小麦渐渗系新品种山融3号耐盐表达谱和耐盐相关基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的耐盐性是由多基因控制的复杂的数量性状,盐胁迫应答相关的基因涉及到代谢、细胞防御、能量、离子平衡和转运、细胞生长和分裂等诸多方面,所有这些基因构成一个复杂的调控网络。因此,对盐渍胁迫下植物基因表达整体概况的研究有助于我们更好的理解植物的耐盐机制。
     耐盐小麦品种山融3号是小麦品种济南177(Triticum aestivum L.2n=42)与其小麦族偃麦草属禾草长穗偃麦草(Thinopyrum ponticum 2n=70)经过不对称体细胞杂交技术获得的体细胞杂种渐渗系。遗传及生理生化的分析表明,该品种含有长穗偃麦草染色体小片段,耐盐指数及各项生理生化指标均其耐盐性明显优于亲本小麦。山融3号不同于其它耐盐相关研究所利用的单一遗传背景的材料,其耐盐性由主效基因和微效基因共同控制。
     本文利用小麦全基因组芯片,研究了山融3号及其亲本济南177经不同时间盐胁迫后不同组织的诱导表达谱,从转录组的水平对小麦盐胁迫诱导基因表达情况进行分析,并从山融3中克隆了3个耐盐相关基因,进行了功能研究,主要研究内容和结果包括:
     1.利用Affymetrix小麦基因芯片分析小麦盐胁迫诱导的基因表达谱
     采用Affymetrix小麦全基因组芯片(GeneChip Wheat Genome Array),首次构建了小麦体细胞杂交耐盐品种山融3号及其亲本济南177盐胁迫诱导的表达谱,一共获得6504个差异表达探针,代表了5,577个盐胁迫诱导的差异表达基因。主要参与主要包括胁迫响应、钙离子结合、转录调控、氮代谢、氨基酸代谢以及氧化还原等过程。在盐胁迫下根系中的差异表达基因比叶片中的大约多一倍,由于根系直接面对盐胁迫,所以其差异表达基因多与离子吸收有关,主要包括许多水通道蛋白、钙依赖的钾离子通道以及一些非选择性通道蛋白等。对盐胁迫特异性诱导或者抑制表达探针的分析表明液泡膜钠氢逆向转运蛋白基因Na~+/H~+ antiporter(NHX1)、液泡膜焦磷酸酶基因PPase和TaHKT1在山融3号和济南177中差异表达,揭示离子吸收和区隔化的调控可能在山融3号的耐盐中起了重要作用。部分重要盐胁迫响应相关基因在山融3号和济南177之间也存在差异表达,ABA合成途径相关基因以及ABA响应的因子,JA以及GA信号途径的有关基因在盐胁迫后均上调表达,表明在小麦中激素途径与逆境响应途径也有交叉。组蛋白可以通过转录后修饰来诱导或者抑制许多功能基因的表达,它们在盐胁迫后的大量下调表达暗示其在山融3号的盐胁迫应答中起作用,值得我们进一步研究。
     2.小麦耐盐相关基因TaCHP的全长cDNA克隆及初步的功能分析
     对一个功能未知的锌指蛋白基因TaCHP进行了克隆和测序,表达谱分析发现盐胁迫后TaCHP在根系中特异性表达,而且在山融3号和济南177间有明显的差异表达。TaCHP表达不受干旱胁迫、氧化胁迫的影响,而ABA胁迫后其表达谱与盐胁迫的表达一致,推测TaCHP基因在山融3号的表达与渗透胁迫和氧化胁迫无关,可能是盐胁迫和ABA响应途径共同的调控因子。组织原位杂交结果表明TaCHP在山融3号根系成熟区的皮层细胞和导管细胞中都有表达,说明TaCHP基因参与了山融3号的盐胁迫过程。
     TaCHP的蛋白结构分析发现TaCHP的氨基酸序列包含三个植物特有的锌指蛋白结构域—DC1 domain,推测其可能参与了植物磷酸肌醇参与逆境胁迫的响应途径。拟南芥中过量表达TaCHP基因后,转基因植株的抗盐性生长明显好于对照,说明外源基因的插入和过量表达可能提高了转基因株系对于Na~+的耐受性。
     3.小麦中耐盐相关的蛋白酶抑制剂基因TaWRSI5的分析
     从山融3号和其亲本中克隆了TaWSRI5基因。该基因在DDRT和基因芯片检测中都受到盐胁迫诱导表达。TaWSRI5编码一个小麦中的BBI型蛋白酶抑制剂(Bowman-Birktype Protease Inhibitor),具有胰蛋白酶抑制活性。表达谱分析表明TaWRSI5基因在H_2O_2胁迫后1小时即被强烈诱导表达,而在盐处理后大约6小时,铝胁迫和干旱胁迫后大约24小时,TaWRSI5基因的表达才到达峰值,所以推测TaWRSI5基因的表达受到H_2O_2的调控,可能参与了多种胁迫响应途径。TaWRSI5的组织原位杂交发现其在山融3号根尖成熟区的内皮层细胞中特异表达,而在济南177的相同位置上没有检测到明显的杂交信号,过表达TaWRSI5基因的拟南芥株系也可以在一定程度上提高转基因株系的耐盐性。揭示TaWRSI5基因可能通过参与调控Na~+的运输或者调节Na~+在植物体内的分布来提高植物的耐盐性。小麦耐盐相关基因TaSKC1的克隆及初步功能分析
     小麦耐盐的一个重要机制是调节离子的吸收,运输从而维持植物体内较低的Na~+浓度。利用RACE技术分别从山融3号,济南177中克隆了小麦中的同源基因TaSKC1,系统进化分析表明TaSKC1的氨基酸序列与OsSKC1和AtHKT1的同源性最高,推测其可能参与Na~+通过韧皮部汁液从地上部分至根部的再循环过程,从而减少叶片中Na~+的积累。酵母突变体功能互补试验揭示TaSKC1能够介导盐胁迫后Na~+的吸收,过表达TaSKC1的酵母细胞对Na~+更敏感。推测盐胁迫后TaSKC1的表达量降低可能是离子胁迫反馈调节的结果,盐胁迫下植物中由于积累过多的Na~+,使细胞受到盐害,激活大量盐胁迫响应因子,通过逆境胁迫的信号转导系统,反馈抑制TaSKC1的表达,从而降低Na~+进入植物体或者向地上部位运输的速率,维持植物细胞内的离子平衡。
     4.小麦体细胞杂交与基因突变和基因表达差异
     TaSKC1和TaCHP基因的序列比较分析表明其是来自其小麦亲本济南177,而且在进化过程中非常保守,所以他们在盐胁迫下山融3号和济南177间的差异表达很可能取决于上游调控序列的不同。对TaWSRI5基因序列的分析显示:山融3号中TaWSRI5基因可能来自长穗偃麦草与济南177中的同源基因重组,另外有少数碱基发生了点突变。研究结果从分子水平上验证了体细胞杂交可以导致受体的基因组的剧烈变化,不仅可引起受体功能基因的结构变化,而且还导致其表达水平的变化,这种的变化可促进新基因、新性状的形成和小麦种质创新。
     总之,在转录水平上对山融3号和济南177的研究发现体细胞杂交导致了二者基因组中大量基因的差异表达,其中山融3号中特异诱导或者抑制表达的基因可能是影响其耐盐性的重要相关基因。对山融3号中的TaCHP、TaWRSI5和TaSKC1基因的研究表明,它们可能是山融3号复杂的耐盐调控网络的重要组分。
As an important agronomic trait in crop plants, salt stress tolerance is controlled by quantitative trait loci (QTLs). Salt stress condition may activate multiple signaling pathways, and enhance or inhibit downstream effect genes, including genes related with metabolism, defense, ion influx and transport, reestablishing homeostasis, biosynthesis of osmoprotectants and some cellular structures, etc. All of these genes make full functions coordinately to keep plant growing and developing regularly. Therfore, it is necessary to analysis the whole genome transcriptional profile of plant under salinity stress.
