceramic Society, 2004, 24 (6): 1953-1956
    [89]A.K.McMahan, J.A.Moriarty, Structural phase stability in third-period simple metals, Physical Review B, 1983, 27 (6): 3235-3251
    [90]F.Liu, Self-consistent tight-binding method, Physics Review B, 1995, 52 (15): 10677-10680
    [91]D.Tomańek, M.A.Schluter, Structure and bonding of small semiconductor clusters, Physical Review B, 1987, 36 (2): 1208-1217
    [92]Z.Y.Zhou, L.Brus, R.Friesner, Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: Oxide shell versus hydrogen passivation, Nano Letters, 2003, 3 (2): 163-167
    [93]C.H.Chen, Y.F.Chen, Strong and stable visible luminescence from Au-passivated porous silicon, Applied Physics Letters, 1999, 75 (17): 2560-2562
    [94]J.Sun, Y.W.Lu, X.W.Du, et al., Improved visible photoluminescence from porous silicon with surface Si-Ag bonds, Applied Physics Letters, 2005, 86 (17): 171905
    [95]J.Mei, Y.Rui, Z.Ma, et al., Contribution of multipleemitting centers to luminescence from Si/SiO2 multilayers with step by step thermal annealing, Solid State Communications, 2004, 131 (11): 701-705
    [96]Y.Q.Wang, W.D.Chen, X.B.Liao, et al., Amorphous silicon nanoparticles in compound films grown on cold substrates for high-efficiency photoluminescence, Nanotechnology, 2003, 14 (11): 1235-1238
    [97]S.Kohli, J.A.Theil, P.C.Dippo, et al., Nanocrystals formation in annealed a-SiO0.17N0.07: H films, Nanotechnology, 2004, 15 (12): 1831-1836
    [98]L.Torrison, J.Tolle, D.J.Smith, et al., Morphological and optical properties of Si nanostructures imbedded in SiO2 and Si3N4 films grown by single source chemical vapor deposition, Journal of Applied Physics, 2002, 92 (12): 7475-7480
    [99]M.S.Yang, K.S.Cho, J.H.Jhe, et al., Effect of nitride passivation on the visible photoluminescence from Si-nanocrystals, Applied Physics Letters, 2004, 85 (16): 3408-3410
    [100]O.Hanaizumi, K. Ono, Y.Ogawa, Blue-light emission from sputtered Si: SiO2 films without annealing, Applied Physics Letters, 2003, 82 (4): 538-540
    [101]X.L.Zheng, H.C.Chen, W.Wang, Laser induced oxygen adsorption and intensity degradation of porous Si, Journal of Applied Physics, 1992, 72 (8): 3841-3842
    [102]L.T.Canham, M.R.Houlton, W.Y.Leong, et al., Atmospheric impregnation of porous silicon at room temperature, Journal of Applied Physics, 1991, 70 (1): 422-431
    [103]D.W.Cooke, B.L.Bennett, E.H.Farnum, et al., SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model, Applied Physics Letters, 1996, 68 (12): 1663-1665
    [104]L.Tsybeskov, S.P.Duttagupta, K.D.Hirschman, et al., Stable and efficient electroluminescence from a porous silicon-based bipolar device, Applied Physics Letters, 1996, 68 (15): 2058-2060
    [105]李永军,刘春艳编著,有序纳米结构薄膜材料,北京:化学工业出版社,2006.6
    [106]S.H.Sun, C.B.Murray, D.Weller, et al., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 2000, 287 (5460): 1989-1992
    [107]黄艳,模板合成法制备纳米材料的研究进展,江苏陶瓷,2007, 40 (3): 1-4
    [108]S.Alfaro, C.Rodriguez, M.A.Valenzuela, et al., Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template, Materials Letters, 2007, 61 (23-24): 4655-4658
    [109]J.H.Kim, J.Kim, C.K.Kim, et al., Co nanoparticle monolayer prepared by multiple diffusive incorporations onto a pre-existing nanoparticle template, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2007, 293 (1-3): 101-104
