高层钢筋混凝土结构非线性动力时程分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑结构在罕遇地震作用下的动力响应长期以来一直是结构抗震研究的重点课题之一,但由于该问题影响因素较多,到目前为止该问题并没有得到很好解决。本文对建筑结构非线性动力时程分析的基本理论和数值方法展开研究,主要研究内容及研究成果如下:
     1在总结现有混凝土单轴滞回本构模型的基础上,考虑了地震作用下混凝土材料应力路径的复杂性,建立了一种能够考虑复杂应力路径及应力历史影响的混凝土单轴滞回本构模型。该模型分为骨架曲线和滞回规则两部分:对于受压骨架曲线,分别采用曲线型Mander公式和折线型Mander公式两种函数来描述;对于受拉骨架曲线采用两折线模型,对于受压区滞回曲线,采用曲线型Mander模型和直线型两种函数来描述,对于受拉区滞回曲线,采用朱伯龙模型公式和直线型两种函数来描述。从而使得该模型能够随着骨架曲线和滞回规则的调整,退化成为不同的模型,适用于不同计算精度和计算效率要求的建筑结构非线性时程反应分析。同时,该模型能够考虑箍筋约束效应的影响,需要标定的参数较少,能够较好的描述混凝土在反复荷载作用下的单轴非线性力学行为。
     在总结已有钢筋本构模型优、缺点和适用范围的基础上,本文选用了能考虑Baushinger效应的双线性强化单轴滞回本构模型作为建筑结构非线性时程分析所采用的钢筋本构模型。
     2以较有影响力的修正压场本构模型和应变强化塑性本构模型为基础,并加以改进,结合本文建立的混凝土单轴滞回本构模型,建立了两种适合模拟剪力墙和楼板的混凝土双轴滞回本构模型。这两种本构模型的优点在于模型参数较少且易于标定,能够在一定信置度水平上预测混凝土材料在复杂应力条件下的非线性力学行为,在一定的计算精度前提下可以满足工程使用要求。
     3对工程中常见的短肢剪力墙和细长连梁有限元计算模型中现有单元存在的计算精度较差的问题的原因进行了分析,提出了解决问题的具体对策。根据该对策,本文借鉴理性有限元的思想,结合解析试函数方法,利用广义协调元理论,构造了直接建立在直角坐标系内广义坐标型梁式壳元。该单元位移试函数的基函数采用弹性力学平面问题解析解并考虑了短肢剪力墙和连梁的变形模式,所以适合用来作为短肢剪力墙和连梁的单元模型。采用该方法构造的梁式壳元具备高阶位移场描述能力,列式简单、容易实现,当应用到非线性分析中时,能有效的预测短肢剪力墙和细长连梁的剪切破坏,符合高性能壳元的要求。算例表明:梁式壳元的抗畸变性能较好、计算精度较高,该单元的构造较好的解决了短肢剪力墙和细长连梁有限元计算模型这个待解决的工程问题。
     4采用本文建立的混凝土和钢筋本构模型,分别根据Allman膜元构造方法、龙驭球教授创建的厚薄通用板单元构造理论和本文构造的梁式壳元,建立了适用于不同类型钢筋混凝土剪力墙非线性有限元分析的整体式钢筋混凝土壳元微观模型。在整体式壳元模型中:采用纤维梁元模拟剪力墙中边缘构件;对一般剪力墙采用钢筋混凝土Allman膜元模拟剪力墙墙板的面内刚度,采用厚薄通用板单元模拟剪力墙墙板的面外刚度;对于短肢剪力墙和细长连梁,采用梁式壳元模拟其刚度。由于整体式壳元模型直接基于材料本构模型,所以能够给出剪力墙中混凝土及钢筋的整个非线性发展全过程。
     为验证该模型,将该模型的分析结果和两片钢筋混凝土剪力墙试件的试验结果进行对比。结果表明:整体式壳元模型能够对弯、剪、压共同作用下钢筋混凝土剪力墙的极限承载力和非线性弯曲、剪切耦合变形进行较为准确的预测,可为工程应用提供合适的数值解。与分层壳元模型、实体单元模型等微观模型相比,该模型自由度少,计算效率高,总计算量较小,在当前的计算机硬件资源的条件下适合作为建筑结构非线性动力时程分析的钢筋混凝土剪力墙单元模型。
     5建立了建筑结构非线性地震反应分析的三维空间模型,在空间模型中采用纤维梁元来描述梁、柱、支撑等构件的非线性力学行为,采用整体式壳元模型描述钢筋混凝土剪力墙的非线性力学行为。空间模型能够考虑多维地震动作用下建筑结构的多维地震反应,对结构简化假定较少,计算精度和计算效率都很高。
     6从算法稳定性、精度、效率和健壮性等性能指标出发,对各种不同的结构动力方程时间积分方法进行了分析,对显式算法、隐式算法的基本思想和特点及在建筑结构非线性动力分析中可能出现的问题进行了对比。在此基础上,提出了一个适合建筑结构在地震动作用下非线性动力响应求解的综合方案。该方案包括重力荷载作用下考虑施工模拟的建筑结构初始应力求解,地震动作用下建筑结构非线性动力响应的隐式求解(广义α法)和显式求解(中心差分法)。
     以上述模型及理论为基础,编制了建筑结构在地震动作用下非线性动力时程分析程序。通过不同算例对上述模型及算法的适用性和有效性给出了相应的定性结论,可供工程设计人员参考。
     7针对精细时程积分法对内存资源要求高、计算量较大的问题,将该算法加以改进,以该算法为基础建立了一种新的计算格式,通过矩阵分块算法和改变计算次序,有效的降低了对内存的需求,提高了计算效率。数值算例表明该改进方法的是有效的、适用的。
