新型生物载体的制备、表征及其在废水生物处理中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物脱氮除磷及难降解有机废水处理研究的深入,对传统活性污泥法的处理能力提出了更高的要求,通过增加微生物活性和生物多样性以提高生化处理效果的技术受到日益重视。以载体为依托的生物膜法可以形成生物量大、生物相丰富的载体污泥,但载体污泥性能的好坏取决于载体性能。上世纪90年代中期发展起来的悬浮载体生物膜法,吸收了传统流化床和生物接触氧化法两者的优点,成为一种新型高效的污水处理方法。其技术原理就是将小比重的悬浮载体直接投加到曝气池中,使活性污泥附着到载体上,形成高生物密度、高生物活性、生物相丰富的载体微生物集团,以提高生化处理的效果和效率,所以性能优越的悬浮载体的开发研制,对强化活性污泥的处理功能,提高生化处理效率具有重要意义。
     本文采用超声波分散的方法制得纳米凹凸棒土(Attapulgite nanoocomposites,简称AT),通过机械共混的方法介入聚乙烯醇与甲醛的缩合反应中,通过催化、交联、发泡制备出新型纳米生物载体AT-PVF。再将其应用于普通SBR工艺中,形成序批式悬浮载体生物膜反应器(Sequencing Batch Adsorption Immobilization SuspendedCarrier Reactor,简称AI-SBR)工艺。通过平行试验比较了AI-SBR和普通SBR的启动性能、抗温度、pH、有机负荷、苯酚和Cr~(+6)毒性影响的能力及对生活污水和实际化工废水的处理效果;进行了载体微生物的生物量、生物活性、生物相及对不良环境变化的抵抗能力,AT-PVF的微生物附着动力学和AI-SBR污染物降解动力学研究。检验了开发的新型生物载体的实用性和优越性,比较了普通活性污泥在形成载体微生物污泥前后微生物特性及应用性能的变化,研究了AI-SBR的应用优势。得出如下主要成果:
     (1)在PVA13%,甲醛对PVA的重量比0.75,H_2SO_4对PVA的重量比1.0,表面活性剂0.5%,AT 0.4%的条件下,通过催化、交联、发泡制备出物理和生化性能良好的新型纳米生物载体AT-PVF。
     (2)通过与环保海绵(目前国内实际应用效果最好的功能泡沫塑料生物载体)的物化、生化性能比较,AT-PVF载体的抗拉强度为2.38MPa,是环保海绵的1.23倍;孔径范围大,空隙均匀,开孔程度和孔壁粗糙度远大于环保海绵,并有许多褶皱,微生物的附着与物质的传递性能均优于环保海绵;相同条件下,AT-PVF挂膜速度快,5d就可以全部挂膜,比环保海绵快2d。COD去除率为96.2%,比环保海绵高出6%,氨氮去除率为95.3%,比环保海绵高出7%,污泥量是环保海绵的1.3倍。
     (3)将AT-PVF载体应用于传统的SBR工艺中,使普通活性污泥附着到载体上,形成悬浮载体微生物污水处理体系,即AI-SBR工艺。通过AI-SBR与SBR平行试验得出AI-SBR启动速度快,抗冲击能力强,处理效果好,载体微生物生物量大,在反应器运行6d和210d时,AT-PVF的微生物密度达到15.2 mg/cm~3和44.3mg/cm~3,约是普通活性污泥的4.11倍。载体微生物生物活性高、生物相丰富,对不良环境的抵抗能力增强。
     (4)载体微生物在曝气池中使用时,在曝气池底曝气设备以上与正常水位以下约30cm处设置上下两层拦截网,将载体微生物以2-3cm~3的块状、60%左右的填充率放入网内,使用效果最好。在SBR中使用时,下部拦截网设在池底曝气设备以上,上部拦截网设在最高水位与最低水位中间为宜,同时还需设置竖向拦截网将滗水器隔开。网内的载体微生物在使用过程中可以起到“主动拦截”作用,使出水中SS接近沉淀后出水。对于曝气池,可以减轻二沉池负担;对于SBR池,可以缩短甚至省去沉淀阶段,缩短处理周期,增加SBR的处理能力。
     (5)微生物在多孔立体网状载体上附着形成生物膜的过程分为可逆附着、不可逆附着和微生物繁殖生长过程。可逆附着发生在微生物和载体接触后的30min内,不可逆附着发生在微生物和载体接触后的40-300min内,300min以后,载体上附着的微生物开始大量生长增殖。
     可逆附着过程中,可用B=(?)表示载体上附着的微生物量(B)随时间t的变化关系,其中B_(max)为可逆附着中单位体积载体的微生物最大附着量,直接影响附着速度和附着量的大小,数值越大越好。α为微生物总附着常数,数值越大,可逆附着过程中载体上微生物达到最大生物附着量的时间越短。对于AT-PVF载体,B_(max)=8.23mg/cm~3,α=0.04min~(-1),不可逆附着过程中,可用B=(?)表示载体上附着的微生物量(B)随时间t的变化关系,其中B_0为不可逆附着开始时单位体积载体中微生物的附着量,直接影响不可逆附着速度和最终附着量的大小,数值越大越好。α'_3为微生物附着速率常数,数值越大,不可逆附着过程中微生物在载体上的附着速度越快。对于AT-PVF载体,B_0=2.287mg/cm~3,a'_3为0.085min~(-1)。
     B_(max)和a、B_0和a'_3可作为衡量生物载体使用性能好坏的指标。
     (6)载体微生物COD的降解符合Monod一级反应动力学方程。不同温度和pH下,AI-SBR的一级降解动力学常数K_(COD)均大于SBR。SBR和AI-SBR的氨氮降解符合Monod动力学方程。SBR的氨氮最大降解速率V_(max)=16.581m/L(反应液)·h,半饱和常数Ks=40.65m/L。AI-SBR的Vmhx=24.078m/L(反应液)·h,是SBR的1.5倍,充分显示出优越的氨氮降解性能,Ks=22.99mg/L,小于SBR,说明AI-SBR在较低氨氮浓度下即可达到最大降解速率。
     整个试验结果表明,普通活性污泥经附着后形成的载体污泥,生物活性提高、对环境变化适应性增强、生物相更加丰富。将新研制的AT-PVF载体应用于SBR工艺中形成的AI-SBR工艺,与普通SBR相比,载体性能优良,生化处理性能和抗不良环境影响能力得到提高。
Along with the research of biological nitrogen removal and biorefractory organic pollutants treatment, some requirements for raising the treating capacity of traditional activated sludge process are provided. So technology enhancing the efficiency of biological methods by increasing microbial activity and biodiversity received increasing attention. Carriers' sludge which has high biomass and biofacies formed in carriers of biomembrance technique. It's performance depend on carriers' performance. At the middle of 