转OsbHLH1或AhCMO基因水稻的性状鉴定与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫、低温胁迫是水稻生产中常见的非生物逆境。为了选育耐低温、耐盐的水稻新品种,提高水稻抗逆性,本研究对粳稻恢复系淮C17为受体的转OsbHLH1+Bar基因和转AhCMO+Bar基因的T1代及其后代进行了研究,获得如下结果:
     (1)使用相同方法分别对转OsbHLH1+Bar基因和转AhCMO+Bar基因的植株进行草铵膦筛选。再生植株T1代的叶片用1g/L的草铵膦涂布,结果表明再生植株具有抗草铵膦的能力,说明Bar基因在水稻中已经表达。转基因T2代和T3代植株在三叶一心时期喷施0.75g/L的草铵膦,结果表明Bar基因在T2代和T3代均正常表达。转OsbHLH1+Bar基因T3代的少数株系中出现全活的,说明已经筛选出了Bar基因纯合株系。
     (2)分别对转OsbHLH1+Bar基因和转AhCMO+Bar基因植株进行PCR和Southern检测,结果表明外源基因已经整合到水稻基因组中。分别对转OsbHLH1+Bar基因和转AhCMO+Bar基因株系T3代进行RT-PCR和实时荧光定量PCR检测,结果表明外源基因已经在水稻中表达,同一外源基因在不同株系之间表达量不同,并且转OsbHLH1+Bar基因植株的表达量远高于非转基因对照。
     (3)分别对T2代转OsbHLH1+Bar基因和转AhCMO+Bar基因水稻部分株系的农艺性状进行考察。转OsbHLH1+Bar基因株系考察结果如下:7号株系的株高显著比对照矮;转基因株系的穗长与对照无显著差异;6、7、9、11号株系的千粒重显著比对照重;6、7号株系的结实率显著比对照高;6、9号株系的理论产量显著比对照高。转AhCMO+Bar基因株系考察结果如下:转基因株系的株高显著比对照矮;转基因株系的穗长与对照无显著差异;转基因株系的千粒重显著比对照重;2、6、7号株系的结实率显著比对照低;2、5、6、7号株系的理论产量显著比对照低,但10号株系的理论产量显著比对照高。综上所述,外源基因的导入对水稻的农艺性状产生了重要影响。
     (4)以2°C/6 d为低温处理条件,对转OsbHLH1+Bar基因水稻T3代进行芽期耐低温的鉴定,幼芽恢复生长6d后,转基因水稻的死苗率明显小于非转基因对照。结果证明OsbHLH1基因在水稻中过表达提高了水稻芽期的耐低温能力。对转OsbHLH1+Bar基因水稻T3代苗期进行低温胁迫试验,结果表明OsbHLH1基因在水稻中过表达显著提高了水稻苗期的耐低温能力。
     (5)以1.4%、1.6%、1.8% NaCl对转AhCMO+Bar基因水稻进行盐胁迫发芽试验,统计成苗率。结果表明转基因水稻的成苗率明显高于非转基因对照,说明转AhCMO基因能提高水稻芽期耐盐能力。
Salt stress and low temperature are common abiotic stresses in rice production. In order to breed new rice varieties with salt and low temperature tolerance and improve theeir stress tolerance in rice, the characters of transgenic sinica (japonica) restorer line Huai C17 with Bar-OsbHLH1 or Bar-AhCMO gene and their progenies were studied. The main results were as follows:
     (1) The regenerated plants of transgenic T1 generation were smeared with 1 g/L of glufosinate on the leaves and the results showed that the regenerated plants were resistant to glufosinate, which indicated that the Bar gene have expressed in rice. T2 and T3 generation of transgenic plants at three complete leaves plus one young leaf stage were sprayed 0.75 g/L of glufosinate and the results showed that the Bar gene expressed normally also. The lines homozygous in Bar gene were selected out because all individuals of these lines with Bar-OsbHLH1gene in T3 generation were alive after sprayed 0.75 g/L of glufosinate.