     A new somatic hybrid introgression line Shanrong No.3 (hereafter SR3) has been generated in our lab from hybridization of common wheat Jinan 177 with Thinopyrum ponticum, a salt and drought tolerant grass. Cytological and molecular analysis showed that some nuclear and non-nuclear DNAs and even functional genes of donor Th. ponticum were introgressed into this line. SR3 had a significantly higher yield than its parent JN177 and the salt-tolerant control cultivar in salt- alkali soil of Shandong, China. It has passed Shandong provincial regional yield trial for new salt-enduring wheat cultivar (Lu-Nong-Shen-Zi No. [2004]030). The result of SSR marker analysis suggests that a major salt tolerance gene and some microgenes controlled the salt tolerance of SR3.
     In order to investigate the mechanism of SR3 response to salinity, we analyzed genome-wide transcriptional analysis of two genetically related wheat genotypes (SR3 and JN177). The data come from wheat genome array of different tissues at different times under a gradually imposed salinity stress. Based on the analysis from transcriptional profiles between the SR3 and JN177. as well as by using the RACE method, three full-length cDNA related to salt stress were cloned from SR3 and their expression characters and functions were analyzed. The main research contents and results achieved in this work were summarized as follows.
     1. Comparative transcriptional profiling of SR3 and JN177 under salinity stress using the affymetrix wheat genome array
     We used the Affymetrix wheat genome array containing 61127 probe sets to explore the difference in transcriptome of the wheat salt-tolerant genotypes SR3 and it wheat parent JN177 under control and salinity-stressed conditions during vegetative growth. A totally of 6,504 probe sets, on behalf of 5,577 transcripts were identified with differential expression patterns between SR3 and JN177 under salt stress or no-salt stress conditions. These genes were mainly involved in the process related to material transport, ribosome, membrane, calcium ion related signal transduction, environment stress response, transcript regulation as well as cell wall organization and biosynthesis. Bioinformation data shows that under salt stress, the differential expression probe sets in root are probably two times of that in leaf blade. Because the root of plant faces the salinity stress directly, a lot of the difference expressed genes in root were involved in the ion absorption and transport, mainly include many water channel proteins, the calcium-dependent potassium ion channel and non-selective channel proteins. Salt specific responsive probe sets includes some famous salt tolerance related genes, e.g. Na~+/H~+ antiporter gene (NHX1), PPase and TaHKT1, that was induced or inhibited in SR3. This implies that the sodium absorption and ion compartmentation in vacuole play an important role in the SR3. It was also found that some probe sets showed differential expression between SR3 and JN177 also involved in the transcriptional response to salt stress. Some probe sets responsive to salt stress were further analyzed including: ion transporter. ABA metabolism, signal transduction pathway and responsive genes, histone, proline synthesis and metabolism pathway. Some genes in the hormone signal transduction pathway like ABA, JA and GA were induced after salinity treatment, which suggested that there is a crosstalk between the hormone and abiotic stress. Histone may induce or suppress the expression of many function genes through the post-transcription processing, which were generally suppressed in SR3 after salt stress with a specific pattern and worth for further study.
     2. Cloning and functional analysis of the full-length cDNA of TaCHP gene involved in salt stress
     The full-length cDNA of TaCHP was cloned and sequenced from SR3 and JN177. Expression of TaCHP in SR3 is down regulated under salt stress but up-regulated in JN177 based on the array data analysis. RT-PCR result revealed that the transcription of wheat TaCHP gene was suppressed in salt-tolerant line SR3 under saline stress and ABA treatment and showed low-expression level in JN177, but no-affected under drought and H_2O_2 treatment. That implied that TaCHP gene acts as a co-regulator of the salt and ABA response pathway. Analysis of in situ hybridization shows that TaCHP gene expresses in the cortex and vessels of xylem in the maturation region of root of SR3 under control condition, while no signal was detected in the root after 24h salt stress.
     The deduced amino acid sequence of TaCHP gene showed homologous to CHP-rich zinc finger protein-like of Arabidopsis and rice, with 3 divergent C1 domains that only found in plant proteins. This short domain is rich in cysteines and histidines and probably also binds to two zinc ions. The function of proteins with this domain is uncertain in plant; however this domain may bind to molecules such as diacylglycerol and take part in the PLD/PKC signal transduction pathway. The transgenic Arabidopsis lines over-expressed TaCHP gene exhibited enhanced resistance against salinity stress.
     3. TaWRSI5, a Bowman-Birk type protease inhibitor, is involved in the tolerance to salt stress in wheat
     A salt responsive gene TaWRSI5 was characterized from salt tolerant cultivar SR3, which was induced after salt stress in wheat genechip and the silver staining mRNA differential display. The peptide encoded by TaWRSI5 contains a Bowman-Birk domain sharing a high level of sequence identity to monocotyledonous protease inhibitors. When expressed in vitro, the TaWRSI5 gene product exhibited trypsin, but not chymotrypsin inhibition. The expression level of TaWRSI5 was increased in SR3 roots exposed to salt, drought or oxidative stress while with different peak time of H_2O_2 (1h), salt (6 h), AlCl_3 (24 h) and PEG (24 h) in roots. That suggested H_2O_2 may act as an upstreaming regulator of TaWRSI5 and take part in abiotic stress. In situ hybridization showed that it is induced in the endodermal cells of the mature region of the SR3 root tip, with no signal detectable in the corresponding region of the salt susceptible cultivar JN177. SR3 has a higher selectivity for K~+ over Na~+. and therefore limits the transport of Na~+ from the root to the shoot. When over-expressed in Arabidopsis thaliana, TaWRSI5 improves the ability of seedlings to grow on a medium containing 150 mM NaCl. We suggest that TaWRSI5 plays an important role in regulating long-distance Na~+ transport or the sodium distribution in SR3 plants exposed to salt stress.
     4. Isolation and characterization of the TaSKC1 gene from SR3 involved in salt stress
     An important mechanism of salinity resistance in wheat is adjusting the sodium-selective transport from root to shoot and retaining low Na~+ density in shoots. No candidate gene has been reported in wheat for this process, and there are not any corresponding probe sets on the wheat genechip. Homologous cDNA of OsSKC1 in wheat- TaSKC1 was cloned using the RACE methods. The deduced amino acid sequence exhibits 71% identity to that of OsSKC1 and the next to AtHKT1. To determine the TaSKC1 function, we expressed the gene in Saccharomyces cerecisiae mutant strain G19, which had defect in the Na~+ efflux system and show Na~+ sensitive phenotype when grows in medium with NaCl. The result showed that G19 strain with TaSKC1 overexpression displays increased Na~+ sensitivity phenotype than the control with empty vector. This result suggested that TaSKC1 could mediate Na~+ uptake in yeast mutant strain G19. The transcription of TaSKC1 gene is down-regulated in both SR3 and JN177 under saline stress, oxidative stress and ABA treatment, with a different degree. The putative mechanism was that: there are massive Na~+ accumulated in the root cell after salt stress and lots of stress responsive genes were induced, leading to the negative regulate to TaSKC1 gene and suppressing its expression, then reducing the Na~+ uptake from the roots to shoots so as to keep low Na~+ content in shoots of wheat.