90's, suspended carrier biofilm absorption of advantages of fluidized bed and biological contact oxidation process has become one kind of new and high efficient wastewater treatment method. It's principle is add suspended carrier to aeration tank in order to forming microorganism sludge of high biological density, biological activity and rich biofacies in carriers, So the biochemical treatment efficiency is improved. Researches on superior capability suspended carrier become the focal point studied at present.
     In this paper, we took attapulgite nanoocomposites powder by ultrasonic dispersion into between entrapment method and carrier-bound method by mechanical blending process. Physical physical and biological activity of carries as evaluation index, through improving upon PVF carrier-bound carries, AT-PVF carrier-bound carries was obtained. Then combined SBR with immobilized microbial carriers, Sequencing Batch Adsorption Immobilization Reactor (AI-SBR) was formed. Starting performance, ability of resisting temperature, pH, loads, phenol and Cr~(+6) shock, treatment effect of domestic sewage were analyzed, and biological density, distribution characteristics, distribution of microorganism dynamics of microorganism fixed in AT-PVF carrier and pollutant degradation in AI-SBR were studied. New carriers' practicality and performance were determined. Microbial characteristics before and after carrier microbial formed were compared. Application advantage of AI-SBR weas analyzed. Main result as follows:
     (1) Through attapulgite nanoocomposites was mixed into PVF by ultrasonic dispersion, new immobilized microbial carriers (AT-PVF) was obtained by catalytic, crosslinking and foaming reaction. The best condition were that: PVA: 13%, formaldehyde:PVA: 0.75, H_2SO_4:PVA: 1.0, surfactant :0.5%, AT:0.4%
     (2) Comparied materialization and biochemical performance of AT-PVF carrier with that of sponge carriers, AT-PVF carrier's microorganism coherence and mass transfer performance were better than sponge carrier's. The tension strength of AT-PVF carrier was 2.38Mpa, which is 1.23 times of sponge carrier's. The pore-size ranges were large, the homogeneous pore of AT-PVF was distributed, and the surface of AT-PVF was roughened. Under steady state conditions, the speed of biofilm cultivation was 5 days which was 2 days faster than sponge carrier's, the removal rate of COD was 96.2% which was 6 % higher than sponge carrier's, the removal rate of ammonia nitrogen was 95.3 % which was 7 % higher than sponge carrier's, and the quantity of sludge was 1.25 times of sponge carrier's.
     (3) Combined SBR with AT-PVF carrier, AI-SBR was formed. Comparied AI-SBR reactor with SBR reactor, the speed of starting-rate, the removal-rate of pollutants, and the shock resistance were relatively high in AI-SBR. After reactor performance 6 days and 210 days, biological density of AT-PVF carrier were15.2 mg/cm~3and 44.3mg/cm~3, that was 4-11 times than that of conventional activated sludge. Microorganism carrier has high bological activity, plentiful biofacies, and strong resistance to bad environment.