     (2) Transgenic plants were detected by PCR and Southern blotting and the results showed that the foreign genes had integrated into the rice genome. T3 generation of transgenic lines were detected by RT-PCR and real-time fluorescence quantitative PCR, the results showed that the foreign genes (OsbHLHl and AhCMO) had expressed in rice. But there were different expressions in the different lines, and the expressions of OsbHLHl gene in transgenic plants were significantly higher than these of non-transgenic control.
     (3) The agronomic traits of the transgenic lines in T2 generation were investigated, the results showed that there were significant differences between transgenic lines and control in plant height, panicle length,1000-grain weight, seed setting and theoretical yield. The results of OsbHLH1-transgenic lines were as followes:the plant height of the 7th transgenic line was shorter than that of non-transgenic control; there was no significant difference in panicle length between transgenic lines and control; the 1000-grain weight of the 6th,7th,9th and 11th transgenic line were higher than these of control; the seed setting of the 6th and 7th line was higher than that of non-transgenic control; the theoretical yield of the 6th,9th and 11th transgenic line were higher than these of control. The results of AhCMO-transgenic lines were as followes:the plant height of transgenic lines were shorter than those of non-transgenic control; there was no significant difference in panicle length between transgenic lines and control; the 1000-grain weight of the transgenic lines were higher than these of control; the seed setting of the 2nd,6th and 7th line were lower than those of non-transgenic control; the theoretical yield of the 2nd,5th,6th and 7th transgenic line were lower than those of control, but the theoretical yield of the 10th transgenic line was higher than that of control. Overall, the agronomic traits of transgenic lines were greatly influenced by foreign genes or transformation.
     (4) After stressed in low temperature (2℃for 6 d) and recovered growth for 6 days at germination stage, the mortality rates of T3 generation of OsbHLH1-transgenic lines were significantly lower than those of non-transgenic control. After stressed in low temperature (8-10℃for 7 d) and recovered growth for 3 days at seedling stage, the result showed that over-expression of OsbHLH1 gene could be able to enhance the cold tolerance of rice.
     (5) After stressed in 1.4%,1.6%,1.8% NaCl at germination stage for 20 days, the seedling rate of AhCMO-transgenic lines were significantly higher than those of non-transgenic control which indicated that AhCMO gene could improve salt tolerance in rice at seedling stage.
引文
[1]Dyer W E, Hess F D, Holt J S, Duke S O. Potential benefits and risks of herbicide-resistant crops produced by Biotechnology [J]. Horticultural Reviews, 1993,15:367
    [2]Thompson C J, Mowa N R, Tizard R, Crameri R, Davies J E, Lauwereys M, Botterman J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus [J]. The European Molecular Biology Organization Journal,1987,6(9):2519~2523
    [3]肖国樱,熊绪让,肖喜才,谭立平,唐俐,邓晓湘.转基因抗除草剂两系杂交早稻高产栽培技术研究[J].湖南农业科学,2005,6:32-34,42
