长位型低频冷等离子体实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体的性质不仅与等离子体的激发方式有关,而且受到电极位型、结构与材料等的影响。另一方面,针对不同应用工艺的一些非常规位型等离子体源,由于位型的特殊性,给等离子体特性研究带来一定难度,而对等离子体特性的研究是理解放电机理和进一步优化设计所必需的。
     论文在宽气压范围内对长位型和微离子体源展开研究。从实验和数值模拟两方面,重点研究了低气压长位型冷等离子体源放电物理机制;研发了大气压条件下点位型和长位型二种射流冷等离子体源;初步研究了这些非常规位型的等离子体源在材料领域中的应用。
     低频低气压长位型冷等离子体的放电位型比较特殊,诊断起来有一定的难度,目前对放电机理的研究还不够。论文采用圆柱非对称双探针对低频低气压长位型冷等离子体进行诊断研究。诊断结果表明:氩气为工作气体,气压为50Pa,电源频率为10KHz的典型放电条件下,长位型等离子体存在着大量的高能电子导致其电子速度分布函数(EEDF)偏离Maxwellian分布。探针的空间分辨测量还表明长位型等离子体在功率电极附近有相对较高的电子温度和密度,而地电极附近的电子温度和密度与体等离子体相似。
     改变放电电压对功率电极附近的电子温度和密度影响很大,但对远离功率电极的等离子体影响不明显;频率小范围的改变不影响放电机理,从而对实验所测量的各个位置等离子体的电子温度影响不大;当功率电极加上玻璃介质之后,电子温度明显提高了:氩气放电中加入氢气,只有当氢气含量达到一定比例时,电子温度会随氢含量的增加而迅速提高,电子密度下降的很快。发射光谱(OES)的诊断结果与探针结果相吻合。
     计算机模拟结果进一步解释了实验结果,二维流体模型结合Monte Carlo方法得到的结果显示:长位型等离子体在功率电极附近有较强的电场,导致气体的电离主要集中在功率电极附近,从而正负半周期的电场强度变化不对称;随着功率电极尺寸的增加,气体在两电极附近的电离率逐渐趋向对称。
     利用低频长位型冷等离子体在低气压下沉积出来的类二氧化硅薄膜,有机含量较少,而且表面平整不含大颗粒,改变原材料气体(HMDSO)的含量对薄膜的质量影响不大。
     设计并制造了大气压条件下主体结构可弯曲的微射流冷等离子体产生装置。该装置采用针状对孔状电极结构,放电频率为1KHz,主体部分采用柔软的材料。该装置的功耗较低,典型的积分功率只有0.7W左右,在不需要高气压工作气体产生高速气流的情况下,可以产生长达5cm的氮射流等离子体。接近室温的射流等离子体可以处理热敏感性材料,柔软的主体部分可以深入狭窄弯曲的半封闭空间中工作。利用OES测量射流等离子体中的各种活性粒子,测量结果显示射流等离子体中富含各种激发或电离态的活性成份,但是这些活性粒子在开放大气中衰减很快。
     在微射流冷等离子体产生装置的基础上,研制了大气压长位型射流冷等离子体产生装置。该装置横向长度达32mm,产生的射流等离子体气体温度接近室温,并且横向温度分布均匀,可以直接接触人体皮肤。此外,该装置采用悬空电极结构,可以在不影响射流冷等离子体横向均匀性的情况下,方便地调节放电功率。长位型射流冷等离子体含有大量的活性粒子,可以有效地处理聚乙烯(PE)、聚丙烯薄膜(OPP)、双向拉伸聚丙烯薄膜(BOPP)、普通纸张和玻璃片表面。与长位型介质阻挡放电(DBD)相比,长位型射流冷等离子体具有不受被处理物性质和表面形态的限制,对被处理物的损伤小等优点。
The characteristics of plasma source depend not only on the way of generation but also on the shape,structure and materials of electrode and so on.On the other hand,due to their special shapes,it is relatively difficult to diagnose non-conventional plasma sources applied in different plasma processing.However,understanding the discharge mechanism of a plasma source plays an important part in optimizing its design and developing its potential application.