The dynamic response of building structures subjected to rare severe earthquake loading has been one of the structural engineering's important research topics for many years. Since many factors should be considered, there is still no perfect solution strategy to this subject. In this dissertation, the fundamental theories and numerical methods for the nonlinear dynamic analysis of building structures are discussed, and some new methods are successfully developed. The main content and contributions are listed as follows:
     1 Summarized on the existing models developed by other researchers, a new uniaxial hysteresis constitutive model for concrete which is able to consider the influence of complicated stress path and stress history, is proposed. This model consists of two parts: the skeleton curve and the hysteresis rule. The skeleton curve in compression is described by the curvilinear and the broken-line Mander formulae respectively, while the skeleton curve in tension is described by the bi-linear model. The hysteresis curve in compression is described by the linear and curvilinear Mander formulae, while the hysteresis curve in tension is described by the Zhu Bolong's model and the linear models. The new model can be adjusted by the variation of the skeleton curve and the hysteresis rule and even degenerated into different models, to accommodate the various nonlinear dynamic analyses of building structures with different requirements on computational precision and efficiency. Furthermore, this new model can reflect the confinement effects of the hoop reinforcement; fewer parameters required to be calibrated; and can well describe the uniaxial nonlinear behaviors of the concrete under cyclic loading.
     After studying the existing constitutive models of the steel bar, the bilinear hardening model with the Baushinger effect is selected for the nonlinear dynamic analyses of building structures.
     2 By combination of the proposed uniaxial constitutive model of concrete, two biaxial hysteretic constitutive models of concrete suitable for simulating the shear-walls and the slabs are established based on the well-known MCFT model and the strain hardening plastic model. These two new models contain fewer easily calibrated parameters only, and can predict the nonlinear behaviors of concrete materials under complicated stress conditions based on the engineering's computational precision requirements.
