视频压缩的运动估计与小波方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像是人类获取信息的主要途径,而图像压缩在数字图像的处理、存储和传输中起着十分重要的作用。运动估计和运动补偿是消除视频信号时间冗余的主要方法,是视频压缩编码的关键技术。本文在空间域运动估计方法、小波域运动估计方法,以及小波变换在图像压缩中的应用等方面进行了研究和探讨。主要工作与贡献如下:
     (1)提出了一种空间域物体运动特征自适应的运动估计算法,主要包括搜索起点预测模型和自适应搜索方法两部分。基于物体的整体性和运动的连续性,搜索起点预测模型随相邻块运动相关性的变化调整模型参数,预测结果更加接近最佳运动矢量。根据绝对误差和的梯度和物体的运动特征,自适应搜索调整模板的大小和形状,从而加快搜索速度。实验结果表明,该算法在峰值信噪比(PSNR)和搜索速度以及重建图像的主观质量方面优于其它快速运动估计对比算法。
     (2)提出了一种小波域的初始运动矢量预测方法和交叉搜索运动估计方法。初始运动矢量预测方法利用小波变换的多分辨率特性,以及块的时间和空间关联性,并结合低频子带全搜索方法,在运算复杂度增加极小的情况下,得到更准确的初始运动矢量。根据小波子带系数的特点,在低频子带平移后,交叉搜索沿水平和垂直方向进行,通过调整交叉搜索中心,逐步逼近最优的运动矢量。运动估计按小波变换级数进行,在每个分辨率层次,搜索范围局限于参考帧对应变换级数下的4个平移子带,得到的是当前分辨率下的最优运动矢量,保证了解码图像是已接收数据下的最佳图像。仿真结果验证了初始矢量预测和交叉搜索方法的有效性。
     (3)通过分析运动补偿时间滤波(MCTF)更新算法对重构图像PSNR的影响,研究了一种内容自适应的MCTF反向运动补偿算法。根据简单量化独立信源编码的平均绝对误差和计算方法,分析了更新步骤缺省时编码端高、低频子带的能量增益系数的变化,并得出更新步骤是否缺省时,因能量归一化所导致的解码端奇、偶数帧之间的PSNR变化。基于预测和更新步骤的运动矢量互为反向的原则,提出了一种反向运动补偿矢量的获取方法。仿真实验表明该方法可以改善重构图像的PSNR。根据小波变换的子带系数特性,建立了图像平坦区域的估算模型;根据运动估计后的高频子带能量,建立了运动估计准确程度的估算模型,从而实现了具有内容自适应特性的MCTF反向运动补偿算法,减小了ghosting伪影,克服了由于运动估计的不准确以及更新步骤可能导致的低频子带反向补偿误差。仿真实验证明了该方法的有效性。
     (4)设计了一种高效低功耗的二维小波变换器VLSI结构,提出了采用该小波变换器的视频压缩系统方案和系统优化方法。二维小波变换器采用基于提升算法的可分离二维变换结构,对行、列小波处理器的数据调度方法进行了优化。采用Z形扫描方法,用少量暂存器缓冲列滤波结果,实现了行、列处理器并行工作,提高了数据处理速度和硬件利用率。通过优化列处理器的数据调度,处理每个点只需读取或存储一次数据,将存储器访问带宽降低了50%,从而用单口RAM替代了双口RAM,大大减少了存储器所占芯片面积和功耗。整个设计进行了FPGA验证,并采用HJTC 0.18μm工艺库完成了综合与版图设计,设计的芯片通过了流片验证。
     (5)针对氧化铝熟料烧结回转窑生产过程,提出了一个视频压缩系统设计方案。该系统包括多媒体专用DSP、二维离散小波变换器、摄像头以及网络传输等部分。通过回转窑火焰图像的压缩进行了仿真实验,实现了黑把子图像在不同空间分辨率、时间分辨率和不同PSNR条件下的压缩与重构,完成了在极低码率下黑把子的准确识别,说明了该系统可有效应用于回转窑火焰图像的压缩。
Image is the main approach to obtain information, and image compression is crucial to process、store and transmit digital image. Motion estimation and compensation play a virtual role in video compression coding to reduce temporal redundancies. This dissertation focuses on the motion estimation algorithm in spatial and wavelet domain,also investigated are the applications of wavelet transform in image compression. The main research of this dissertation is listed as follows:
     Based upon the motion characteristics of the subjects in spatial domain, an adaptive motion estimation (MV) algorithm, imposing of an alterable search pattern and an adaptive model for starting point prediction is proposed. According to the integrality and the motion continuity of the object, the parameters of the prediction model can be modified corresponding to the variation of the correlation amongest the adjacent blocks to minish the difference between the prediction result and the best MV. The alterable search pattern can improve searching efficiency by adjusting its size and shape according to the grads of the sum of absolute differences (SAD), which reflects the motion characteristics of the adjacent blocks. Experiment results demonstrate that the proposed algorithm outperforms the other fast motion estimation algorithms presented in this dissertation in terms of PSNR、search speed and subjective quality of the reconstruct image.