    [110]S.K.Lim, K.S.Ban, Y.H.Kim, et al., Monolayered Ni-Co alloy nanoparticles template fabricated using a Ni nanoparticle array, Applied Physics Letters, 2006, 88 (16): 163102
    [111]M.Andersson, J.S.Pedersen, A.E.C.Palmqvist, Silver nanoparticle formation in microemulsions acting both as template and reducing agent, Langmuir, 2005, 21 (24): 11387-11396
    [112]J.H.Wu, L.Pu, J.P.Zhou, et al., Preparation of Si nanocrystals using anodic porous alumina template formed on silicon substrate, Chinese Physics Letters, 2000, 17 (6): 451-453
    [113]S.K.Stanley, S.V.Joshi, S.K.Banerjee, et al., Surface reactions and kinetically-driven patterning scheme for selective deposition of Si and Ge nanoparticle arrays on HfO2, Surface Science, 2006, 600 (5): L54-L57
    [114]Y.M.Kang, S.J.Lee, D.Y.Kim, et al., Formation of Si nanocrystals utilizing a Au nanoscale island etching mask, Materials Research Bulletin, 2005, 40 (1): 193-198
    [115]S.Lee, Y.S.Shim, H.Y.Cho, et al., Fabrication and characterization of silicon-nanocrystal using platinum-nanomask, Thin Solid Films, 2004, 451-452: 379-383
    [116]G.M.Whitesides, B.Grzybowski, Self-assembly at all scales, Science, 2002, 295 (5564): 2418-2421
    [117]F.Kim, S.Kwan, J.Akana, et al., Langmuir-blodgett nanorod assembly, Journal of the American Chemical Society, 2001, 123 (18): 4360-4361
    [118]C.A.Mirkin, R.L.Letsinger, R.C.Mucic, et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 382: 607-609
    [119]A.K.Boal, V.M.Rotello, Fabrication and self-optimization of multivalent receptors on nanoparticles scaffolds, Journal of the American Chemical Society, 2000, 122 (4): 734-735
    [120]R.P.Andres, J.D.Bielefeld, J.I.Henderson, et al., Self-assembly of a two-dimensional superlattice of molecularly linked metal cluster, Science, 1996, 273: 1690-1693
    [121]V.Patil, K.S.Mayya, S.D.Pradhan, et al., Evidence for novel interdigitated bilayer formation of fatty acids during three-dimensional self-assembly on silver colloidal particles, Journal of the American Chemical Society, 1997, 119 (39): 9281-9282
    [122]F.Caruso, R.A.Caruso, H.M?hwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 1998, 282 (5391): 1111-1114
    [123]F.Caruso, A.S.Susha, M.Giersig, et al., Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres, Advanced Materials, 1999, 11 (11): 950-953
    [124]N.B.Bowden, M.Weck, I.S.Choi, et al., Molecule-mimetic chemistry and mesoscale self-assembly, Accounts of Chemical Research, 2001, 34 (3): 231-238
    [125]J.Bico, B.Roman, L.Moulin, et al., Adhesion elastocapillary coalescence in wet hair, Nature, 2004, 432 (7013): 690-690
    [126]刘欢,翟锦,江雷,纳米材料的自组装研究进展,无机化学学报,2006, 22 (4): 585-597
    [127]C.P.Collier, R.J.Saykally, J.J.Shiang, et al., Reversible tuning of silver quantum dot monolayers through the metal-insulator transition, Science, 1997, 277: 1978-1981
    [128]J.J.Shiang, J.R.Heath, C.P.Collier, et al.,Cooperative phenomena in artificial solids made from silver quantum dots: The importance of classical coupling, Journal of Physcial Chemistry B, 1998, 102 (18): 3425-3430
    [129]G.F.Grom, D.J.Lockwood, J.P.McCaffrey, et al., Ordering and self-organization in nanocrystalline silicon, Nature, 2000, 407 (6802): 358-361