     3 The low precision problem of using the traditional shell elements to compute the short-leg shear wall and the slender coupling beam like structures is discussed. Then, a countermeasure is proposed as follows. According to the essence of rational finite element method, a new generalized coordinate beam-shell element is constructed by the generalized conforming theory and the analytical trial function method. All formulations are established in the Cartesian coordinate system directly. Since the analytical solutions of the plane stress problem are taken as the basis functions of the element trial functions for the displacement fields, and the deformation modes of the short-leg shear walls and the slender coupling beams are fully considered, the new element is quite suitable for related finite element analyses. The formulations of the new element are relatively simple, and possess the capacity of describing higher-order displacement fields. When the element is used in a nonlinear analysis, it can effectively predict the shear failure of the short-leg shear wall and the slender coupling beam. Numerical examples show that the new beam-shell element exhibits good performance and is insensitive to mesh distortion. It provides an effective tool for engineering computations of the short-leg shear wall and the slender coupling beam.
     4 Using the constitutive models of concrete and steel bar proposed in this dissertation, a new RC integral shell element model for nonlinear finite element analyses of various RC shear walls is developed. The new shell element is based on the combination of the ideas of the Altaian's membrane element, thin-thick plate element proposed by Prof. Long Yu-Qiu, and beam-shell element proposed in this dissertation. In the computational model of the distributed RC integral shell element, the boundary elements of the shear walls are simulated by the fiber beam element model; the reinforced concrete Allman's membrane element and the thin-thick plate element are used to simulate in-plane and out-of-plane stiffness of normal shear walls, respectively; and the short-leg shear walls and slender coupling beams are modeled by the beam-shell elements. Since the distributed RC integral shell element is directly based on material model, it can describe the whole elastic-plastic development process of the concrete and the steel bar in the shear walls.
     The new RC integral shell element model is verified by a comparison between the calculated results and the experimental data of two RC shear wall specimens. The results demonstrate that, for RC shear walls subjected to the combined loadings of bending, shear and compression, the RC integral shell element model can evaluate ultimate loading, coupling effects for nonlinear bending and shear deformations with satisfied accuracy. Compared with other microscopic models such as multi-layered shell element model and solid element model, it is obvious that the present model has the fewest degrees-of-freedom and the highest computational efficiency. It can be concluded that the present model is suitable for the RC shear walls in the time history analysis of building structures under the current computer hardware conditions.
     5 A 3-D spatial model for the nonlinear time-history analyses of the building structures subjected to earthquake loading is proposed. In this model, the beams, the columns and the braces are simulated by the fiber beam element model, while the RC shear walls are simulated by the distributed RC integral shell element model. Such a spatial model, which is imposed on fewer simplification hypotheses, not only can consider the multi-dimensional responses of building structures subjected to multi-dimensional earthquake loading, but also possesses high computational precision and efficiency.
     6 The stability, precision, efficiency and robustness of different time integration algorithms for equations of structural dynamics are discussed. A comparison of the characters and the problems which may happen in the nonlinear time-history analyses of building structures between the explicit and the implicit algorithms is also given. Then, a comprehensive solution scheme for the nonlinear dynamic response of the building structures subjected to the earthquake loading is proposed. This scheme includes the solution strategy of the initial stresses when the construction simulation of building structures under gravity load is considered, the implicit solution strategy (generalizedαmethod), and the explicit solution strategy (central difference method) for the nonlinear dynamic response of the building structures under the earthquake loading.
     Based on the above models and theories, a computer program of the nonlinear dynamic time-history analysis for the buildings structures subjected to earthquake loading is developed. The validity and availability of this program and its related algorithms are demonstrated by various numerical examples. All the results can be references by engineering designers.
     7 The traditional precise time integration algorithms usually occupy many memory resources, and their computation costs are also relatively high. In order to overcome these disadvantages, an enhanced algorithm is successfully developed. By partitioning of the matrix and exchanging computational sequence, the memory demand can be reduced effectively, and the computational efficiency is also improved. Numerical examples demonstrate the validity of the new algorithm.
引文
[1-1]GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [1-2]FEMA450,NEHRP Recommened provisions for seismic regulations for new buildings and other structures[S].Federal Emergency Management Agency,2003.