     5. Somatic hybridization could promote the mutation in genome sequence and differental expression of gene
     We cloned the TaCHP1 and TaSKC1 genes homologous to the parents of SR3, JN177 and Thinopyrum ponticum. Sequence analysis showed that TaCHP1 and TaSKC1 genes of SR3 have the same cDNA sequences with its wheat parent, JN177. It implies that the difference expression among SR3 and JN177 is possibly decided by the different upstream regulation sequence. This result provides a clue to the suggestion that somatic hybridization can affect and regulate the expression pattern of genes in acceptor. As for the third genes, half part of cDNA sequence of TaWRSI5 shows high similarity to that of Thinopyrum ponticum and another half are homologous with that of JN177, with several dot mutations. This implies that TaWRSI5 of SR3 is a new gene derived from the recombination of homolog from SR3 and JN177 in the somatic hybridization by a similar mechanism to the HMW-GS genes that we reported. It gives a molecular proof that somatic hybridization both affects the genome constitution and regulates the expression of some functional genes. This kind of change may promote novel gene formation and enhance wheat germplasm diversity.
     In summary, the transcriptional profiles of somatic hybrid SR3 shows great difference with its wheat parent JN177 under salinity treatment. This could be the result of the introgression of Thinopyrum ponticum chromatin to wheat in the process of somatic hybridization. Among the different expression genes, some salt specific responsive ones could function in the salinity enhancement of SR3. Of these genes, TaCHP, TaWRSI5 and TaSKC1 studied in this work likely play an important role in the complex network controlling the salt tolerance of wheat variety SR3.
引文
1.Abe,H.,et al.,Arabidopsis AtMYC2(bHLH)and AtMYB2(MYB)function as transcriptional activators in abscisic acid signaling The Plant Cell,2003.15:p.63-78.
    2.Aida,M.,et al.,Genes involved in organ separation in Arabidopsis:an analysis of cup-shaped cotyledon mutant.The Plant Cell,1997.9:p.841-857.
    3.Allen,R.D.,Dissection of exidative stress tolerance using transgenic plants.Plant Physiology,1995.107(4):p.1049-1054.
    4.Amtmann,A.,et al.,The Wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain.Plant Physiol,2001.126(3):p.1061-1071.
    5.Amtmann,A.,T.Jelitto,and D.Sanders,K+-Selective inward-rectifying channels and apoplastic pH in barley roots Plant Physiol,1999.120(1):p.1331-1338.
    6.Antosiewicz,D.M.and J.Hennig,Overexpression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity Environmental Pollution,2004.129(2):p.237-245
    7.Apse,M.P.,et al.,Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis.Science 1999.255 p.1256-1258.
    8.Apse,M.P.,et al.,Vacuolar cation/H+ exchange,ion homeostasis,and leaf development are altered in a T-DNA insertional mutant of AtNHX1,the Arabidopsis vacuolar Na+/H+ antiporter.The Plant Journal 2003.36:p.229-239.
    9.Aro,E.-M.,I.Virgin,and B.Andersson,Photoinhibition of photosystem Ⅱ.Inactivation,protein damage and turnover.Biochimica et biophysica acta.Bioenergetics 1993.1143:p.113-134.
    10.Ballesteros,E.,et aI.,Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress.Physiologia Plantarum 1997.99:p.328-334.
    11.Banuelos,M.A.,et al.,A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity:EMBO J.,1995.14(13):p.3021-3027.
    12.Barrels,D.,Targeting detoxification pathways:an efficient approach to obtain plants with multiple stress tolerance? Trends in Plant Science,2001.6(7):p.284-286
    13.Benito,B.and A.Rodriguez-Navarro,Molecular cloning and characterization of a sodium-pump ATP ase of the moss Physcomitrella patens.The Plant Journal,2003.36:p.382-389.
    14.Berthomieu,P.,et al.,Functional analysis of AtHKT1 in Arabidopsis shows that Na(+)recirculation by the phloem is crucial for salt tolerance.EMBO J,2003.22(9):p.2004-2014.
    15.Bhandal,I.S.and C.P.Malik,Potassium estimation,uptake,and its role in the physiology and metabolism of flowering plants.International review of cytology 1988.110:p.205-254.
    16.Bhat,P.R.,et al.,Mapping translocation breakpoints using a wheat microarray.Nucleic Acids Research,2007.35(9):p.2936-2943.
    17.Binzel,M.,et al.,Intracellular compartmentation of ions in salt adapted tobacco cells.Plant Physiol.,1988.86:p.607-614.
    18.Blom-Zandstra,M.,S.Vogelzang,and B.Veen,Sodium fluxes in sweet pepper exposed to varying sodium concentrations.Journal of Experimental Botany,1998.49:p.1863-1868.
    19.Blumwald,E.,G.Aharon,and M.Apse,Sodium transport in plant cells.Biochim Biophys Acta,2000.1465:p,140-151.
    20.Bohnert,H.J.and E.Sheveleva,Plant stress adaptations--making metabolism move.Current Opinion in Plant Biology,1998.1(3):p.267-274.
    21.Campbell,S.A.and T.J.Close,Dehvdrins:genes,proteins,and associations with phenotypic traits. New Phytologist,1997.137(1):p.61-74.
    22.Cattivelli,L.,et al.,Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae Plant Molecular Biology,2002.48:p.649-665.
    23.Charrier,B.,et al.,Expression Profiling of the Whole Arabidopsis Shaggy-Like Kinase Multigene Family by Real-Time Reverse Transcriptase-Polymerase Chain Reaction.Plant Physiol,2002.130(2):p.577-590.
    24.Chazen,O.,W.Hartung,and P.M.Neumann,The different effects of PEG 6000 and NaCl on leaf development are associated with differential inhibition of root water transport.Plant,Cell &Environment,1995.18:p.727-735.
    25.Cheeseman,J.M.,Pump-leak sodium fluxes in low salt corn roots Journal of Membrane Biology,1982.70(2):p.157-164.
    26.Chen,A.-X.,G.-M.Xia,and H.-M.Chen,DNA transfer from wild Millet to common wheat by asymmetric somatic hybridization.Acta Botanica Sinica,2004.46(9):p.1114-1121.
    27.Chen,J.-h.,et al.,Data-mining massive real-time data in a power plant:challenges,problems and solutions Journal of Zhejiang University-Science A,2002.3(5):p.538-542.
    28.Cheng,N.H.,J.K.Pittman,and J.K.Zhu,The protein kinase SOS2 activates the Arabidopsis H+/Ca2+antiporter CAX1 to integrate calcium transport and salt tolerance.J Biol Chem,2004.279(2):p.922-926.
    29.Chinnusamy,V.,K.Schumaker,and J.-K.Zhu,Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants Journal of Experimental Botany,2004.55(395):p.225-236.
    30.Choi,H.,et al.,ABFs,a family of ABA-responsive element binding factors.J Biol Chem,2000.275(3):p.1723-1730.
    31.Clemens,S.,et al.,The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast.PNAS,1998.95(20):p.12043-12048.
    32.Colmer,T.D.,E.Epstein,and J.Dvorak,Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum(Host)A.Love Amphiploid.Plant Physiology,1995.108(4):p.1715-1724.
    33.Cushman,J.C.and H.J.Bohnert,Genomic approaches to plant stress tolerance.Current Opinion in Plant Biology,2000.3(2):p.117-124.