     An initial MV prediction approach together with a cross search motion estimation algorithm is presented. Combined with full search in low subband, a more accurate initial MV can be obtained from the prediction approach with little computational cost overhead, by utilizing multiresolution characteristic of wavelet transform and temporal/spatial correlation between the blocks. Due to the subbands coefficients characteristic, the cross search is performed only along the horizontal or vertical direction after low-band-shift. Search results can approximate the best MV by adjusting cross searching center continually. Motion estimation is performed by the level of the wavelet transform, and the search range is confined to the 4 subbands of the reference frames at the same transform level. AS a result, the MV searched is the best one at the current resolution, which can insure the optimality of reconstruct image quality under the current data received. The simulation results validate the prediction approach and the search algorithm.
     On basis of the impact on reconstruct image PSNR, brought by update step in motion compensation temporal filtering (MCTF), a content adaptive invert motion compensation (IMC) algorithm is proposed. When the update step is skipped, the energy gain factors will change correspondingly in both of the high and low subbands at encoder side. By useing the SAD calculation method of a simple scalar quantizer with independent coding of the source samples, the PSNR fluctuation can be figured out between even and odd frames whether the update step is skipped. Additionally, the ways to select MV for IMC is studied on principle of MV invertible between prediction and update step. Simulations illustrate the improvement in PSNR of reconstruct image by the proposed way. Furthermore, a content adaptive IMC algorithm in MCTF, composed of two estimation models, is put forth to reduce the ghosting artifacts. One model is based on characteristic of subbands coefficients for low activity region estimation, and the other is to estimate the MV accuracy in high subbands from the energy after ME. Artifacts, caused by inaccuracy ME or update step, can be reduced effectively by the estimation models. Experiment results verify the efficiency of the adaptive IMC algorithm.
     A high efficiency and low power dissipation VLSI architecture is designed for two-dimensional discrete wavelet transform (2D-DWT). In the separable lifting-scheme based 2D-DWT architecture, data dispatch is optimized in both row and column processor. Scanning in zigzag order, the processors can work in parallel via few temporal buffers to store the data filtered by column processor, leading to improvement of data transform speed and hardware utilization factor. By the optimization of data dispatch in column processor, only one read or one write operation are necessary per clock for temporal buffer, so the bandwidth of memory access can be reduced to 50 percents in contrast to one read and one write in usual case. As a result, the line buffer can be single-port RAM instead of two-port RAM, and the chip area and power dissipation can be decreased sufficiently. After demonstrated in FPGA, the implementation is synthesized with HJTC 0.18μm cell library, and layout has been designed for tape out. The CMOS chip demonstrates the VLSI architecture and its implementation.
     Finally, an image compression scheme,including DSP for multimedia process、2D-DWT transformer、video camera and network transmission, is designed for the rotary kiln alumina production. Compression experiments are carried out to compress and reconstruct the flame image in rotary keln under different PSNR condition at various spatial and temporal resolutions. The coal particles region can be identified accurately at very low bitrate. Experiment results show the validity of the scheme proposed for flame image compression in rotary keln.