    [1-3]ATC-40,Seismic evaluation and retrofit of concrete buildings[S].,Applied Technology Council 1996.
    [1-4]李云贵,邵弘,田志昌.多层、高层建筑结构弹塑性动力、静力分析[J].建筑结构学报,2002,23(5):56-62
    [1-5]Prakash V,Powell G H,Campbell S.Drain-2DX static and dynamic analysis of inelastic plane structures National Information Service for Earthquake Engineeing[M]EERC Library,1993.
    [1-6]Li K N,Otani S.Multi-spring model for 3-dimensional analysis of RC members[J].International Journal of Structural Engineering and Mechanics,1993,1(1):17-30.
    [1-7]卢文生.高层建筑结构非线性地震反应分析的实用方法研究[D].上海:同济大学,2004
    [1-8]北京金土木软件技术有限公司.ETABS中文版使用指南[M].北京:中国建筑工业出版社,2004
    [1-9]ANSYS 11 User manual Ansys Corporation
    [1-10]Marc 2005 User's manual MSC Corporation
    [1-11]陆新征,李易,缪志伟.建筑结构在灾害作用下的高性能仿真[C].首届工程设计高性能计算技术应用论坛论文集,上海,2007.
    [1-12]ABAQUS 6.7 User's manual Dasua Corporation
    [1-13]Sam Lee Nonlinear dynamic earthquake analysis of skyscrapers[C]首届工程设计高性能计算技术应用论坛论文集,上海,2007.
    [1-14]Hallquist JO LS_DYDA theory manual 2005 Livermore Software technology Corporation
    [1-15]赵作周,方鄂华,钱稼茹.深圳市北京国际大厦弹塑性地震反应分析[C]第十四届全国高层建筑结构学术交流会论文集.1996,福州
    [1-16]陆兢.高层建筑杆系-层模型在多维地震动作用下的动力分析[D]北京:清华大学,1997
    [1-17]张铜生,陆兢.大连远洋大厦结构弹塑性[C]第十五届全国高层建筑结构学术交流会论文.1998,武汉
    [2-1]朱伯龙,董振祥.钢筋混凝土非线性分析[M].同济大学出版社,1985
    [2-2]GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002
    [2-3]朱伯龙,吴明舜,张琨联.在周期荷载作用下钢筋混凝土构件滞回曲线考虑裂面接触效应的研究[J].同济大学学报.1980,8(1):63-75.
    [2-4]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].建筑结构学报.1982.9
    [2-5]Blakeley R W G,Park R.Prestressed concrete sections with cyclic flexures[J].Journal of Structural Engineering.ASCE,STS.1973.
    [2-6]Mander J B,Priestley M J N,Park R.Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering,1988.114(8):1804-1825.
    [2-7]Yankelevsky D Z,Reinhardt H W.Uniaxial cyclic behavious of concrete in compression[J].ASCE,1987,113(2):228-240.
    [2-8]Yankelevsky D Z,Reinhardt H W.Uniaxial cyclic behavious of concrete in tention[J].ASCE,1989,115(1):169-17.
    [2-9]膝智明,邹离湘.反复荷载下钢筋混凝土构件的非线性有限元分析[J].土木工程学报.1996 29(2):19-27
    [2-10]Murat Saatcioglu,Salim R.Razvi.Strength and ductility of confined concrete[J].Journal of Structural Engineering,ASCE,1992.118(6):1590-1607.
    [2-11]Menegotto M,Pinto P.Method of Analysis for Cyclically loaded RC plane Frame including changes in geometry and non-elastic behavior of elements under combined normal force and bending.Symposium of resistance and ultimate deformatbility of structures acted on by well defined repeat loads IABSE report Vol 13Lisbon 1973.
    [2-12]Kato B.Mechanical prorerties of steel under load cycles idealizing seismic action.AICAP-CEB sympisium.Rome.1979.