    34.Daniels,M.J.,T.E.Mirkov,and M.J.Chrispeels,The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP.Plant Physiol,1994.106:p.1325-1333.
    35.Davenport,R.,R.JAMES,and A.ZAKRISSON-PLOGANDER,Control of sodium transport in durum wheat:Abiotic stress in grasses.Plant physiology,2005.137(33):p.807-818.
    36.Davenport,R.J.and M.Tester,A weakly voltage-dependent,nonselective cation channel mediates toxic sodium influx in wheat.Plant Physiol,2000.122:p.823-834.
    37.Demidchik,V.and M.Tester,Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots.Plant Physiol,2002.128:p.379-387.
    38.DeWald,D.B,,et al.,Rapid Accumulation of Phosphatidylinositol 4,5-Bisphosphate and Inositol 1,4,5-Trisphosphate Correlates with Calcium Mobilization in Salt-Stressed Arabidopsis.Plant Physiol,2001.126:p.759-769
    39.Dombrowski,J.E.,Salt stress activation of wound-related genes in tomato plants.Plant Physiol,2003.132(4):p.2098-2107.
    40.Dongen,J.V.,et al.,Phloem import and storage metabolism are highly coordinated by the low oxygen concentrations within developing wheat seeds.Plant Physiol,2004.135(3):p.1809-1821.
    41.Dubcovsky,J.,et al.,Genetic Map of Diploid Wheat.Triticum monococcum L.,and Its Comparison With Maps of Hordeum vulgare L.Genetics,1996.143:p.983-999.
    42.Dural,M..et al.,Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily.Plant Mol.Biol.,2002.50:p.237-248.
    43.Dym,O.,M.Mevarech,and J.L.Sussman,Structural features that stabilize halophilic malate dehydrogenase from an Archaebacterium Science,1995.267:p.1344-1346.
    44.Ehrenreich,I.M.and M.D.Purugganan,The molecular genetic basis of plant adaptation.American Journal of Botany,2006.93:p.953-962.
    45.Eisen,M.B.,et al.,Cluster analysis and display,of genome-wide expression patterns Genetics,1998.95(25):p.14863-14868.
    46.Fairbairn,D.J.,et al.,Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis Plant Molecular Biology,2000.43(4):p.515-525.
    47.Feng,D.-S.,et al.,high-molecular-weight glutenin subunit genes in decaploid Agropyron elongatum.Acta Botanica Sinica,2004.46(4):p.489-496.
    48.Flowers,T.J.,Improving crop salt tolerance Journal of Experimental Botany,2004.55(396):p.307-319.
    49.Flowers,T.J.and D.Dalmon,Protein synthesis in halophytes:the influence of potassium,sodium and magnesium in vitro.Plant and soil 1992.146:p.153-161.
    50.Flowers,T.J.and M.A.Hajibagheri,Salinity tolerance in Hordeum vulgate:ion concentrations in root cells of cultivars differing in salt tolerance.Plant and Soil,2001.231(1):p.1-9.
    51.Francois,L.E.,et al.,Effect of salinity on grain yield and quality,vegetative growth,and germination of semi-dwarf and durum wheat.Agronomy Journal 1986.78:p.1053-1058
    52.Fujita,M.,et al.,A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway.The Plant Journal,2004.39:p.863-876.
    53.Fukuda,A.,et al.,Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice.Plant Cell Physiol,2004.45:p.146-159.
    54.Fukuda,A.,A.Nakamurab,and Y.Tanaka,Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa.Biochim Biophys Acta,1999.1446:p.149-155.
    55.Gaddour,K.,et al.,A constitutive cystatin-encoding gene from barley(Icy)responds differentially to abiotic stimuli Plant Molecular Biology,2001.45(5):p.599-608.
    56.Gassmann,W.,F.Rubio,and J.I.Schroeder,Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1 The Plant Journal,1996.10(5):p.869-882.
    57.Gaxiola,R.A.,et al.,Drought-and salt-tolerant plants result from overexpression of the AVP1H+-pump PNAS,2001.98:p.11444-11449.
    58.Gaxiola,R.A.,et al.,The Arabidopsis thaliana proton transporters,AtNhx1 and Avpl,can.function in cation detoxification in yeast.PNAS,1999.96(4):p.1480-1485.
    59.Gil-Mascarell,R.,et al.,The Arabidopsis HAL2-like gene family includes a novel sodium-sensitive phosphatase The Plant Journal 1999.17(4):p.373-383.
    60.Gilmour,S.,A.Sebolt,and M.Salazar,Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.Plant Physiology,2000.124(4):p.1854-1865.
    61.Golldack,D.,et al.,Characterization of a HKT-type transporter in rice as a general alkali cation transporter.The Plant Journal,2002.31(4):p.529-542.
    62.Gong,D.,et al.,The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiology,2004.134 p.919-926.
    63.Gorham,J.,R.G.W.Jones,and A.Bristol,Partial characterization of the trait for enhanced K+-Na+discrimination in the D genome of wheat Planta,1990.180(4):p.590-597.
    64.Greenway,H.and R.Munns,Mechanisms of Salt Tolerance in Nonhalophytes.Annual Review of Plant Physiology,1980.31:p.149-190.
    65.Guo,Y.,et al.,Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance.The Plant Cell,2001.13:p.1383-1400.
    66.Halfter,U.,M.Ishitani,and J.Zhu.The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3.Proc Natl Acad Sci 2000.97:p.3735-3740.
    67.Halftera,U.,et al.,SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding.The Plant Cell,2000.12(9):p.1667-1678.
    68.Hamada,A.,et al.,Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini.Plant Mol Biol.2001.46:p.35-42.
    69.Hao,D.,M.Ohme-Takagi,and A.Sarai,Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor(ERF Domain)in plant.Biol.Chem.,1998.273:p.26857-26861
    70.Haro,R.,B.Garciadeblas,and R.Rodriguez-Navarro,A novel P-type ATPase from yeast involved in sodium transport.FEBS letters 1991.291:p.189-191.
    71.Hasegawa,P.M.and R.A.Bressan,Plant cellular and molecular responses to high salinity.Annual Review of Plant Physiology and Plant Molecular Biology,2000.51:p.463-499
    72.Hasegawa,S.,et al.,In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of metastasis.Cancer Gene Therapy,2000.7(10):p.1336-1340.
    73.Hegedus,D.,et al.,Molecular characterization of Brassicanapus NAC domain transcriptional activators induced in response to biotic and abiotic stress Plant Molecular Biology,2003.53:p.383-397.
    74.Horie,T.and J.Schroeder,Sodium transporters in plants.Diverse genes and physiological functions.Plant Physiol,2004.136(1):p.2457-2462.
    75.Horie,T.,et al.,Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa.The Plant Journal.2001.27(2):p.129-138.
    76.Huang,Y.,et al.,ATMPK4,an Arabidopsis homolog of mitogen-activated protein kinase,is activated in vitro by AtMEK1 through threonine phosphorylation.Plant Physiology,2000.122(4):p.1301-1310.
    77.Huang,Y.,B.Xiao,and L.Xiong,Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice.Planta.2007.226(1):p.73-85.
    78.Ichimura,et al.,A ubiquitin-like system mediates protein lipidation.Nature,2000.408:p.488-492.
    79.Ingram,J.and D.Bartels,The molecular basis of dehydration tolerance in plants.Annual Review of Plant Physiology and Plant Molecular Biology,1996.47:p.377-403.
    80.Ishitani,M.,et al.,SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding.The Plant Cell,2000.12:p.1667-1678.