    [130]J.Heitmann, R.Scholz, M.Schmidt, et al., Size controlled nc-Si synthesis by SiO/SiO2 superlattices, Journal of Non-Crystalline Solids, 2002, 299-302 (Part 2): 1075-1078
    [131]D.Bimberg, Quantum dots: Paradigm changes in semiconductor physics, Semicoductors, 1999, 33 (9): 951-955
    [132]Q.Xie, N.P.Kobayashi, T.R.Ramachandran, et al., Strain coherent InAs quantum box islands on GaAs (100): Size equalization, vertical self-organization, and optical properties, Journal of Vacuum Science & Technology B, 1996, 14 (3): 2203-2207
    [133]Q.Xie, A.Madhukar, P.Chen, et al., Vertically self-organized InAs quantum box islands on GaAs (100), Physical Review Letters, 1995, 75 (13): 2542-2545
    [134]S.Bose, R.Banerjee, A.Genc, et al., Size induced metal-insulater transition in nanostructured niobium thin films: Intra-granular and inter-granular contributions, Journal of Physics: Condensed Matter, 2006, 18 (19): 4553-4566
    [135]L.Li, Y.W.Yang, X.H.Huang, et al., Fabrication and electronic transport properties of Bi nanotube arrays, Applied Physics Letters, 2006, 88 (10): 103119
    [136]C.H.Zang, Y.C.Liu, R.Mu, et al., Optical properties of ZnO nanocrystals embedded in BaF2 film fabricated by magnetron sputtering, Journal of Physics D-Applied Physics, 2007, 40 (18): 5598-5601
    [137]Z.H.Huang, B.Yang, C.S.Liu, et al., Effect of annealing on the composition, structure and mechanical properties of carbon nitride films deposited by middle-frequency magnetron sputtering, Materials Letters, 2007, 61 (16): 3443-3445
    [138]T.H.Zheng, Z.Q.Li, J.K.Chen, et al., Transitions ofmicrostructure and photoluminescence properties of the Ge/ZnO multilayer films in certain annealing temperature region, Applied Surface Science, 2006, 252 (24): 8482-8486
    [139]M.Sakurai, C.Thirstrup, M.Aono, Nanoscale growth of silver on prepatterned hydrogen-terminated Si (001) surfaces, Physical Review B, 2000, 62 (23): 16167
    [140]J.Naravan, A.Tiwari, Novel methods of forming self-assembled nanostructured materials: Ni nanodots in Al2O3 and TiN matrices, Journal of Nanoscience and Nanotechnology, 2004, 4 (7): 726-732
    [141]C.M.Jin, H.H.Zhou, W.Wei, et al., Three-dimensional self-organization of crystalline gold nanoparticles in amorphous alumina, Applied Physics Letters, 2006, 89 (26): 261103
    [142]T.Müller, K.-H. Heinig, W.M?ller, Size and location control of Si nanocrystals at ion beam synthesis in thin SiO2 films, Applied Physics Letters, 2002, 81 (16): 3049-3051
    [143] T.Müller, K.-H. Heinig, W.M?ller, Nanocrystal formation in Si implanted thin SiO2 layers under the influence of an absorbing interface, Materials Science and Engineering B, 2003, 101 (1-3): 49-54
    [144]R.J.Martin-Palma, L.Pascual, P.Herrero, et al., Monte Carlo determination of crystalline size of porous silicon from x-ray line broadening, Applied Physics Letters, 2005, 87 (21): 211906
    [145]G.Hadjisavvas, I.N.Remediakis, P.C.Kelires, Shape and faceting of Si nanocrystals embedded in a-SiO2: A Monte Carlo study, Physical Review B, 2006, 74 (16): 165419
    [146]J.Tersoff, C.Teichert, M.G.Lagally, Self-organization in growth of quantum dot superlattices, Physical Review Letters, 1996, 76 (10): 1675-1678