引文
[1] Jerry D.Gibson, Toby Berger, Tom Lookabaugh.多媒体数字压缩原理与标准.李煜等译.北京:电子工业出版社,2000,5-10
    [2]沈兰荪.图像编码与异步传输.第一版.北京:北京人民邮电出版社,1998,11-17
    [3]张春田,苏育挺,张静.数字图像压缩编码.第一版.北京:清华大学出版社,2006,2-8
    [4] Sullivan, T. Wiegand.Video Compression-From Concepts to the H.264/AVC Standard. Proceedings the IEEE, Special Issue on Advances in Video Coding and Delivery, 2005, 93(1):18-31
    [5] David Salomon.数据压缩原理与应用.吴乐南等译.第二版.北京:电子工业出版社,2003,441-453
    [6]沈兰荪,卓力.小波编码与网络视频传输.北京:科学出版社,2005,146-188
    [7] CCITT Recommendation H.261.Video Codec for Audio Visual Services at p *64 kb/s. COM XVR 37E, 1990,2-11
    [8] ITU-T. Recommendation H.262. Information technology-generic coding of moving pictures and associated audio information. Video,1995
    [9] ITU-T. Recommendation H.263 Version 3.:Video coding for low bit rate communication, 2000,1-9
    [10] ITU-T. Recommendation H.264. Advanced video coding for generic audiovisual services, 2003,1-15
    [11] ISO/IEC IS 11172. Information technology–coding of moving pictures and associated audio for digital storage media at up to about 1.5Mbits/s,1993(MPEG-1)
    [12] ISO/IEC IS 13818-2. Information technology–generic coding of moving pictures and associated audio information–Part2:Video ,1995(MPEG-2 Video)
    [13] ISO/IEC IS 14496-2. Information technology–coding of audio-visual objects-Part 2 :Visual, 1999(MPEG-4 Video)
    [14] Tabatabai A J, Jasinschi R S, Naveen T. Motion estimation methods for video compression-a review. J Franklin Inst, 1998, 335B(8):1411-1441.
    [15] Anthony Vetro, Charilaos Christopoulos, Huifang Sun. Video transcoding architectures and techniques: An overview. IEEE Signal Processing Magazine, vol. 2003, 20:18–29
    [16] M. Manikandan, P. Vijayakumar, N. Ramadass. Motion estimation method for video compression-an overview. In: Wireless and Optical Communications Networks. Bangalore, India, IFIP International Conference, 2006.4, 5-10
    [17] G. de Hann. Progress in motion estimation for video format conversion[J]. IEEE Transactions on Consumer Electronics, 2000, 46(3): 449-459
    [18] Yao Wang.视频处理与通信.侯正信,杨喜,王文全等译.北京:电子工业出版社,2003,23-34
    [19]毕厚杰.新一代视频压缩编码标准-H.264/AVC.北京:人民邮电出版社.2005, 53-64
    [20]刘红梅,魏晓晖.码率可分级小波视频编码算法的研究.软件学报,2002,13: 664-668
    [21] Schwarz.H, Marpe.D, Wiegand.T. Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17:1103-1120
    [22] Ziliani.F. The importance of scalability in video surveillance architectures. In: IEEE International Symposium on Imaging for Crime Detection and Prevention, 2005. 29 -32
    [23] Wang Xiang Hai. Research on spatial scable video coding based on wavelet. Computer Science,2002,29(7): 115-117
    [24] T MEIER, KN NGAN, G CREBBIN. Reduction of blocking artifacts in image and video coding. In: IEEE Transactions on Circuits and Systems for Video Technology, 1999, 490– 500
    [25]陈武凡.小波分析及其在图像处理中的应用.北京:科学出版社.2002,108-117
    [26]陈正兴.小波分析算法与应用.西安:西安交通大学出版社.1998,57-64
    [27] Stephane Mallat. A Wavelet Tour of Signal Processing. Boston: Academic Press,1998.