    81.Ishitani,M.,et al.,Coordinate transcriptional induction of myo-inositol metabolism during environmental stress.The Plant Journal,1996 9(4):p.537-548.
    82.Jang,I.,et al.,Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth.Plant Physiol.,2003.131(2):p.516-524.
    83.Jiang,X.,et al.,A protein kinase,interacting with two calcineurin B-like proteins,regulates K transporter AKT1 in Arabidopsis Cell,2006.125(7):p.1221-1223.
    84.Johansson,I.,et al.,Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation.The Plant Cell,1998.10:p.451-460.
    85.Jonak,C.,W.Ligterink,and H.Hirt,MAP kinases in plant signal transduction Cellular and Molecular Life Sciences 1999.55(2):p.204-213.
    86.Jones,R.G.W.and A.Pollard,Enzyme activities in concentrated solutions of glycinebetaine and other solutes Planta,1979.144:p.291-298.
    87.Jordan,M.C.,D.J.Somers,and T.W.Banks,Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci.Plant Biotech J,2007.5(3):p.442-453.
    88.Kammerloher,W.,et al.,Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system.The Plant Journal,1994 6(2):p.187-199.
    89.Katiyar-Agarwal,S.,et al.,A pathogen-inducible endogenous siRNA in plant immunity PNAS,2006.103(47):p.18002-18007
    90.Kawaura,K.,K.Mochida,and Y.Ogihara,Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags.Plant Physiol,2005.139(4):p.1870-1880.
    91.Khan,M.A.,I.A.Ungar,and A.M.Showalter,Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum.Communications in soil science and plant analysis 2000.31:p.2763-2774
    92.Kiegle,E.A.and M.A.Bisson,Plasma Membrane Na+ Transport in a Salt-Tolerant Charophyte (Isotopic Fluxes,Electrophysiology,and Thermodynamics in Plants Adapted to Saltwater and Freshwater).Plant Physiol,1996.111:p.1191-1197.
    93.Kim,K.Y.,et al.,Transcriptional profile by cold water stress at the booting stage of japonica Rice.Molecular Breeding,2007.5(2):p.184-185.
    94.Kishitani,S.,et al.,Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley.Plant,Cell &Environment,2000.23:p.107-I 14
    95.Knight,H.,Calcium signaling during abiotic stress in plants,lnt Rev Cytol,2000.195:p.269-324.
    96.Knight,H.,S.Brandt,and M.Knight,A history of stress alters drought calcium signalling pathways in Arabidopsis.The Plant Journal,1998.16(6):p.681-687.
    97.Knight,H.and M.Knight,Abiotic stress signalling pathways:specificity and cross-talk.Trends in Plant Science,2001.6(6):p.262-267.
    98.Kolukisaoglu,U.,et al.,Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks.Plant Physiol 2004.134:p.43-58.
    99.Kore-eda,S.,et al.,Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum.Gene,2004.341 p.83-92.
    100.Kovtun,Y.,et al.,Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.Plant Biology,2000.97(6):p.2940-2945.
    101.Kudla,J.,et al.,Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals Plant Biology,1999.96(8):p.4718-4723.
    102.Lacan,D.and M.Durand,Na+-K+ Exchange at the Xylem/Symplast Boundary(Its Significance in the Salt Sensitivity of Soybean).Plant Physiol,1996.110(2):p.705-711.
    103.Laurie,S.,et al,,A role for HKT1 in sodium uptake by wheat roots.The Plant J,2002.32:p.139-149.
    104.Lefevre,I.,E.Gratia,and S.Lutts,Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice(Oryza sativa).Plant Science,2001.161(5):p.943-952.
    105.Leng,Q.,et al.,Electrophysiological Analysis of Cloned Cyclic Nucleotide-Gated Ion Channels.Plant Physiol,2002.128(2):p.400-410.
    106.Leung,J.and J.Giraudat,Abscisic Acid Signal Transduction.Annual Review of Plant Physiology and Plant Molecular Biology,1998.49:p.199-222.
    107.Levitt,J.,Responses of plants to enviromental stresses.1980,New York:Academic Press.256
    108.Liang,Q.,et al.,Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance.Plant science 2005.168:p.297-302.
    109.Liu,J.,et al.,The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.Proc Natl Acad Sci,2000.97(7):p.3730-3734.
    110.Liu,J.and J.K.Zhu,A calcium sensor homology required for plant salt tolerance.Science,1998.280:p.1943-1945
    111.Liu,Q.,et al.,Two transcription factors,DREB1 and DREB2.with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression,respectively,in Arabidopsis.The Plant Cell,1998.10:p.1391-1406.
    112.Liu,S.,et al.,Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum.BMC Evolutionary Biology,2007.7(76):p.1-8.
    113.Liu,W.,et al.,Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability.Plant Physiol.2001.127:p.283-294.
    114.Lohaus,G,,et al.,Solute balance of a maize(Zea mays L.)source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching Journal of Experimental Botany,2000.51(351):p.1721-1732.
    115.Maathuis,F.J.M.and D.Sanders,Sodium Uptake in Arabidopsis Roots Is Regulated by Cyclic Nucleotides.Plant Physiol,2001.127(4):p.1617-1625.
    116.Maeshima,M.,Vacuolar H+-pyrophosphatase Biochim Biophys Acta,2000.1465(1-2):p.37-51.
    117.Mahajan,S.and N.Tuteja,Cold.salinity and drought stresses:An overview Archives of Biochemistry and Biophysics,2005.444(2):p.139-158.
    118.Majee,M.,et al.,A Novel Salt-tolerant L-myo-Inositol-1-phosphate Synthase from Porteresia coarctata (Roxb.)Tateoka,a Halophytic Wild Rice J.Biol.Chem.,2004.279:p.28539-28552.
    119.Martinez-Atienza,J.,et al.,Conservation of the salt overly sensitive pathway in Rice.Plant Physiology 2007.143:p.1001-1012.
    120.Maser,P.,M.Gierth,and J,I.Schroeder,Molecular mechanisms of potassium and sodium uptake in plants Plant and Soil 2002.247(1):p.43-54.
    121.Matsushita,N.and T.Matoh,Function of the shoot base of salt-tolerant reed(Phragmites communis Trinius)plants for Na+ exclusion from the shoots.Soil science and plant nutri,1992.38:p.565-571.
    122.Misson,J.,et al.,A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation.Plant Biology,2005.102:p.11934-11939.
    123.Mittler,R.,Oxidative stress,antioxidants and stress tolerance Trends in Plant Sci,2002.7:p.405-410.
    124.Mittovaa,V.,et al.,Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato FEB S Letters,2003.554(3):p.417-421.
    125.Moon,H.,et al.,NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants Plant Biology,2003.100(1):p.358-363.
    126.Munns,R.,Genes and salt tolerance:bringing them together.New Phytologist,2005.167:p.645-663.
    127.Munns,R.,et al.,Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley.Australian Journal of Plant Physiology 2000.27:p.949-957.
    128.Munns,R.and R.King,Abscisic Acid Is Not the Only Stomatal Inhibitor in the Transpiration Stream of Wheat Plants.Plant Physiol.1988.88(3):p.703-708.
    129.Munns,R.and A.Termaat,Whole-Plant Responses to Salinity.Australian Journal of Plant Physiology 1986.13:p.143-160.
    130.Murthy,M.and M.Tester,Compatible solutes and salt tolerance:Misuse of transgenic tobacco Trends in Plant Science,1996.1(9):p.294-298.