     (4) When used AT-PVF carrier in the aeration tank, a two-tier network from top to bottom must be set up. When carrier microbes withed 2-3 cm~3 massive and at the filling rate of 60% were added to network, the effect was best. When used AT-PVF carrier in the SBR, Lower network was lied above aeration equipment, higher network was lied between highest water level and lowest water level and vertical network was lied in order to isolation water decanter equipment. Because net carrier microbes can play 'active intercept', the SS concentration of effluent was low. For aeration tank, the burden of secondary sedimentation tank can be reduced, so the sedimentation tank can be omitted. For SBR reactor, precipitation stage can be shorten and omitted, so the period was shorter and the ability of SBR reactor was raised.
     (5) The process of formation of biofilm can be divided into two parts: reversible adhesion and irreversible adhesion. In first 30 min, reversible adhesion was occurred. When microbe and carriers contacted 40-300min, irreversible adhesion was occurred. After300min, microorganism on carriers began propagation.
     In reversible adhesion, the change of microbial biomass coherence on carriers with time is related by B = (?). Among them, B_(max) is maximum microorganismattachment amounts in unit volume carriers, which effect the adsorption rate and attachment amounts. The large numerical is good.αis microorganism coherence constant. The large numerical is good. For AT-PVF carriers, B_(max)=8.23mg/cm~3,α=0.04min~(-1).
     In irreversible adhesion, The change of microbial biomass coherence on carrierswith time is related by B = (?). Among them, B_0 is microorganism attachmentamounts in unit volume carriers at the beginning of irreversible adhesion, which effect the irreversible adsorption rate and final attachment amounts. The large numerical isgood.α'_3 is rate constant of microbial-fixed. The large numerical is good. For AT-PVF carrier, B_0=2.287mg/cm~3,α'_3 =0.085min~(-1)。
     B_(max) ,α,B_0 andα'_3 can be used as index to measure service performance of biologicalcarrier.
     (6)Kinetic experiment showed that removal COD by microorganism fixed in AT-PVF carrier was accord with first-order Monod kinetic reation. At different pH and temperature, The K_(COD) of AI-SBR reactor was more than that of SBR reactor.
     Removal ammonia nitrogen by microorganism fixed in AT-PVF carrier was also accord with first-order Monod kinetic reation. The maximum degradation rates Vmax=16.581, half-saturation constant Ks=40.65mg/L in SBR. Vmax=24.078 in AI-SBR, which was 1.5 times than SBR's. It showed that the ammonia nitrogen degradable behavior of AI-SBR was superior. Ks=22.9885mg/L in AI-SBR reactor, which was little than SBR's. It showed that the maximum degradation rates easily attained at a low ammonia nitrogen concentration in AI-SBR.
     The results show that: AI-SBR which formed by adding AT-PVF carriers into SBR has high removal-rate of pollutants and the shock resistance than SBR. AT-PVF carrier had good ability of resisting temperature, pH, loads and Cr~(+6) shock. The intended purpose was reached.
引文
[1]蒋占洪.污水处理用载体的种类性能和发展趋势[J].环境污染与防治,1994,16,4:13-16
    [2]李天璟.废水生物处理的新载体——泡沫载体[J].上海环境科学,1989,8,1:37
    [3]杨书铭.半软性填料在废水处理中的应用[J].中国给水排水,1990,6(11):51-53
    [4]秦麟源等.盾式载体生化处理性能的试验研究[J].中国给水排水,1991,7(4):11-14
    [5]李怀正.YDT型弹性立体填料的试验性能研究[J].上海给水排水,1991,3(1):10-13.
    [6]李茹高,陈杰容.远程氩等离子体提高PVC生物填料挂膜性能的机理研究[J].环境科学学报,2005,25(9):1170-1174.
    [7]Teran R A Saucedo,Baca N Ramirez, Papayanopoulos Manzanare L,et al. Biofilm growth and bed fluidizanion in a fluidized ded reactor packed with support manerials of low density [J]. Eng Life Sci,2004,4(2):160-164.
    [8]夏四清.多级悬浮载体生物反应器处理石化废水[J].中国给水排水,2002,1(18):9-12
    [9]H. Φdeegaard. Advanced compact wastewater treatment based on coagulation and moving bed biofilm processes[J]. Water Science and Technology 2001, 142 (12) : 33-48
    [10]G. Andreottola et al. Upgrading of a Small Wastewater Treatment Plant in a Cold Climate Region Using a Moving Bed Biofilm Reater (MBBR) System[J]. Water Science &Technology 2002, 41 (1) : 177-185
    [11]C. S. RA et al . Biological Nutrient Removal with an Internal Organic Carbon Source in Piggery Wastewater Treatment[J] .Wat .Res. 2000, 34(3): 965-973,
    [12]何延青,刘俊良,杨平等.微生物固定化技术与载体结构的研究[J].环境科学,2004,25(增刊):101-104.