    [147]L.B.Ma, R.Song, Y.M.Miao, et al., Blue-violet photoluminescence from amorphous Si-in-SiNx thin films with external quantum effency in percentages, Applied Physics Letters, 2006, 88 (9): 093102
    [148]A.Tanaka, G.Yamahata, Y.Tsuchiya, et al., High-density assembly of nanocrystalline silicon quantum dots, CurrentApplied Physics, 2006, 6 (3): 344-347
    [149]T.Baron, F.Martin, P.Mur, et al., Silicon quantum dot nucleation on Si3N4, SiO2 and SiOxNy substrates for nanoelectronic devices, Journal of Crystal Growth, 2000, 209 (4): 1004-1008
    [150]C.Liu, C.R.Li, A.L.Ji, et al., Blue photoluminescence from Si-in-SiNx thin film with high-density nanoparticles, Nanotechnology, 2005, 16 (6): 940-943
    [151]F.Mazen, T.Baron, G.Brémond, et al., Influence of chemical properties of the substrate on silicon quantum dot nucleation, Journal of the Electronchemical Scociety, 2003, 150 (3): G203-G208
    [152]T.Ehara, S.Machida, The effect of nitrogen doping on the structure of cluster or microcrystalline silicon embedded in thin SiO2 films, Thin Solid Films, 1999, 346 (1-2): 275-279
    [153]W.Otano-Rivera, L.J.Pilione, R.Messier, Pressure dependence of the negative bias voltage for stabilization of cubic boron nitride thin films deposited by sputtering, Applied Physics Letters, 1998, 72 (20): 2523-2525
    [154]L.Wei, F.H.Mei, N.Shao, et al., Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers, Applied Physics Letters, 2005, 86 (2): 021919
    [155]G.He, L.D.Zhang, Q.Fang, Silicate layer formation at HfO2/SiO2/Si interface determined by x-ray photoelectron spectroscopy and infrared spectroscopy, Journal of Applied Physics, 2006, 100 (8): 083517
    [156]Y.H.Zhao, J.Y.Wang, E.J.Mittemeijer, Microstructural changes in amorphous Si/crystalline Al thin bilayer films upon annealing, Applied Physics A: Materials Science & Processing, 2004, 79 (3): 681-690
    [157]F.Spaepen, A structural model for the interface between amorphous and crystalline Si or Ge, Acta Metallurgica, 1978, 26 (7): 1167-1177
    [158]T.Tagami, Y.Wakayama, S-i Tanaka, Influence of Interfaces on Crystal Growth of Si in SiO2/a-Si/SiO2 Layered Structures, Japanese Journal of Applied Physics, Part 2, 1997, 36 (6B): L734-L736
    [159]X.W.Du, W.J.Qin, Y.W.Lu, et al., Face-centered-cubic Si nanocrystals prepared by microsecond pulsed laser ablation, Journal of Applied Physics, 2007, 102 (1): 013518
    [160]秦文静,脉冲激光液相烧蚀法制备硅纳米晶及其发光性能的研究:[硕士学位论文],天津:天津大学,2007
    [161]J.L.Gole, F.P.Dudel, D.Grantier, et al., Origin of porous silicon photoluminescence: Evidence for a surface bound oxyhydride-like emitter, Physical Review B, 1997, 56 (4): 2137-2153
    [162]Y.Zhu, H.Wang, P.P.Ong, Strong and stable photoluminescence from sputtered silicon nanoparticles, Journal of Physics D: Applied Physics, 2000, 33 (16): 1965-1968
    [163]H.B.Zeng, W.P.Cai, J.L.Hu, et al., Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation, Applied Physics Letters, 2006, 88 (17): 171910
    [164]C.Delerue, G.Allan, M.Lannoo, Theoretical aspects of the luminescence of porous silicon, Physical Review B, 1993, 48 (15): 11024-11036
    [165]G.Ledoux, O.Guillois, D.Porterat, et al., Photoluminescence properties of silicon nanocrystals as a function of their size, Physical Review B, 2000, 62 (23): 15942-15951
    [166]J.Tauc, A.Menth, States in the gap, Journal of Non-Crystalline Solids, 1972, 8-10: 569-585