    131.Naohiro Aoki,G.N.S.,Xin-Ding Wang,Christina E.Offler,John W.Patrick,and a.R.T.Furbank,Pathway of Sugar Transport in Germinating Wheat Seeds.Plant Physiology,2006.141:p.1255-1263.
    132.Nass,R.,K.W.Cunningham,and R.Rao,Intracellular Sequestration of Sodium by a Novel Na+/H+Exchanger in Yeast Is Enhanced by Mutations in the Plasma Membrane H+-ATPase The American Society for Biochemistry and Molecular Biology,1997.272:p.26145-26152.
    133.Nelson,D.,G.Rammesmayer,and H.Bohnert,Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance.The Plant Cell,1998.10(5):p.753-764.
    134.Nelson,D.E.,M.Koukoumanos,and H.J.Bohnert,Myo-Inositol-Dependent Sodium Uptake in Ice Plant.Plant Physiol,1999.119:p.165-172.
    135.Nublat,A.,et al.,sasl,an Arabidopsis mutant overaccumulating sodium in the shoot,shows deficiency in the control of the root radial transport of sodium.The Plant Cell,2001.13(1):p.125-137.
    136.Oh,S.-J.,et al.,Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice.Plant Biotechnology Journal,2007.5(5):p.646-656.
    137.Ohta,M.,et al.,Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice.FEBS Letters,2002.532(3):p.279-282.
    138.Olsen,A.N.,et al.,NAC transcription factors:structurally distinct,functionally diverse.Trends Plant Sci.,2005.10:p.79-87.
    139.Ouyang,S.,et al.,The TIGR Rice Genome Annotation Resource:improvements and new features Nucleic Acids Research,2007.35:p.883-887.
    140.P.Glenn,E.,J.J.Brown,and E.Blumwald,Salt Tolerance and Crop Potential of Halophytes Critical Reviews in Plant Sciences,1999.18(2):p.227-255.
    141.Pardo,J.M.,et al.,Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants.Plant Biology,1998.95(16):p.9681-9686.
    142.Parida,A.K.and A.B.Das,Salt tolerance and salinity effects on plants:a review Ecotoxicology and Environmental Safety,2005.60(3):p.324-349.
    143.Parida,A.K.,A.B.Das,and B.Mittra,Effects of salt on growth,ion accumulation,photosynthesis and leaf anatomy of the mangrove,Bruguiera parviflora.Trees Structure and Function,2004.18:p.167-174.
    144.Pernas,M.,R.Sanchez-Monge,and G.Salcedo,Biotic and abiotic stress can induce cystatin expression in chestnut.FEBS Letter,2000.467:p.206-210.
    145.Piao,H.L.,et al.,Constitutive over-expression of AtGSKI induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis.Plant J.,2001.27(4):p.305-314.
    146.Piao,H.L.,et al.,An Arabidopsis GSK3/shaggy-Like Gene That Complements Yeast Salt Stress-Sensitive Mutants Is Induced by NaCl and Abscisic Acid Plant Physiol,1999.119:p.1527-1534.
    147.Polci,R.,et al.,NIMA-related protein kinase 1 is involved early in the Ionizing radiation-induced DNA damage response.Cancer Research,2004.64:p.8800-8803.
    148.Qiu,Q.,et al.,Regulation of SOS1,a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana,by SOS2 and SOS3.Proc Natl Acad Sci 2002.99:p.8436-8441.
    149.Qiu,Q.,Y.Guo,and F.Quintero,Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the SOS pathway.J Biol Chem,2004.279:p.207-215.
    150.Quintero,F.,et al.,Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis.Proc Natl Acad Sci 2002.99:p.9061-9066.
    151.Reininger,L.,et al.,A NIMA-related protein kinase is essential for completion of the sexual cycle of malaria parasites.J.Biol.Chem.,2005.280(36):p,31957-31964.
    152.Ren,Z.-H.,et al.,A rice quantitative trait locus for salt tolerance encodes a sodium transporter Nat Genet,2005.37:p.1141-1146.
    153.Rhodes,D.and D.H.A,Quaternary ammonium and tertiary sulfonium compounds in higher plants.Annual Review of Plant Physiology and Plant Molecular Biology 1993.44:p.357-384.
    154.Rhodius,V.,et al.,Impact of genomic technologies on studies of bacterial gene expression.Annual Review of Microbiology,2002.56 p,599-624.
    155.Richards,R.A.and Y.L.Liang,Coleoptile tiller development is associated with fast early vigour in wheat Euphytica,1994,80:p.119-124.
    156.Riechmann,J.L.and E.M.Meyerowitz,The AP2/EREBP family of plant transcription factors.Biol.Chem,1998.3(9):p.633-646.
    157.Ron,P.,et al.,A heat treatment induced the expression of a Na+/H+ antiport gene(cNHX1)in citrus fruit.Plant science 2002 162:p.957-963.
    158.Rubio,F.,W.Gassmann,and J.Schroeder,Sodium-driven potassium uptake by the plant potassium transports HKT1 and mutations conferring salt tolerance.Science,1995.270:p.1660-1663
    159.Rus,A.,et al.,Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis.PLoS Genet 2006.2(12):p.210.
    160.S.Santa-Cruz,Perspective:phloem transport of viruses and macromolecules-what goes in must come out.Trends Microbiol,1999.7(6):p.237-241.
    161.Sanders,D.,et al.,Calcium at the Crossroads of Signaling.The Plant Cell,2002.14p.401-417.
    162.Sanders,J.W.,G.Venema,and J.Kok,Environmental stress responses in Lactococcus lactis.FEMS Microbiology Reviews,1999.23(4):p.483-501.
    163.Saneoka,H.,et al.,Salt Tolerance of Glycinebetaine-Deficient and-Containing Maize Lines.Plant Physiol,1995 107:p.631-638.
    164.Santa-Maria,G.and E.Epstein,Potassium/sodium selectivity in wheat and the amphiploid cross wheat X Lophopyrum elongatum.Plant science 2001.160(3):p.523-534.
    165.Schachtman,D.and J.Schroeder,Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants.Nature,1994.370:p.655-658.
    166.Schachtman,D.,et al.,Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1cDNA.Science 1992.258(5088):p.1654-1658.
    167.Schachtman,D.P.,et al.,Molecular and functional characterization of a novel low-affinity cation transporter(LCT1)in higher plants Proc Natl Acad Sci 1997.94:p.11079-11084.
    168.Schubert,S.and A.Lauchli,Sodium exclusion mechanisms at the root surface of two maize cultivars Plant and Soil,1990.123(2):p.205-209.
    169.Shalat,A.and M,Tal,The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii.Physiologia Plantarum 1998.104(2):p.169-174
    170.Shan,L.,S.-Y.Zhao,and G.-M.Xia,Cloning of the full-length cDNA of the wheat involved in salt stress:root hair defective 3 gene(RHD3).Journal of Intergrative Plant Biology,2005.47(7):p.881-891.
    171.Sheveleva,E.,et al.,Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L.Plant Physiol,1997.115(3):p.1211-1219.
    172.Shi,H.,et al.,The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter.PNAS,2000.97:p.6896-6901.
    173.Shi,H.,et al.,Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis Nat Biotech,2003.21:p.81-85.
    174.Shi,H.,F.Quintero,and J.Pardo,The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants.The Plant Cell,2002.14:p.465-477.
    175.Shi,H.,et al.,The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance.The Plant Cell,2002.14(3):p.575-588.