    [13] Elias A., Barona A., Arreguy A., Rios J., ArANguiz I., Penas J. Evaluanion of a packing manerial for the biodegradanion of H_2S and product ANalysis[J]. Process Biochem, 2002, 37:813-820.
    [14]钟世云,胡艳.塑料在污水处理悬浮载体生物膜工艺中的应用[J].中国塑料,2004.9,9(18):84-89.
    [15]李磊,韦朝海,张小璇.亲水性聚合物多孔载体的制备及其性能研究[J].中国给水排水,2006,22(19):82-90.
    [16]夏平安崔树荣胡志忠.高氨氮、高含硫废水处理新工艺的研究[J].给水排水,2002,28(3):43-45.
    [17]Gabriel D, Deshusses M A. Performance of a full-scale biotrickling filter treang H_2S an agas contact time of 1.6 to 2.2 seconds[J]. Environ. Prog, 2003a,22(2): 111-118.
    [18]Martn R W, Li H B, Mihelcic J R, Crittenden J C, Lueking D R, Hanch C R, Ball P. Optimizanion of biofiltranion for odour control :Model calibranion,validanion,and applicanions[J]. Waner Environ. Res,2002, 74(1):17-27.
    [19]Arnaldo Sarti., Marcelo Loureiro Garcia, Marcelo Zaian, Eugenio Foresti.Domestic sewage treanment in a Piot-Scale ANaerobic sequencing banch biofilm reactor(ASBBR) [J]. Resources, Conservanion & Recycling., 2007, 51(1):237-247.
    [20]Ory I, Romero L E. Optimizanion of immobilizanion conditions for vinegar production. SirAN, wood chips ANd polyurethANe foam as carriers for Acetobacter aceti [J]. Proe. Biochem, 2004,39(5): 547-555.
    [21]刘幽燕,李青云,覃益民,等.聚氨酯泡沫固定化产碱杆菌细胞生物转化氰化物[J].环境科学,2006,27(3):586-589.
    [22]李彦锋,叶正芳.功能泡沫塑料微生物固定化载体及其制备和应用,中国专利,申请号: 00113978.9公开号:CN1353184A.
    [23]李彦锋,周成林,马鹏程等.活性炭复合亲水性聚氨酯泡沫微生物固定化载体,中国专利, 申请号:02141723.7;公开号:CN1478891.A.
    [24]李彦锋,马鹏程,周成林等.改性纳米SiO_x复合聚氨酯泡沫及其指标方法和应用中国专利,申请号:200310121064.9公开号:CN1631976A.
    [25]田晋红,熊平,董莉仙等.固定化反硝化细菌脱氮的研究[J].西南农业大学学报(自然科学版),2004,6(3):318-321.
    [26]Jane-Yii Wu, Sz-Chwun John Hwang, Chun-TNg Chen, Kuo-Cheng Chen. Decolorizanion of azo dye in a FBR reactor using immobilized bacteria[J]. Enzyme Micro. Technol., 2005, 1:102-112.
    [27]Vieira, L. I, Fazolo. A, Zaian M. and Foresti E. Integraned horizontal-flow anaerobic and radial-flow aerobic reactors for the removal of orgANic manter and nitrogen from domestic sewage[J]. Environ Technol, 2003,24:51-58.
    [28]Chernicharo, C. A. L. Post-treanment options for the anaerobic treanment of domestic wastewaner[J]. Rev Environ Sci Biotechnol, 2006, 5:73-92.
    [29]Delhomenie, M.-C., bibean, et al. A study of clogging in a biofilter treang toluene vapors[J]. Chemical Engineering Journal, 2003, 94:211-222.
    [30]Baltzis, B.C., MpATias, et al. Modeling the removal of VOC mixtures in biotrickling filters. Biotechnology ATd Bioengineering, 2004, 72:389-401.
    [31]Morgan-Sagastume, J.M., Loyola, et al. Changes in physical properties of a compost biofilter treang hydrogen sulfide[J].Journal of the Air & Waste management Associanion, 2003, 53:1011-1021.
    [32]Bor-YANn Chen, Shan-Yu Chen, Jo-Shu Chang. Immobilized cell fixed-bed bioreactor for wastewaner decolorizanion[J]. Process Biochemistry, 2005,40:3434-3440.
    [33]曹国民,赵庆祥.新型固定化细胞膜反应器脱氮研究[J].环境科学学报,2001,21(2):189-193.
    [34]叶正芳,倪晋仁,李彦锋等.污水高效处理和资源化的固定化微生物技术研究[J],应用基础与工程科学学报,2002,10(4):332-336.