    [2-13]Seckin M.Hysteretic behavior of cast-in-place exterior beam-column-slab subassemblies[D].Toronto:University of Toronto,1981.
    [2-14]王娴明,徐波,沈聚敏.反复荷载作用下钢筋的本构关系[J].建筑结构学报,1992,13(6):41-47
    [2-15]Dodd L L,Restrepo-Posada J I.Model for predicting cyclie behavior of reinforcing steel[J]Journal of structural engineering,1995,121(3):433-445.
    [2-16]Filippou F C,Poppv E P,Bertero V V.Effect of bond deterioration on hysteretic of reinforced concrete joints[R].Earthquake engineering research center report ucb/eerc-83/19,university of California Berkeley 1983.
    [3-1]Darwin.D,Pecknold D A.Analysis of RC shear panels under cyclic loading[J]Journal of Structural Division,ASCE,1976,102(2):355-369.
    [3-2]Elwi A A,Murray D W.A 3-D hypoelastic concrete constitutive relationship[J]ASCE,1979,105(4)
    [3-3]Bathe K.J,Ramaswamy S.On three dimensional nonlinear analysis of concrete structures[J].Nuclear Engineering and Design,1979,52(3):385-409.
    [3-4]Ottosen N S.Constitutive model for short-time loading of concrete[J]Journal of Engineering of Mechanic division ASCE,1979,105(1):127-141.
    [3-5]Vecchio F J.The modified compression-filed theory for reinforcement concrete element subjected to shear[J].ACI Structural Journal.1986,83(2):219-231.
    [3-6]Hsu TTC.Softened truss model theory for shear and torsion[J].ACI Structural Journal 1988,85(6):624-635.
    [3-7]Pang XB,Hsu TTC.Fixed angle softened truss model for reinforced concrete[J].ACI Structural Journal,1996,93(2):197-207.
    [3-8]Hsu T T C,Zhang L X.Nonlinear analysys of membrane element by fixed-angle softened-truss model[J]ACI Structural Journal,1997,94(5):483-492.
    [3-9]Hsu T T C,Zhu R R H.Softened membrane model for reinforced concrete elements in shear[J].ACI Structural Journal.2002,99(4):460-469.
    [3-10]Mohamad Mansour,Thomas T.C.Hsu.Behavior of reinforced concrete elements under cyclic shear.Ⅱ:theoretical model[J]ACI Structural Journal,2005,131(1):54-65.
    [3-11]Vecchio F J.Nonlinear finite analysis of reinforced concrete membrance[J]ACI Structural Journal 199188(5):552-561.
    [3-12]Polak M A,Vecchio F J.Nonlinear analysis of reinforced concrete shells[J].Journal of Structural Engineering,1993,119(12):3439-3462.
    [3-13]Palermo D,Vecchio F J.Compression field modeling of reinfored concrete subjected to reversed loading:Formulstion[J]ACI Structural Journal,2003,100(5):616-625.
    [3-14]Palermo D,Vecchio F J.Compression filed modeling of reinforced concrete subjected to reversed loading:Verification[J]ACI Structural Journal,2004,101(2):155-164.
    [3-15]Vecchio F J.Distured stress filed model for reinforced concrete:formulation[J].Journal of Structural Engineering,2000,126(9):1070-1077.
    [3-16]Vecchio F J.Distured stress field model for reinforced concrete Implementation[J]Journal of Structural Engineeing:2001 127(1):12-20.
    [3-17]Vecchio F J.Distured stress field model for reinforced concrete:validation Journal of Structural Engineering 2001,127(4):350-358.
    [3-18]Owen D R J,Figueiras J A,Damjanic F.Finite element analysis of reinforced and prestressed concrete structures including thermal loading[J]Computer Method in Applied Mechanics and Enginnering,198341(3):323-366.
    [4-1]R W Clough.The Finite Element method in plane stress analysis[C].Proc.2~(nd) Conference on Electronic Computation.Pittsburg:ASCE,Sept.8-9,1960.