    176.Shmer-Ilan,A.,G.P.Jones,and L.G.Paleg,In vitro Thermal and Salt Stability of Pyruvate Kinase Are Increased by Proline Analogues and Trigonelline.Australian J.of Plant Physiology 1991.18:p.279-286
    177.Shone,M.G.T.,D.T.Clarkson,and J.Sanderson,The absorption and translocation of sodium by maize seedlings Planta,1969.86(4):p.301-314.
    178.Shonoa,M.,et al.,Molecular cloning of Na+-ATPase cDNA from a marine alga,Heterosigma akashiwo Biochimica et Biophysica Acta(BBA)-Biomernbranes,2001.1511(1):p.193-199.
    179.Singla-Pareek,S.L.,M.K.Reddy,and S.K.Sopory,Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance.PNAS,2003.100(25):p.14672-14677.
    180.Snowden,K.C.,K.D.Richards,and R.C.Gardner,Aluminum-Induced Genes(Induction by Toxic Metals,Low Calcium,and Wounding and Pattern of Expression in Root Tips.Plant Phy,1995.107(2):p,341-348.
    181.Sottosanto,J.B.,Y.Saranga,and E.Blumwald,Impact of AtNHX1,a vacuolar Na~+/H~-antiporter,upon gene expression during short-and long-term salt stress in Arabidopsis thaliana.BMC Plant Biology,2007.7:p.18.
    182.Su,H.,et al.,Expression of the cation transporter McHKT1 in a halophyte Plant Molecular Biology,2003.52(5):p.967-980.
    183.Sugino,M.,et al.,Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants.Plant sci 1999.146:p.81-88.
    184.Sunarpi,H.T.,et al.,Enhanced salt tolerance mediated by A tHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells.The Plant Journal,2005.44(6):p.928-938.
    185.Sunkar,R.and D.Barrels,Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance.Plant J.,2003.35(4):p.452-464.
    186.Sunkar,R.,A.Kapoor,and J.-K.Zhu,Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of miR398 and Important for Oxidative Stress Tolerance[W].The Plant Cell,2006.18:p.2051-2065.
    187.Sunkar,R.and J.-K.Zhu,Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis The Plant Cell,2004.16(8):p.2001-2019.
    188.Takahashi,K.,et al.,Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture.Plant and Cell Physiology,2001.42:p.214-222.
    189.Tal,M.and D.Imber,Abnormal Stomatal Behavior and Hormonal Imbalance in Flacca,a Wilty Mutant of Tomato:Ⅲ.Hormonal Effects on the Water Status in the Plant.Plant Phy 1971.47(6):p.849-850.
    190.Talke,I.N.,et al.,CNGCs:prime targets of plant cyclic nucleotide signalling? Trends in Plant Science,2003.8(6):p.286-293.
    191.Tamura,K.,et al.,Differential induction of protein kinase C isoforms at the cardiac hypertrophy stage and congestive heart failure stage in Dahl salt-sensitive rats.Hypertens Res,2003.26(5):p,421-426.
    192.Tena,G.,et al.,Plant mitogen-activated protein kinase signaling cascades.Plant bio,2001.4:p.392-400
    193.Tester,M.,Root Physiology.Partitioning of nutrient transport processes in roots Journal of Experimental Botany,2001.52(1):p.445-457.
    194.Tester,M.and R.Davenport,Na+ Tolerance and Na+ Transport in Higher Plants.Annals of Botany, 2003.91(5):p.503-527.
    195.Thomashow,M.F.,Plant Cold Acclimation:Freezing Tolerance Genes and Regulatory Mechanisms.Annual Review of Plant Physiology and Plant Molecular Biology,1999.50:p.571-599.
    196.Tran,L.S.P.,et al.,Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1promoter The Plant Cell,2004.16:p.2481-2498.
    197.Trewavas,A.,Le Calcium,C'est la Vie:Calcium Makes Waves.Plant Physiology,1999.120:p.1-6.
    198.Trewavas,A.and R.Malho,Signal Perception and Transduction:The Origin of the Phenotype.The Plant Cell,1997.9(7):p.1181-1195.
    199.Tuteja,N.,Mechanisms of high salinity tolerance in plants.Methods in Enzy,2007.428:p.420-436.
    200.Tyerman,S.D.,C.M.Niemietz,and H.Bramley.Plant aquaporins:multifunctional water and solute channels with expanding roles Plant,Cell & Environment,2002.25(2):p.173-194
    201.Uhde-Stone,C.,C.P.Vance,and D.L.Allan,Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource.New Phytologist,2003.157(3):p.423-447
    202.Uozumi,N.,et al.,The Arabidopsis HKT1 gene homolog mediates inward Na^+ currents in Xenopus laevis oocytes and Na^+ uptake in Saccharomyces cerevisiae.Plant Physiol,2000.122:p.1249-1259.
    203.Uranoa,K.,et al.,Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance.Biochemical and Biophysical Research Communications 2004.313(2):p.369-375.
    204.Urao,T.,et al.,Two genes that encode Ca~2-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana.Molecular and General Genetics,1994.244(4):p.331-340.
    205.Uraoa,T.,et al.,A Transmembrane Hybrid-Type Histidine Kinase in Arabidopsis Functions as an Osmosensor.The Plant Cell,1999.11 p.1743-1754.
    206.Vogel,G.,et al.,Trehalose-6-phosphate phosphatases from Arabidopsis thaliana:identification by functional complementation of the yeast tps2 mutant.The Plant Journal,1998.13(5):p.673-683.
    207.Walia,H.,et al.,Comparative transcriptional profiling of two Rice(Oryza Sativa L.)genotypes under short term salinity stress during vegetative growth stage.Plant Physiology Preview,2005.139:p.822-835
    208.Walia,H.,et al.,Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage.Plant Mol Biol,2007,63:p,609-623.
    209.Wang,F.-f.,et al.,Subcellular localization of a nickel ion transport protein in Arabidopsis thaliana.Journal of Shanghai Normal University(Natural Sciences),2007.36(2):p.71-76.
    210.Wang,H.,et al.,Tissue microarrays:applications in neuropathology research,diagnosis,and education.Brain Pathol,2002.12(1):p.95-107.
    211.Wang,J.,et al.,Transfer of small chromosome fragments of Agropyron elongatum to wheat chromosome via asymmetric somatic hybridization.Science in China Ser.C,2004.47(5):p.434-441.
    212.Wang,M.-C.,et al.,Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum.Proteomics,2008.8:p.1470-1489.
    213.Wang,S.,J.Zhang,and TJ.Flowers,Low-affinity Na+ uptake in the halophyte Suaeda maritima.Plant Physiol,2007,145(2):p.559-571.
    214.Wang,X.,et al.,Networking of phospholipases in plant signal transduction.Physiologia Plantarum,2002.115(3):p.331-335.
    215.Wasaki,J.,et al.,Expression of the OsPI1 gene,cloned from rice roots using cDNA microarray,rapidly responds to phosphorus status.New Phytologist,2003.158(2):p.239-248.
    216.Wegner,L.H.and K.Raschke,Ion channels in the xylem parenchyma of barley roots Plant Physiol. 1994.105(3):p.799-813.
    217.White,P.J.,The molecular mechanism of sodium influx to root cells Trends in Plant Science,1999.4(7):p.245-246.
    218.Wilson,C.and M.C.Shannon,Salt-induced Na+/H+antiport in root plasma membrane of a glycophytic and halophytic species of tomato.Plant science,1995.107:p.147-157
    219.Winter,E.,Salt Tolerance of Trifolium alexandrinum L.Ⅱ.Ion Balance in Relation to Its Salt Tolerance.Australian Journal of Plant Physiology 1982.9(2):p.227-237.