    [4]Wohlleben W, Amold W, Broer I, Hillemann D, Strauch E, Puhler A. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tu494 and its expression in Nicotiana tabacum [J]. Gene, 1988,70(1):25~37
    [5]Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, Thompson C J. The bialaphos biosynthetic genes of Streptomyces hygroscopicus:Molecular cloning and characterization of the gene cluster [J]. Molecular and General Genetics, 1986,205(1):42~50
    [6]黎垣庆,刘刚,严文贵,许秋生.转bar基因水稻除草剂抗性遗传研究及其应用[J].杂交水稻,2000,15(1):40~43
    [7]Becker D, Brettschneider R, LOrz H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue [J]. The Plant Journal,1994,5(2): 299~307
    [8]张中林,山松,陈曦,刘春英,钱凯先,沈桂芳.除草剂抗性基因Bar导入烟草叶绿体[J].作物学报,1999,25(5):574~578
    [9]Padegimas L, Shulga O A, Skriabin K G. Creation of transgenic plants Nicotiana tabacum and Solanum tuberosum, resistant to the herbicide phosphinothricin [J]. Molekuliarnaia biologiia,1994,28(2):437~443
    [10]许新萍,卫剑平,范云六,李宝健.基因枪法转化籼稻胚性愈伤组织获得可 育的转基因植株[J].遗传学报,1999,26(3):219~227
    [11]Cooley J, Ford T, Christou P. Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration [J]. Theoretical and Applied Genetics,1995,90:97~104
    [12]Vasil V, Castillo A, Fromm M E, Vasil I K. Herbicide-resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryonic callus [J]. Biotechnology,1992,10:667~674
    [13]Rathore K S, Chowdhury V K, Hodges T K. Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts [J]. Plant Molecular Biology,1993,21:871~884
    [14]Laursen C M, Krzyzek R A, Flick C E, Anderson P C, Spencer T M. Production of fertile transgenic maize by electroporation of suspension culture cells [J]. Plant Molecular Biology,1994,24(1):51~61
    [15]Block M D, Brouwer D D, Tenning P. Transformation of brassica napus and brassica oleracea using agrobacterium tumefaciens and the expression of the bar and neo genes in the t ransgenic plants [J]. Plant Physiology,1989,91(2): 694~701
    [16]Xu D P, Xue Q Z, David M E, Yogesh M, Hilder V A, Wu R. Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice insect pests[J]. Molecular Breeding,1996,2: 167~173
    [17]罗伯祥,邓力华,陈芬,陈受宜,李文彬,肖国樱OsbHLH1基因过表达载体构建及转化水稻研究[J].生物技术通报,2009,7:76~81
    [18]肖国樱.作物对除草剂的抗性及其在杂种优势利用中应用策略的探讨[J].杂交水稻,1997,12(5):1~3
    [19]章善庆,童汉华,薛锐,华志华,汪晓玲,黄大年,谢小波.利用bar基因导入恢复系提高杂交稻纯度的尝试[J].中国农业科学,1998,31(6):33~37
    [20]侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制[J].植物生理学通讯,1999,35(1):1~7
    [21]Rathinasabapathi B, MeCue K F, Gage D A, Andrew D. Hanson A D. Metabolic engineering of glycine betaine synthesis:plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance [J]. Planta,1994,193:155~162
    [22]梁峥,马德钦,汤岚,洪益国,骆爱玲,戴秀玉.菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J].生物工程学报,1997,13(3):236-240
    [23]刘凤华,郭岩,谷冬梅,肖岗,陈正华,陈受宜.转甜菜碱脱氢酶基因植物的耐盐性研究[J].遗传学报,1997,24(1):54~58
    [24]郭北海,张艳敏,李洪杰,杜立群,李银心,张劲松,陈受宜,朱至清.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J].植物学报,2000,42(3):279~283
    [25]Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1993,44:357~384
    [26]Rathinasabapathi B, Burnet M, Russel B L, Gage D A, Liao P C, Nye G J, Scott P, Golbeck J H, Hanson A D. Choline monooxygenase, an unusual ironsulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning [J]. Proceedings National Academy Sciences USA,1997,94(7):3454~3458