    [35]叶正芳,倪晋仁污水处理的固定化微生物与游离微生物性能的比较[J].应用基础与工程科学学报,2002,10(4):325-330.
    [36]李杰,王亚娥,王志盈.高效微生物在污水生化处理中的应用[J].工业用水与废水,2006,37(5):28-30.
    [37]Juan-Pablo Hernandez, Luz E. de-Bashan, Yoav Bashan, Starvanion enhances phosphorus removal from wastewaner by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense[J].Enzym Microb Technol.,2006,38:190-198.
    [38]Sebnem Asian,Ilgi Karapinar Kapdan.Banch kinetics of nitrogen and phosphorus removal from synthetic wastewaner by algae[J].Ecological Eng,2006,28(1):64-70.
    [39]De-Bashan LE,Hermandez JP,Morey T,Bashan Y.Microalgae growth-promotng bacteria as“helpers” for microalgae:a novel approach for removing ammonium and phosphorus from municipal wastewaner[J].Waner Res,2004,38:466-474.
    [40]Kastanek F,Kastanek P.Combined decontaminanion processed for wastes containing PCBs[J].J Hazard maner,2005,117:185-205.
    [41]Raja Noor Zaliha Abd RahmAN,Farinazleen Mohamad Ghazali,Abu Bakar Salleh,MahirAN Basri.Biodegradanion of hydrocarbon contaminanion by immobilized bacterial cell[J].J Microb.,2006,44:354-359.
    [42]Tian S.,Qian C,YANg X.S.Biodegradanion of biomass gasificanion wastewaner by two species of Pseudomonas using immobilized cell reactor[J].Appl.Biochem.Biotech.Part A:Enzyme Eng.Biotech,2006,2:141-147.
    [43]Jeganaesan Jegananhan,George Nakhla,Amarjeet Bassi.Oily wastewaner treanment using a novel hybrid PBR-UASB system[J].Chemosphere,2007,67(8):1492-1501.
    [44]Jose L.Gomez,ANtomio Bodalo,Elisa Gomez,Asuncion M.Hidalgo,Maria Gomez,M.Dolores Murcia.Experimental behaviour ANd design model of a fluidized bed reactor with immobilized peroxidase for phenol removal[J].Chem.Eng.J.,2007,127(1-3):47-57.
    [45]Sohel Dalai,Munishwar Nanh Gupta.Treanment of phenolic wastewaner by horseradish peroxidase immobilized by bioaffinity layering[J].Chemosphere,2007,63(4):741-747.
    [46]Indu C.Nair,K.JayachandrAN,Shankar Shashidhar.Treanment of paper factory effluent using a phenol degrading alcaligenes sp.under free and immobilized condition[J].Bioresource Technol.,2007,98(3):714-716.
    [47]Valquiria Ribeiro GUsmao,Fabio Alexandre Chinalia,Isabel Kimiko Sakamoto,Maria Bernadete Amancio Varesche.PerformANce of a reactor containing denitrifying immobilized biomass in removing ethanol and aromanic hydrocarbons(BTEX)in a short operang period[J].J.Hazardous Manerials,2007,139(2):301-309.
    [48]Juan Wu,Han-Qing Yu.Biosorption of 2,4-Dichlorophenol by immobilized white-rot fungus phanerochaete chrysosporium from aqueous solutions[J].Bioresource Technol.,2007,98(2):253-259.
    [49]D.S.Yoon,K.Won,Y.H.Kim,B.K.Song,S.J.Kim,S.J.Moon,B.S.Kim.Contnuous removal of hydrogen peroxide with immobilized canalase for wastewaner resue[J].Wan.Sci.Technol.,2007,55(1-2):27-33.
    [50]M.Mebirouk,L.Sbai,M.Lopez,J.Gonzalez.Olive oil mill wastewaner pollution abanement by physical treanments and biodegradanion with phanerochaetae chrysosprium[J].Environ.,2006,27(12):1351-1356.
    [51]Suhail Akhtar,Oayyum Husain.Potential applicanions of immobilized bitter gourd(momordica charantia)peroxidase in the removal of phenols from polluted waner[J].Chemosphere,2006,65(7):1228-1235.
    [52]Xiang Lijun,Wang Bochu,Li Zhimin,Duan Chuanren,Wang Qinghong,Liu Liu,Linear alkyl benzene sulphonane(LAS)degradanion by immobilized Pseudomonas aeruginosa under low intensity ultrasound[J].Colloids and surfaces B:Biointerfaces 2005,40:25-29.
    [53]Xiang Lijun, Wing Bochu, Wang Qinghong, Liu Liu, Kinetics of degradanion by immobilized cells with ultrasonic irradianion[J]. Colloids and Surfaces B:Biointerfaces .2005,45:162-166.