    [167]徐叙瑢,苏勉曾主编,发光学与发光材料,北京:化学工业出版社,2004.95-97
    [168]L.Wang, Z.J.Liang, Z.B.Wang, et al., Preparation and photoluminescence of SiC/Si/SiO2 multi-layer structure, Journal of Luminescence, 2007, 122-123: 179-181
    [169]L.Rebohle, J. von Borany, H.Fr?b, et al., Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with groupⅣelements, Applied Physics B: Lasers and Optics, 2000, 71 (2): 131-151
    [170]S.Dreiner, M.Schurmann, C.Westphal, et al., Local atomic environment of Si suboxides at the SiO2/Si (111) interface determined by angle-scanned photoelectrondiffraction, Physical Review Letters, 2001, 86 (18): 4068-4071
    [171]V.Vinciguerra, G.Franzò, F.Priolo, et al., Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices, Journal of Applied Physics, 2000, 87 (11): 8165-8173
    [172]http://www.jobinyvon.co.uk/ukdivisions/Fluorescence/plqy.htm
    [173]D.Comedi, O.H.Y.Zalloum, J.Wojcik, et al., Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-rich Si oxide films, IEEE Journal of Selected Topics in Quantumd Electronics, 2006, 12 (6): 1561-1569
    [174]Z.H.Xiong, L.S.Liao, S.Yuan, et al., Effects of O, H, and N passivation on photoluminescence from porous silicon, Thin Solid Films, 2001, 388 (1-2): 271-276
    [175]Y.Liu, T.P.Chen, Y.Q.Fu, et al., A study on Si nanocrystals formation in Si-implanted SiO2 films by x-ray photoelectron spectroscopy, Journal of Physics D: Applied Physics, 2003, 36 (19): L97-L100
    [176]I.Kato, H.Kezuka, T.Matsumoto, et al., Characterization of photoluminescence of a-Si: H nanoball films fabricated by microwave plasma CVD, Vacuum, 2002, 65 (3-4): 439-442
    [177]P.Ram, J.Singh, T.R.Ramamohan, et al., Surface properties of electrodeposited a-Si: C: H: F thin films by x-ray photoelectron spectroscopy, Journal of Materials Science, 1997, 32 (23): 6305-6310
    [178]C.C.Lu, T.A.Carlson, F.B.Malik, et al., Relativistic Hartree-Fock-Slater eigenvalues, radial expectation values, and potentials for atoms, 2≤Z≤126, Atomic Data and Nuclear Data Tables, 1971, 3: 1-31
    [179]W.Lotz, Electron binding energies in free atoms, Journal of Optical Society of American, 1970, 60 (2): 206-210
    [180]D.A.Zatko, J.W.Prather, Photoelectron spectroscopy verification of highly charged silver ions in the ethylenebis (biguanide)-silver (Ⅲ) complex ion, Jouranlof Electron Spectroscopy and Related Phenomena, 1973, 2 (2): 191-197
    [181]E.Yablonovitch, D.L.Allara, C.C.Chang, et al., Unusually low surface-recombination velocity on silicon and germanium surfaces, Physical Review Letters, 1986, 57 (2): 249
    [182][德]D.罗伯编著,项金钟,吴兴惠译,计算材料学,北京:化学工业出版社,2002.72
    [183]L.Salik, Monte Carlo study of reversible growth of clusters on a surface, Physical Review B, 1985, 32 (3): 1824-1826
    [184]H.Tanaka, T.Kanayama, Interness of SiC surfaces against Si atoms and clusters, Surface Science, 1999, 440: 252-258
    [185]E.P.Donovan, F.Spaepen, D.Turnbull, et al., Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion implantation, Journal of Applied Physics, 1985, 57 (6): 1795-1804
    [186]G.Springholz, M.Pinczolits, V.Holy, et al., Vertical and lateral ordering in self-orgnized quantum dot superlattices, Phycica E, 2001, 9 (1): 149-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700