    [27]Renaud B, Weijgle P. Evidence for a ferredoxin-dependent choline monooxygenase from protoplasts [J]. Biotechnology,1988,8:736~740
    [28]Russell B L, Rathinasabapathi B, Hanson A D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth [J]. Plant Physiology, 1998,116:859~865
    [29]Meng Y L, Wang Y M, Zhang B, Nii N. Isolation of a choline monoxygenase cDNA clone from Amaranthus tricolor and its expression under stress conditions [J]. Cell Research,2001,11(3):187~193
    [30]Shen Y G, Du B X, Zhang W K, Jin-Song Zhang J S, Shou-Yi Chen S Y. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco [J]. Theoretical and Applied Genetics,2002, 105(6-7):815~821
    [31]Wang L W, Showalter A M. Showalter. Cloning and salt-indueed, ABA-independent expression of choline mono-oxygenase in Atriplex prostrate [J]. Physiologia Plantarum,2004,3(120):405~412
    [32]沈义国,杜保兴,张劲松,陈受宜.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析[J].生物工程学报,2001,17(1):1~6
    [33]Nakamura T, Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T. Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes [J] The Plant Journal,1997,11(5):1115~1120
    [34]张全琪,朱家红,倪燕妹,张治礼.植物bHLH转录因子的结构特点及其生物学功能[J].热带亚热带植物学报,2011,19(1):84~90
    [35]王玉军.植物耐逆相关基因的克隆与功能研究[D].青岛:中国海洋大学博士学位论文,2003
    [36]Letunic I, Goodstadt L, Dickens N J, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley R R, Ponting C P, Bork P. Recent improvements to the SMART domainbased sequence annotation resource [J]. Nucleic Acide Research.2002, 30(1):242~244
    [37]王玉军,郝宇钧,戴继勋,杜保兴,张劲松,陈受宜.OsbHLHl基因在拟南芥中表达及耐低温能力的研究[J].高技术通讯,2004,4:35~38
    [38]Munns R, Termaat A. Whole-plant responses to salinity [J]. Australian Journal of Plant Physiology,1986,13(1):143~160
    [39]高继平,林鸿宣.水稻耐盐机理研究的重要进展——耐盐数量性状基因SKC1的研究[J],生命科学,2005,17(6):563~565
    [40]钱前.水稻基因设计育种[M].北京:科学出版社,2007,313~325
    [41]Kumar V, Bellinder R, Gupta R, Malik R, Brainard D. Role of herbicide-resistant rice in promoting resource conservation technologies in rice-wheat cropping systems of India [J]. Crop Protection,2008,27(3/5):290~301
    [42]罗伯祥,肖自友,邓力华,陈芬,陈受宜,李文彬,肖国樱.转山菠菜胆碱单加氧酶基因(AhCMO)水稻创制及其耐盐性研究[J].生命科学研究,2010,14(3):219~225,245
    [43]王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社,2002,742~743,750~751
    [44]李钱峰,蒋美艳,于恒秀,辛世文,顾铭洪,刘巧泉.水稻胚乳RNA定量RT-PCR分析中参照基因选择[J].扬州大学学报(农业与生命科学版),2008,29(2):61~66
    [45]乔永利,张媛媛,安永平,张艳蕊,曹桂兰,韩龙植.粳稻芽期耐冷性鉴定方法研究[J].植物遗传资源学报,2004,5(3):290~294
    [46]陈能刚,余显权,赵德刚,向阳,高建强,王安贵.转ipt基因水稻植株耐冷性研究[J].西南农业学报,2006,19(2):255~259.
    [47]向殿军,张瑜,殷奎德.农杆菌介导的转ICE1基因提高水稻的耐寒性[J].中国水稻科学,2007,21(5):482~486.
    [48]姜孝成,胡一鸿,刘辉,周华光,罗慧君,陈良碧.苗期低温对水稻孕穗开花期耐寒性表达的后效应研究[J].湖南师范大学学报自然科学版,2003,26(3):56~58
    [49]应奇才,王慧中.松树根特异性启动子驱动的转CMO/BADH基因水稻的耐盐性研究[J].杭州师范学院学报(自然科学版),2006,5(1):46~49
    [50]朱玉庆.转AhCMO基因棉花苗期对干旱、盐胁迫的生理反应[D].山东:山东农业大学,2008
    [51]肖国樱,唐俐,袁定阳,邓晓湘,袁隆平,辛世文.转Bar基因抗除草剂两系杂交早稻恢复系Bar68-1的培育研究[J].杂交水稻,2007,22(6):57~61
    [52]JIANG Xian-bin, XIAO Guo-ying. Detection of unintended effects in genetically modified herbicide-tolerant (GMHT) rice in comparison with nontarget phenotypic characteristics [J]. African Journal of Agricultural Research,2010, 5(10):1082-1088

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700