    [54]Wen-Chien Kuo, Tzu-Yueh Shu. Biological pre-treanment of wastewaner containing sulfane using ANaerobic immobilized cells[J]. J Hazardous Maner, 2004, B113:147-155.
    [55]Huiqi DuAN , Lawrence C.C. Koe , Rong YAN , Xiaoge Chen. Biological treanment of H_2S using pellet activaned carbon as a carrier of microorgANisms in a biofilter[J]. Wan. Res., 2006, 40:2629-2636.
    [56]何芳,侯翠荣,黄海东,等.固定化高效混合菌好氧处理印染废水的研究[J].中国给水排水,2006,22(9):43-45.
    [57]D. Georgiou, J. Haniras, A. Aivasidis. Microbial immobilizanion in a two-stage fixed-bed reactor pilot plant for on-site anaerobic decolorizanion of textile wastewaner[J]. Enzym Microb Technol, 2005, 37:597-605.
    [58]Diana Di Gioia, Lorenzo Bertn , Giulio Xanaroli. Polychlorinaned biphenyl degradanion in aqueous wastes by employing contnuous fixed-bed bioreactor[J]. Process Biochem, 2006, 41:935-940.
    [59]Quan Xiangchun,Shi Hanchang,Zhang Yongming.Biodegradanion of 2,4-dichlorophenol in an air-lift honeycomb-like ceramic reactor[J].Process Biochemistry,2003,38:1545-1551.
    [60]Panla Marques, Helena Maria Pinheiro, Maria Fernanda Rosa. Cd (Ⅱ) removal from aqueous solution by immobilized Waste Brewery Yeast in fixedObed and airlift reactors[J]. Desalinanion, 2007,214(1-3):343-351.
    [61]Ahmet Cabuk, Tmer Akar, Sibel Tunali, Serap Gedikli. Biosorption of Pb (Ⅱ) by industrial strain of saccharomyces cerevisiae immobilized on the biomanrix of cone biomass of pinus nigra:Equilibrium and mechANism analysis[J]. Chem.Eng. J.,2007, 131(1-3):293-300.
    [62]Viktoriya V. Konovalova, Galyna M. Dmytrenko, Rinan R. Nigmanullin, Mikhaylo T. Bryk, Petro I. Gvozdyak. Chromium(Ⅵ) reduction in a membrane bioreactor with immobilized Pseudomonas cells [J]. Enzyme Microb Technol, 2003, 33:899-907.
    [63]N. Akhtar, J.Iqbal , M. Iqbal. Removal and recovery of nickel(Ⅱ) from aqueous solution by loofa sponge-immobilizd biomass of Chlorella sorokinianaxharacterizanion studies[J]. J Hazardous Maner, 2004, B 108:85-94.
    [64]Anastasios I. Zouboulis, Kostas A. Manis, Maria Loukidou. Metal biosorption by PAN-immobilized fungal biomass in simulaned wastewaners[J]. Colloids & surfaces A:Physicochem.Eng.Aspeces, 2003, 212:185-195.
    [65]Viktoriya V. Konovalova, Galyna M. Dmytrenko, Rinan R. Nigmanullin, Mikhaylo T. Bryk, Petro I. Gvozdyak. Chromium(Ⅵ) reduction in a membrane bioreactor with immobilized Pseudomonas cells[J]. Enzyme Microb Technol, 2003, 33:899-907.
    [66]Kiyomi Tsuji, Miki Asakawa, Yojiro anzai, Tansuo Sumino, Ken-Ichi Harada. Degradanion of microcystns using immobilized microorganism isolaned in an eutrophic lake[J]. Chemosphere, 2006,65(1): 117-124.
    [67]李海波,李培军,张轶,等.用固定化Oil-56黄杆菌修复地表水菌体形态变化[J].化学工程,2006,34(5)43-45.
    [68]张辉,李培军,胡筱敏等.微生物固定化修复技术在氮污染地表水中的应用[J].水处理技术,2006,32(11):1-3.
    [69]徐新阳,张轶,李海波,等.污染地表水修复中用微球菌的化学包埋法固定化工艺[J].东北大学学报:自然科学版,2006,27(10):1145-1149.
    [70]戴世明,李发站,吕锡武.气浮与臭氧生物活性炭处理富营养化太湖水[J].水处理技术,2007,33(4):28-29,41.
    [71]周克梅,李维,陈志平.投加粉末活性炭处理长江南京段微污染原水研究[J].中国给水排水,2007,23(3):106-108.
    [72]李海波,李培军,张轶,等.静止或缓流污染地表水微生物固定化修复技术研究进展[J].生态学杂志,2005,24(5):561-566.
    [73]田伟君,郝芳华,王超,等.仿生填料在河道内直接布设挂膜的试验研究[J].中国给水排水,2007,23(3):81-83
    [1]刘宇航,陆晓中,赵明.PVF悬浮填料的制备及其污水处理效果的研究[J].北京化工大学学报,2006,33(1):36-40.