     In this paper,we generate cold slender plasma and microplasma sources in a wide range of gas pressure.The characteristics of slender plasma in low gas pressure are investigated by experiment and simulation,and two types of cold plasma sources including microplasma jet and slender plasma jet in atmospheric pressure are developed.At last,preliminary study of application of these non-conventional plasma sources is discussed.
     For the special discharge shape of cold slender plasma source in low pressure,it remains some difficulty in the diagnosis of its characteristics.Up to now,to our knowledge,there are few papers related to discharge mechanism of cold slender plasma source can be found.In this paper,a slender cold Ar plasma is excited in low frequency in configuration of two parallel cylinder electrodes under low pressure of 50 Pa,and the plasma features are characterized using an asymmetric double probe.It is found that the electron energy distribution function significantly devitates from the Maxwellian in 10KHz,and Electrons in the regions near the power electrode possess a higher temperature and density compared with the other two regions.
     As the discharge voltage is enhanced,both electron temperature and density increase quickly near the power electrode.Because changing of discharge frequency in the experiment does not affect the discharge mechanism,the electron temperature and density in various locations remain unchanged.The electron temperature increases obviously when the power electrode is covered by a glass tube.Only when the content of hydrogen reaches a certain proportion,the electron temperature increases obviously,and density decreases quickly with the enhancement of proportion of hydrogen in the argon discharge.The results of probe diagnosis are consistent with that of optical emission spectroscope(OES).
     A two-dimensional,self-consistent fluid model combined with Monte Carlo simulation is employed to describe the cold slender plasma.The electron temperature, electron density and discharge current are calculated,and compared favourably with experimental data.The calculation of electric field presents a spatiotemporally asymmetrical distribution,which results in the difference of distribution of electron temperature and density near the two electrodes.With the increasing in the size of power electrode,the ionization rate of gas near two electrodes becomes symmetric gradually.
     The SiO_x films grown on PET substrates by cold slender plasma in low pressure contain relatively little organic materials,and the surfaces of the SiO_x films are smooth without any large particles.Changing raw material gas(HMDSO) content has little effect on the quality of SiO_x films.
     A cold microplasma jet generator at atmospheric pressure excited at 1 kHz in a pin to hole-electrode configuration by using soft materials partly is development.A nitrogen plasma plume with a length of more than 5 cm can be produced at low electrical power of 0.7 W without high feed gas pressure.The generator exhibits a compact structure with flexible property,which is suitable for treating thermally sensitive materials and biomedical materials,especially for delicate objects in an irregular confined space.Optical emission spectroscopy is used to spatially identify excited species in plasma plume.It is noted that the spectrum intensities of all the excited species decay quickly.
     A cold slender plasma jet generator at atmospheric pressure excited at 10 kHz is developed based on microplasma jet generator.The nitrogen plasma jet is stable and uniform at low electrical power of 19 W with a horizontal length of 32mm.For using suspended electrodes,the electric power can be adjusted conveniently without causing spatial nonuniformity.The slender plasma jet with room gas temperature can be touched by human skin,and is suitable for treating the surface of polyethylene(PE), polypropylene(OPP),biaxial oriented polypropylene(BOPP),paper and glass. Compared with slender DBD,slender plasma jet is not restricted by the morphology of surface,and causes little damage to targets.
引文
A Chirokov,A Gutsol,and A Fridman,et al.2004 Plasma Sources Sci.Technol.13:623.
    Annemie Bogaerts 2002 J.Anal,At.Spectrom 17:768.
    Arefi-Khonsari F,Kurdi J,Tatoulian M and Amouroux J,2001,Surf.Coat.Technol.142-444:437.
    Arefi-Khonsari F,Tatouliana M,and Bretagnol F,et al.2005,Surf.Coat.Technol.200:15.
    A Rahman,A P Yalin,and V Surla,et al.2004 Plasma Sources Sci.Technol.13:537.
    Ashida S,Lee C,and Lieberman M A 1995 J.Vac.Sci.Technol.A 13:2498.
    Brok W J M,van Dijk J,and Bowden M D,et al.2003 J.Phys.D:Appl.Phys.36:1969.
    Baravian B,Chaleix D,and Choquet P et al.1999 Surf.Coat.Technol.115:66.
    BassA,Chevalier C,and BladesM W.2001 J.Anal.At.Spectrom.16:919.
    Bassett N L and Economou D J 1994 J.Appl.Phys.75:1931.