    220.Wisman,E.and J.Ohlrogge,Arabidopsis Microarray Service Facilities.Plant Physiology,2000.124:p.1468-1471.
    221.Wu,C.-A.,et al.,The Cotton GhNHX1 Gene Encoding a Novel Putative Tonoplast Na+/H+ Antiporter Plays an Important Role in Salt Stress Plant and Cell Physiology,2004.45:p.600-607.
    222.Wu,J.,et al.,KOBAS server:a web-based platform for automated annotation and pathway identification.Nucleic Acids Research,2006.34:p.720-724.
    223.Wu,N.and M.Luo,Structure and function of Rat genes in higher plants.Progress In Natural Science,2003.13(10):p.721-729.
    224.Xia,G.,et al.,Asymmetric somatic hybridization between wheat(Triticum aestivum L.)and Agropyron elongatum(Host)Nevishi.Theor Appl Genet,2003.107:p.299-305.
    225.Xiang,F.,et al.,Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica.Genome,2004.47:p.680-688.
    226.Xie,F.L.,et al.,Computational identification of novel microRNAs and targets in Brassica napus FEBS letters,2007.581(7):p.1464-1474.
    227.Xiong,L.,et al.,Modulation of Abscisic Acid Signal Transduction and Biosynthesis by an Sin-like Protein in Arabidopsis Developmental Cell 2001.1(6):p.771-781.
    228.Xiong,L.,H.Lee,and M.Ishitani,Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis.J Biol Chem,2002.277:p.8588-8596.
    229.Xiong,L.,K.S.Schumaker,and J.-K.Zhu,Cell Signaling during Cold,Drought,and Salt Stress.The Plant Cell,2002:p.165-183.
    230.Xu,D.,et al.,Expression of a late embryogenesis abundant protein gene,HVA1,from barley confers tolerance to water deficit and salt stress in transgenic rice.Plant Physiol,1996.110:p.249-257.
    231.Yamada,A.,et al.,Expression of Mangrove Allene Oxide Cyclase Enhances Salt Tolerance in Escherichia coli,Yeast,and Tobacco Cells Plant and Cell Physiology,2002.43:p.903-910.
    232.Yamada,S.,et al.,A family of transcripts encoding water channel proteins:tissue-specific expression in the common ice plant.The Plant Cell,1995.7:p.1129-1142.
    233.Yamaguchi-Shinozaki,K.and K.Shinozaki,A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature or high-salt stress.The Plant Cell 1994.6:p,251-264
    234.Yao,Y.,et al.,Cloning and characterization of microRNAs from wheat(Triticum aestivum L.).Genome Biology,2007.8(6):p.96.
    235.Yeo,A.R.,T.J.Flowers,and P.F.Troke,The Mechanism of Salt Tolerance in Halophytes.Annual Review of Plant Physiology,1977.28:p.89-121.
    236.Yeo,A.R.,et al.,Short-and Long-Term Effects of Salinity on Leaf Growth in Rice(Oryza sativa L.)Journal of Experimental Botany,1991.42(7):p.881-889.
    237.Yokoi,S.,et al.,Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response.The Plant Journal,2002.30(5):p.529-539.
    238.Yoshimura,K.,et al.,Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol.The Plant Journal,2004.37(1):p.21-33.
    239.Zhang,H.X.and E.Blumwald,Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.Nat Biotech,2001 19:p.765-768.
    240.Zhang,J.Z.,R.A.Creelman,and J.-K,Zhu,From Laboratory to Field.Using Information from Arabidopsis to Engineer Salt,Cold,and Drought Tolerance in Crops.Plant Phy,2004.135 p.1-7,
    241.Zhao,S.,S.Lei,and G.Xia,Research Progress on the Identification of Salt-tolerance Related Genes and Molecular Mechanism on Salt Tolerance in Plants.Molecular Plant Breeding,2006.4(1):p.15-22.
    242.Zhou,X.and Z.Su,EasyGO:Gene Ontology-based annotation and functional enrichment analysis tool for agronomical species.BMC Genomics,2007.8:p.246-248.
    243.Zhu,J.,Salt and drought stress signal transduction in plants.Annu Rev Plant Biol,2002.53:p.247-273.
    244.Zhu,J.,Cell signaling under salt.water and cold stresses.Curr Opin Plant Biol,2001.4(5):p.401-406.
    245.Zhu,J.,Regulation of ion homeostasis under salt stress.Curr Opin Plant Biol,2003.6:p.441-445.
    246.Zhu,J.,J.Liu,and L.Xiong,Genetic analysis of salt tolerance in arabidopsis.The Plant Cell,1998.10(7):p.1181-1191.
    247.Zorb,C.,et al.,Molecular characterization of Na+/H+ antiporters(ZmNHX)of maize(Zea mays L.)and their expression under salt stress J Plant Physiol,2005 162:p.55-66.
    248.单雷,et al.,小麦与高冰草体细胞杂种耐盐新品系的盐胁迫应答cDNA差异表达分析.高技术通讯,2004.14:p.29-33.
    250.黄骥,张红生,TFⅢA型锌指蛋白及在提高植物耐逆性中的作用.遗传,2007.29(8):p.915-922
    251.李荣华,et al.,用基因芯片技术分析铝胁迫下小麦的基因表达谱 生物技术通讯 2007.4:p.581-586.
    252.粱洁,et al.,Ca(NO3)_2对NaCl胁迫下木麻黄扦插苗生理特征的调控 生态学报,2004.24(5):p.1073-1077.
    253.刘俊君,黄绍兴,高度耐盐双价转基因烟草的研究.生物工程学报,1995b.11(4):p.381-384.
    254.刘俊君,黄绍兴,转基因烟草的甘露醇合成和耐盐性.生物工程学报,1996.12(2):p.206-210.
    255.刘俊君,彭学贤,大肠杆菌mtlD基因和gutD基因的克隆,全序列测定和高效表达 生物工程学报,1995a.11(2):p.157-161.
    256.吕慧颖,et al.,番杏Na+/H+逆向转运蛋白基因的克隆及特性分析.高技术通讯.2004.14:p.26-31.
    257.邱全胜,渗透胁迫对小麦根质膜膜脂物理状态的影响.植物学报,1999.41(2):p.161-165.
    258.邵群,et al.,高亲和K^+转运载体(HKT)与植物抗盐性.植物生理学通讯,2006.42(2):p.175-181.
    259.王国泽,茅林春,潘忻,植物磷脂酵D对环境胁迫的响应和传导信号的功能.西北农林科技大学学报,2005.33(2):p.147-154。
    260.王洪春,植物抗性生理.植物生理学通讯,1981.6:p.72-81.
    261.王希庆,陈柏君,印莉萍,植物中的MYB转录因子 生物技术通报,2003.2:p.22-25.
    262.夏光敏,et al.,小麦与高冰草属间体细胞杂交获可育杂种植株.植物学报,1999.41(4):p.349-352.
    263.张乃华,高辉远,邹琦,Ca~(2+)缓解NaCl胁迫引起的玉米光合能力下降的作用.植物生态学报2005(2):p.324-330.
    264.赵宝存,et al.,利用基因芯片研究小麦耐盐突变体盐胁迫条件下基因的表达图谱.中国农业科学,2007.40(10):p.2355-2360.
    265.赵可夫,侯旭光,非盐生植物棉花和盐生植物滨藜的盐害机理.山东大学学报,1999.34(2):p.230-235.
    266.朱新广,张其德,NaCl对光合作用影响的研究进展.植物学通报,1999.16(4):p.332-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700