    [2]刘宇航,陆晓中,赵明等.新型填料PVF的制备及其同时硝化反硝化反应的研究[J].水处理技术,2006,32(8):26-29.
    [3]耿皓.纳米颗粒对包装材料硬质聚氨酯泡沫塑料力学性能的影响[J].包装工程,2006,27(4):50-52.
    [4]邬润德,童莜莉,张家恺等.纳米填料对聚氨酯泡沫弹性力学性质影响的研究[J].科研开发,2005,615(3):5-7.
    [5]张瑞英,梁成刚.纳米改性聚氨酯硬泡的制备[J].内蒙古大学学报,2006,37(6):719-722.
    [6]Kyungsu Na, Yongwoon Lee, Wanjin Lee. et al. Characterization of PCB-Degrading Bacteria Immobilized in Polyurethate Foam[J]. Journal of Bioscience and Bioengineering, 2000, 90 (4):368-373.
    [7]钟世云,胡艳.塑料在污水处理悬浮载体生物膜工艺中的应用[J].中国塑料,2004.9,9(18):84-89.
    [8]张凡,程江,杨卓如等.废水处理用生物填料的研究进展[J].环境污染治理技术与设备,2004,5(4):8-12.
    [9]汪晓军,何建聪,黄顺炜,等.活性污泥法污水处理应用亲水性填料实验研究[J].工业水处理,2004,24(6):32-36.
    [10]赵杏缓,张有瑜.粘土矿物及粘土矿物分析[C].北京:海洋出版社,1990.
    [11]胡文峰,朱明,朱永飞等.环保聚氨酯PVF载体发泡剂研究进展[J].应用化工,2006,35(5):375-378.
    [12]Hsu YY, Gresser JD, Trantolo DJ, Lyons CM, Gangadharam PR Wise DL. Effect of polymer foam morphology and density on kinetics of in virtro controlled release of isoniazid from compressed foam matrices [J]. Biomed Mater Res,1997,35(1): 107-110.
    [13]王磊.固定化硝化菌去除氨氮的研究[J],环境科学,1997,18(2):32-36.
    [14]李磊,韦朝海,张小璇.亲水性聚合物多孔载体的制备及其性能研究[J].中国给水排水,2006,22(19):82-90.
    [15]李彦锋,叶正芳.功能泡沫塑料微生物固定化载体及其制备和应用,中国专利,申请号:00113978.9 公开号:CN1353184A.
    [16]Messing R A and OppermATn R A. Pore dimensions for accumulatng biomass.I.Microbes that reproduced by fission or by budding biotechnol [J]. Bioengng. 1999,21(5):100-105.
    [1]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006,26-31.
    [2]He Fang, Hu Wenrong, Li Yuezhong. Incestigation of isolation and immobilization of a microbial consortium for decoloring of azo dye 4BS[J].Water Research, 2004, 38:3596-3604.
    [3]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].(第4版).北京:中国环境出版社,2002.108-109.
    [4]曹国民,赵庆祥,龚剑丽等.固定化微生物在好氧条件下硝化和反硝化[J].环境工程,2000,18(5):17-19.
    [5]Panla Marques, Helena Maria Pinheiro, Maria Fernanda Rosa. Cd (Ⅱ) removal from aqueous solution by immobilized Waste Brewery Yeast in fixedobed and airlift reactors [J]. Desalination, 2007,214(1-3):343-351.
    [6]靳路山,姜斌,李鑫钢.微电场-生物固定化复合工艺处理工业电镀废水[J].科学技术与工程,2007,7(9):1981-1984.
    [7]M. Iqbal , A. Saeed. Entrapment of fungal hyphae in structural fibrous network of papaya wood to produce a unique biosorbent for the removal of heavy metals [J]. Enzyme Microb Technol, 2006,39:996-1001.
    [8]Zaki Ajji. Preparation of poly (vinyl alcohol) hydrogels containing citric or succinic acid using gamma adition[J]. Radition Physics and Chemistry, 2005, 74:36-41.
    [9]K. H. Chu., M. A. Hashim. Copper biosorption on immobilized seaweed biomass: Column breakthrough characteristics[J]. Environ. Sci., 2007,19(8):928-932.
    [10]Ahmet Cabuk, Tmer Akar, Sibel Tunali, Serap Gedikli. Biosorption of Pb (Ⅱ) by industrial strain of saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of pinus nigra: Equilibrium and mechanism analysis[J]. Chem.Eng. J., 2007, 131(1-3):293-300.
    [11]Chuen-Chang Lin, Yin-Tzu Lai. Adsorption and recovery of lead (Ⅱ) from aqueous solution by immobilized pseudomonas aeruginosaPU21 beads. J Hazardous Materials, 2006, 137(1):99-105.