    Bilgic AM,Engel U,Voges E et al.2000 Plasma Source Sci.Technol.9:1.
    Bilgic AM,Voges E,EngelU et al.2000 J.Anal.At.Spectrom.15:579.
    Bogaerts A,Gijbels R and Goedheer W 1999 Japan.J.Appl.Phys.38:4405.
    Bolsig 1996 Boltzmann Solver for the Siglo-series 1.0 CPA Toulouse & Kinema Software.
    B.Qi,C.S.Ren,and D.Z.Wang,et al.2006 Appl.Phys.Lett.89:131503.
    Broekaert J A C.2002 Anal Bional.Chem.374:182.
    程诚,2006博士学位论文.中国科学技术大学。
    陈岳,BOPP薄膜的电晕处理,2005,包装材料,6:51。
    C.Vautrin-UI,C.Boisse-Laporte,and N.Benissad,et al.2000 Progress in Organic Coatings 38:9.
    D.Dudek,N.Bibinov,and J.Engemann,et al.2007 J.Phys.D 40:7367.
    E.Kunhardt,2001 IEEE Trans.Plasma Sci.28:89.
    Elghazaly M H,Abdel baky A M,and Mansour M M,et al.2006 J.Quant.Spectrosc.Radiat.Transfer 97:61.
    Engel U,Bilgic A M,and Haase O et al.2000 Anal.Chem.72:193.
    E.Panousis,F Cl(?)ment,and J-F Loiseau,et al.2006 Plasma Sources Sci.Technol.15:828.
    E.Panousis,F.Cl(?)ment,and J.-F.Loiseau,et al.2007 Surface & Coatings Technology 201:7292.
    F.Heinrich,U.B(a|¨)nziger,and A.Jentzsch,et al.1996 J.Vac.Sci.Technol.B 14:2002.
    F J Gordillo-V(?)zquez,M Camero and C Gomez-Aleixandre 2006 Plasma Sources Sci.Technol.15:42.
    Foest R,Schmidt M,and Becker K.2006 Int'l Journal of Mass Spectrometry 248:87.
    G.Fridman,A.Brooks,and M.Balasubramanian,et al.2007 Plasma Processes Polym.4:370.
    Godyak V A,Piejak R B and Alexandrovich B M 1993 J.Appl.Phys.73:3658.
    Hagelaar G D M 2000 Modeling of Microdischarges for Display Technology (Eindhoven:Technische Universiteit Eindhoven).
    韩玉香,韩平,和王永富等 1995 辽宁师范大学学报 18:3。
    Hiroyuki Yoshiki,Kazunori Abe,and Toshiaki Mitsui 2006 Thin Solid Films 515:1394.
    Hopwood J.2000 J.Micro-electromechanical Systems 9:309.
    Hopwood J,Minayeva O,and Yin Y.2000 J.Vac.Sci.Technol.B 18:2446.
    I.G.Koo,J.H.Cho and M.Y.Choi,et al.2007 Appl.Phys.Lett.91:041502.
    Iza F,and Hopwood J A.2003 IEEE Trans.Plasma Sci.31:782.
    Jafari R,Tatoulian M,and M.Morscheidt 2006 Reactive Funct.Polym.66:1758.
    J.Guikema,N.Miller,and J.Niehof,et al.2000 Phys.Rev.Lett.85:18.
    J.L.Walsh and M.G.Kong 2007 Appl.Phys.Lett.91:251504.
    J.L.Walsh,J.J.Shi,and M.G.Kong,et al.2006 Appl.Phys.Lett.88:171501.
    Johnsen R,Chen A and Biondi M A 1980 J.Chem.Phys.73:1717.
    Jungo Toshifuji,Takashi Katsumata,and Hirofumi Takikawa,et al.2003 Surface and Coatings Technology 171:302.
    J.Y.Jeong,S.E.Babayan,and V.J.Tu 1998 Plasma Sources Sci.Technol,7:286.
    KaranassiosV.And Spectrochimica 2004 Acta Part B 59:909.
    Kim J,and Terashima K.2005 Appl.Phys.Lett.86:191504.
    K H Becker,K H Schoenbach,and J G Eden 2006 J.Phys.D:Appl.Phys.39:R55.