    [4-2]陈万吉.高性能有限元研究的新进展[C].中国计算力学大会2001会议论文集,中国,广州.北京大学出版社,2001,136-151.
    [4-3]Lee N S,Bathe K J.Effect of element distortions on the performance of isoparametric elements[J].International Journal for Numerical Methods in Engineering,1993,36,3553-3576.
    [4-4]Allman D J.A compatible triangular element including vertex rotations for plane elasticity analysis[J].Computer & structures,1984,19:1-8.
    [4-5]Zienkiewicz O C,Talor R L.Two reduced integration techniques in general of plate and shells[J].International Journal for Numerical Methods in Engineering,1977,11(10):1529-1543.
    [4-6]Huges T J,Cohen M,Haroun M.Reduced and selective integration technology in finite element analysis of plates[J].International Journal for Numerical Methods in Engineering 1978,46:203-222.
    [4-7]龙志飞,岑松.有限法新论-原理·程序·进展[M].北京:中国水利水电出版社,2001.
    [4-8]傅向荣.基于解析试函数的广义协调元[D].北京,清华大学.2002.
    [4-9]容柏生.高层住宅建筑中的短肢剪力墙结构体系[J].建筑结构学报,1997,18(6):14-19
    [4-10]JGJ3-2002.钢筋混凝土高层建筑结构技术规程[S].北京:中国建筑工业出版社.
    [4-11]吴学敏.高层建筑剪力墙中连梁设计的探讨[J].建筑结构学报,1995,16(1):77-78
    [4-12]龙驭球,龙志飞,岑松.有限元的几个问题和进展[C].第十届全国结构工程学术会议论文集.工程力学增刊.2001,034-051
    [4-13]钟万勰,纪峥.理性有限元[J].计算结构力学及其应用,1992,13(1):1-8
    [4-14]傅向荣,龙驭球.基于解析试函数的广义协调四边形膜元[J].工程力学,2002,19(4):12-16.
    [4-15]陈万吉,李勇东.带旋转自由度的精化非协调平面四边形等参元[J].计算结构力学及其应用,1993,10(1):22-29
    [4-16]须寅.广义协调法及具有旋转自由度的膜元和板壳元研究[D].北京:清华大学,1994
    [5-1]Hsu Lung Wen.Behaviour of multistorey reinforced concrete walls during earthquake[D].Urbana-Champaign:University of Illinois,1974.
    [5-2]Hiraishi H.,Kawashima T.Deformation Behavior of Shear Wall after Flexural Yielding.Proceeding of 9~(th)WCEE,Tokyo,Kyoto,Vol8,1988,653-658.
    [5-3]Kabeyasawa,Shioara T.H,Otani S.U.S.-Japan cooperative research on R/C full-scale building test,Part 5, discussion of dynamic response system[C],Proceeding of 8~(th) WCEE:327-634
    [5-4]孙景江,江近仁.框架-剪力墙结构的非线性随机地震反应和可靠性分析[J].地震工程与工程振动,1992,12,(2):59-68.
    [5-5]张川.钢筋混凝土框架-抗震墙结构的抗震性能及模型化研究[D].重庆:重庆建筑大学,1994
    [5-6]Vulcano A,Bertero V.,Colotti V.Analytical modeling of R/C structural walls.Proceeding of 9th WCEE(6).Tokyo.Japan.1988:41-46
    [5-7]蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构[J].地震工程与工程振动,1998,18(3):40-48
    [5-8]张令心,孙景江.钢筋混凝土框架-剪力墙结构拟三维非线性地震反应分析[J].世界地震工程,2001,17(2):22-28
    [5-9]汪梦甫,周锡元.钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及其应用[J].建筑结构学报,2002,23(1):38-42
    [5-10]沈蒲生,王海波.剪力墙结构的非线性地震反应分析[[J].土木工程学报,2003 36(8):11-16
    [5-11]Kang-Ning Li,CANNY- A computer program for 3D nonlinear dynamic analysis of building structures,Research Report No.CE004,Department of Civil Engineering,National University of Singapore,November,1993,200-212.