    [12]李杰,王志盈,毛玉红.固定化微生物抗毒性能力及其去除特性研究.中国给水排水,2008,24(1):98-101.
    [13]李科林,孟范平,吴晓芙等.重金属离子对有效微生物群处理污水能力的影响[J].中南林学院学报,1999,19(3):37-41.
    [14]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006
    [15]山根恒夫,生化反应工程,西北大学出版社,1992
    [1]Apilanez I, Gutierrez A, Effect of surface materials on initial biofilm development [J]. Bioresour Technol, 1998,66(3):225-230.
    [2]李磊,韦朝海,张小璇.亲水性聚合物多孔载体的制备及其性能研究[J].中国给水排水,2006,22(19):82-90.
    [3]汪晓军,张洁敏,何翠萍.表面亲水性塑料填料在好氧处理中的应用[J].上海环境科学,2003,22(4):269-271,282.
    [4]方芳,龙腾锐,郭劲松,等.多孔填料表面物理特性对生物膜附着的影响[J].工业用水与废水,2004,35(6):1-4.
    [5]温沁雪,施汉昌,陈志强.生物膜微环境和传质现象研究进展[J].环境污染治理技术与设备,2006,7(6):1-5.
    [6]杨平,王文安,盖世义.固定化微生物颗粒吸附平衡方程和动力学模型[J].河北建工学院学报,2004,22(4):29-34.
    [7]Escher A.and MacGrath M.S. Modeling the initial event in biofilm accumulation [J]. Wiley and Son Inc, 1990,445-485.
    [8]Liu Y. Adhesion kinetics of nitrifying bacteria on various thermoplastic supports [J], Colloids and Surfaces B:Biointerfaces, 1995,213-219.
    [9]Liu Y. Dynamique de croissance de biofilm nitrifiant applique anx tracitoment des eanx.phD [J].Thesis TNSA-Toulouse FrATce, 1994, 367-371.
    [10]Marshall K.C,and Blainery B.Role of bacterial adhesion in biofilm formation and biocorrosion [J] . Industrial water systems, 1990, 29-46.
    [11]Rouxhet P.G and Mozes N. Physical chemistry of the interface between attached micoorganism and their supports[J].Wat.Sci.Technol.,1990,22:1-16.
    [12]Mozes N .and Rouxhet P.c.Modification of surface for promong cell immobilization [J]. Biofilms Science and Technology, 1992,69-86.
    [13]Asther M.,Bellon-Fontaine M.N.,Capdeville C. and Corriu G.A thermodymic model to predict phanerxhaete Chrysoporium INA-12 adhesion to various carriers in relahincte lignin peroxidase production [J] .Biotechnol.Bioeng, 1990,35:477-482
    [14]Callow M.E.,SATtos R.ATd Bott F.R.Adhesion of biofilm in flowing systems[J]. Microbial iofilms Formation Control, 1993,241-258.
    [15]Characklis W.GKinetics of microbial trATsformation [J].John Wiley and Sons Inc.,1990,233-264.
    [16]Casey E., Hamer G.,Glennon B.Biofilm development in a membrATe-aerated biofilm reactor: Effect of flow velocity on performATce[J]. Biotech. Bioeng., 2000, 67(4): 476-486.
    [17]杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展.环境科学研究,2000,13(5):50-53.
    [18]刘雨,赵庆良,郑兴灿编著.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [19]MoreAT M.Liu Y.,Capdeville B.,ATdic J.M. ATd Calvez L.Kinetic behaviors of heterotrophic and antotrophic biofilms in wastewater treatment processes[J].Wat.Sci.Technol.,1994,29:385-391.
    [20]李磊,韦朝海,张小璇.亲水性聚合物多孔载体的制备及其性能研究[J].中国给水排水,2006,22(19):82-90.
    [21]张自杰,林荣忱,金儒麟等编,排水工程[M],中国建筑出版社,2006.
    [22]Beyer A, Mackay D, et al. Assessing long-RATge pollutATts [J]. Environ Sci Technol, 2000, 34: 699-703.
    [23]H K. Impacts of heterogeneous organic mater on sorption equilibrium and kinetic studies with aquifer material [J]. Environ Sci Technol, 2000, 34:05-414.
    [24]齐鄂荣,曾玉红等编.工程学流体力学[M].武汉大学出版社.2005.
    [25]许保玖,龙腾锐.当代给水与废水处理原理[M](第二版).北京:高等教育出版社,2000.
    [26]饶应福,夏四清,陈轶波等.悬浮填料生物反应器处理低浓度氨氮废水的动力学特性分析[J].环境工程,2006,22(5):56-59.
    [27]郑兴灿,李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [28]Sebnem Asian, Ilgi Karapinar Kapdan. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae [J]. Ecological Eng, 2006, 28:64-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700