    Klucharev A N and Vujnovic V,1990 Phys.Rep.185:55.
    Koinuma H,Ohkubo H,and Hashimoto T,et al.1992 Appl.Phys.Lett.60:816.
    Kurdi J,Ardelean H,Marcus P,and Jonnard P et al.2002 Appl.Surf.Sci.189:127.
    Lauer J L,Shohet J L,and Albrecht R M et al.2004 Journal of Appl.Phys.96:8.
    Lee J K,Babaeva N Y,and Kim H C,2004 IEEE Trans.Plasma Sci.32.
    Lifang Dong,Junxia Ran,and Zhiguo Mao 2005 Appl.Phys.Lett.86:161501.
    McFarland R H and Kinney J D 1965 Phys.Rev.A 137:1058.
    Mehr F J and Biondi M A 1968 Phys.Rev.176:322.
    Miclea M,Kunze K,and Franzke J et al.2002 Decomposition of Halogenated Molecules in a Micro-structured Electrode Glow Discharge at Atmospheric Pressure.In:Proc.8 th Hakone.Estonia,P.206.
    Mounir Laroussi,and Tamer Akan 2007 Plasma Process.Polym.4:111.
    Pittman D J.2003 A brief review of microp lasmas.Department of Chemistry,University of Vermont,Burlington,Vermont,05405.
    Phelps A V and Petrovic Z L 1999 Plasma Sources Sci.Technol.8:R21.
    Q.S.Yua,C.Huang,and F.-H.Hsieh,et al.,2006 Appl.Phys.Lett.88:013903.
    Ruixing Li,Qing Tang,and Shu Yin,et al.2004 Phys.Plasmas 11:8.
    R.W.B.Pearse and A.G.Gaydon,The Identification of Molecular Spectra (Wiley,New York 1976),p.217.
    Schermer S,BingsN H,and Bilgic A M et al.2003 Spectrochim.Acta Part B 58:1585.
    邵其黎,何煌和须平等,2000,核技术,23:164。
    Shahidzadeh N,Arefi-khonsari F,and Chehimi M M,et al.1996 Surf.Sci.352-354.
    Shou-Zhe Li and Han S.Uhm 2004 Phys.Plasmas 11:3088.
    Sladek R E J,Stoffels E,and Walraven R et al.2004 IEEE Transactions on Plasma Science 32:1540.
    Tachibana K 1986 Phys.Rev.A 34:1007.
    Tatoulian M,Arefi-Khonsari F,and Amouroux J et al.1995 Int.J.Adhes.Adhes.15:177.
    Vriens L 1964 Phys.Lett.8:260.
    Wagenaars E,Brandenburg R,and Brok W J M,et al.2006 J.Phys.D:Appl.Phys.36:703.
    Xiaodong Zhu,Farzaneh Arefi-Khonsari,and Camille Petit-Etienne,et al.2005Plasma Process.Polym.2:407.
    XinPei Lu,ZhongHe Jiang,and Qing Xiong,et al.2008 Appl.Phys.Lett.92:151504.
    X.P.Lu,Z.H.Jiang,and Q.Xiong,Z.Y.et al.2008 Appl.Phys.Lett.92:081502.
    Xu X J.2001 Thin Solid Films 390:237.
    Y.C.Hong and H.S.Uhm,2007 Phys.Plasmas 14:053503.
    Yi-Ming Ling 2005 Phys.Plasma 12:113504.
    Yin Y,Messier J,and Hopwood J 1999 IEEE Trans.Plasma Sci.27:1516.
    Y.Nakamura,1987 J.Phys.D 20:933.
    Yong Cheol Hong,and Han Sup Uhm,2006 Appl.Phys.Lett.89:221504.
    Yong Cheol Hong,Soon Cheon Cho,and Jong Hun Kim,et al.2007 Phys.Plasma 14:074502.
    Y.P.Raizer,Gas Discharge Physics(Springer,New York,1991),p.11.
    余云鹏,林舜辉,林旭升等 2004 核聚变与等离子体物理 24:3。
    Zapesochnyi P and Shimon L L 1966 Opt.Spectrosc.21:155。
    章燕豪.1989吸附作用[M],上海科技文献出版社。
    朱晓东,1997博士学位论文.中国科学技术大学。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700