    [5-12]Kabeyasawa,T.Design of RC shear walls in hybrid wall system[C].Proceedings,Fourth Joint Technical Coordinating Committee,U.S.-Japan Cooperative Seismic Research on Composite and Hybrid Structures.Monterey,California.1997
    [5-13]Agrawal.Response of RC shear wall under ground motions[J]Journal of structural division,1981,107(2):395-411
    [5-14]Omar Chaollal.Finitite element model for seismic RC coupled walls having slender coupling beams[J]ASCE,1992,118(10):2936-2943
    [5-15]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析[J].土木工程学报,2004.37(3):35-43
    [5-16]来武清 基于修正斜压场的钢筋混凝土二维非线性有限元分析[D].重庆大学,2005
    [5-17]Sam-Young Noh.Numerical simulation of serviceability,damage evolution and failure of reinforced concrete shells[J].Computers & Structures 2003,81:843-857
    [5-18]Amir Ayoub,Filippou C.Nonlinear finite element analysis of RC shear panels and walls[J]Journal of Structural Engineering 1998,124(3):298-308
    [5-19]Maria Anna Polak.Modeling punching shear of reinforced concrete slabs using layered finite element[J]ACI Structural Journal,1998,95(1)
    [5-22]Allman D J.A comparable triangular element including vertex rotations for plane elasticity analysis[J].Computer&Structure.1984,19:1-8
    [5-23]陈万吉,李勇东.带旋转自由度的精化非协调平面四边形等参元[J].计算结构力学及应用.1993,10(1):22-29
    [5-24]岑松.新型厚薄板、层合板元与四边形面积坐标法[D].北京:清华大学,2000
    [5-25]李云贵,李百春,聂祺.高层建筑开洞剪力墙分析中板单元性能的比较[J].工程力学.2007,24(3):65-70
    [5-26]Fiorato A E,Oesterle R G,Corley W G.Behavior of earthquake resistant structural walls before and after repair[J].ACI Structural Journal,1983,91(4):403-413
    [6-1]Clough R W,Benuska K L,Wilson E L.Inelastic earthquake response of tall building[C]Pro of 3~(th) World Conference on Earthquake Engineering.New Zealand,1965,Vol.(11):68-69
    [6-2]Muto K.Earthquake resistant design of tall building in japan[J]earthquake seismology and earthquake enginnering,1974
    [6-3]林家浩,丁殿明,田玉山.串连多自由度体系的弹塑性地震反应分析[J].大连工学院学报,1979,第二期.
    [6-4]张铜生,张玉良,陈聘.层间剪弯模型多自由度体系弹塑性地震反应计算,清华大学土木系资料,1979。
    [6-5]赵西安,钱庚青.高层建筑结构分层模型弹塑性动力分析,建研院结构所资料,1979
    [6-6]沈聚敏,张玉良.弯剪型多自由度体系非弹性地震反应的简化分析[C].钢筋混凝土结构的抗震性能,科学研究报告集(3).清华大学抗震抗爆工程研究室编,清华大学出版社,1981
    [6-7]孙业扬,余安东.高层建筑杆系-层间模型弹塑性动态分析[J].同济大学学报.1980,第1期,87-98
    [6-8]孙焕纯,章元山松,张晓志.在两向地震波作用下空间框架剪扭型弹塑性地震反应分析[J]大连工学院学报1982,21(4):215-220.
    [6-9]杜宏彪.空间钢筋混凝土框架结构的弹塑性地震反应[D].北京:清华大学1990
    [6-10]童珩蕃.高层建筑三维弹塑性动力分析[J]建筑结构学报,1991,12(6):1-11
    [6-11]张宏远.钢筋混凝土高层建筑空间弹塑性地震反应分析[D]北京:清华大学1994
    [6-12]阎奇武.钢筋混凝土框筒结构在地震作用下的空间杆系层模型非线性分析[D].长沙:湖南大学2001
    [6-13]陈涛.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆:重庆大学2003
    [6-14]Subbaraj K,Dokainish M A.A survey of direct time-integration methods in computational structural dynamics.1,explicit methods[J].Computer & Structure,1989,32(6):1371-1386.
    [6-15]Houboult J C.A recurrence matrix solution for the dynamic response of elastic aircraft[J].Journal of Aeronaut Science,1950,17:540-550.
    [6-16]]Newmark N M.A method of computation for structural dynamics[J].Journal of the Engineering Mechanic Division,1959,85(3):249-260
    [6-17]Wilson E L.A computer program for the dynamic stress analysis of underground structures[R],SESM Report No.68-1,University of California,Berkeley 1968.
    [6-18]Hilber H.M,Hughes T J R.,Taylor R L.Improved numerical dissipation for time integration algorithms in structural dynamics[J].Earthquake engineering and structural dynamics,1977,5:283-292.
    [6-19]Hilber H.M,Hughes T.J.R..Collocation,dissipation and "overshoot" for time integration schemes in structural dynamics[J].Earthquake Engineering and Structural Dynamic,1978,6:99-117.
    [6-20]Chung J,Hulbert G M.A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-α metod[J].Journal of Applied Mechanic,1993,60(2):371-375.
    [6-21]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136
    [6-22]Fried I.Finite elemnt analysis of time-dependent phenomena[J].AIAA Journal 1969,7(6):1170-1172
    [6-23]Argyris J H,Scharpf D W.Finite element in time and space[J].Nuclear enginering and design,1969,10:456-464
    [6-24]Borri M,Ghiringhelli G L,Lanz.M.Dynamic response of mechanical systerm by a weak Hamiltonian formulation[J].Computer & Structures,1985,20(3):495-508
    [6-25]Zienkiewicz O C.A new look at the newmark Houbolt and other time stepping formulas:a weighted residual approach[J].Engineering and Structural Dynamic,1977,5:413-418
    [6-26]Giberson.M.F.Two nonlinear beams with definition of ductility[J].Journal of the Structural Division ASCE 1969,,95(2):137-157
    [6-27]Sugano T.3-dimentional study of nonlinear behaviour of reinforced concrete column under repeated lateral forces[C].Proc of 7~(th) WCEE Vol 5,1980
    [6-28]Baker A.L L.Ultimate load theory applied to the design of reinforced and prestressed concrete frames.Concrete Publication Ltd,London,91-95,1956
    [6-29]Corley W G.Rotational capacity of reinforced concrete beams[J].Journal of Structural Division ASCE,1966,92(5):121-146.
    [6-30]Priestley M J N,Park R.Strength and ductility of concrete bridge columns under seismic loading[J].ACI Structural Journal.Title No.84-S8,61-67,Jan,Feb.1987.
    [6-31]姬守中.高层钢筋混凝土框-剪结构在地震作用下的弹塑性时程反应分析[D].上海:同济大学,2002
    [6-32]李云贵.高层建筑结构分析中对楼板的模型简化[J],土木工程学报,1998,No.5,73-78.
    [6-33]户川隼人.工程振动中的有限元法[M].殷萌龙,陈学源译.北京:地震出版社,1985
    [6-34]黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼问题评述[J].地震工程与工程振动,1996,16(2):95-105.
    [6-35]Ted Belytschko,Wing Kam,Liu Brian Moran.Nonlinear finte element for continua and structures[M]New York:The Wiley Ltd,2000.
    [6-36]李惠明.高层建筑施工过程中的安全分析[D].北京:清华大学,1992
    [6-37]喻员林,李云贵.恒载作用下混凝土结构的施工模拟计算[J],建筑结构,2006,No.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700