    [28] Stephane Mallat. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Transaction on Pattern and Machine Intelligence, 1989, 11(7):67-93
    [29] Stephane Mallat. Multiresolution approximation and wavelet orthogonal bases of L2(R) , IEEE Transaction on Mathematics Society,1989, 6-7
    [30] I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun Pure Appl. Math. 1988,909-996
    [31] W. Sweldens. The lifting scheme : a custom-design of biorthogonal wavelets. Applied computational and harmonic Analysis. 1996, 3(2):186-200
    [32] C. Caffario, C. Guaragnella, F. Bellifemine et al. Motion compensation and multiresolution coding. Signal Process Image Commun.1994, 6:123-142
    [33] S. Kim, T. Aboulnasr, S. Panchanathan. Adaptive multiresolution motion estimation techniques for wavelet-based video coding. In: Proceedings of SPIE Visual Communications and Image Processing, California, USA, 1998, 3309: 965-974
    [34] S.Zafar, Y.Q.Zhang, B.Jabbari. Multiscale video representation using multi- resolution motion compensation and wavelet decomposition. IEEE J. Selected Areas in Commun. 1993.11(1): 24–35
    [35]宋传鸣,王相海.小波域运动估计研究进展.计算机学报. 2005, 28(10): 1716-1726
    [36]张宗平,刘贵忠.基于小波的视频图像压缩研究进展.电子学报. 2002, 30(6): 883-889
    [37] ISO/IEC JTC1/SC29/WG11 MPEG2001/M4928. The status of interframe wavelet coding exploration in MPEG. Klagenfurt, 2002.
    [38] ISO/IEC 15444-1. JPEG2000 image coding system. 2000,2-25
    [39] David S. Taubman, Michael W.Marcellin. JPEG2000图像压缩基础、标准和实践.魏讲力,柏正尧等译.北京:电子工业出版社. 2004, 279-302
    [40] C. Torrence, G. P. Compo. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society. 1998: 61–78.
    [41] Po-Cheng Wu, Liang-Gee Chen. An Efficient Architecture for Two -Dimensional Discrete Wavelet Transform. IEEE Transactions on Circuits and System for Video Technology. 2001, 11(4):536-545
    [42] N.D.Zervas, G. P. Anagnostopopoulos, Vassilis Spiliotopoulos, et al. Evaluation of Design Alternatives for the 2-D-Discrete Wavelet Transform. IEEE Transactions on Circuits and System for Video Technology. 2001, 11(12):1246-1262
    [43]王赜,刘治国,王光兴.自适应块匹配运动估计搜索算法.计算机研究与发展. 2003, 40(7):1036-1041
    [44] Ali J. Tabatabai, Radu S. Jasinchi , Naveen T. Motion estimation methods for video compression-A review. Journal of The Franklin Institute.1998, 335 (8):1411-1441.
    [45]肖德贵,余胜生,周敬利.快速而有效的块运动估计算法.计算机研究与发展. 2001, 38(6):1110-1114
    [46] Tourapis A.M, Au O.C, Liou M.L. Highly efficient predictive zonal algorithmsfor fast block-matching motion estimation. IEEE Transactions on Circuits and System for Video Technology, 2002, 12(10):934-947
    [47] Yao Nie, Kai-Kuang Ma. Adaptive rood pattern search for fast block- matching motion estimation. IEEE Transactions on Image Processing, 2002, 11(12):1442-1449
    [48]Shih-Yu Huang, Chuan Yu Cho, Jia Shung Wang. Adaptive fast block-matching algorithm by switching search patterns for sequences with wide-range motion content. IEEE Transactions on Circuits and Systems for Video Technology. 2005, 15(11):1373-1384
    [49]李超,熊璋,赫阳.基于帧间差的区域光流分析及其应用.计算机工程与应用. 2005, 41(31):195-197
    [50] J.A. Stuller,A.N.Netravali. Transform domain and motion estimation. Bell System Technical Journal, 1979,58:1673-1702.
    [51] Jain J.R, Jain A.K. Displacement measurement and its application in interframe image coding. IEEE Transaction on Communications. 1981, 29(I2):1799-1808
    [52] Koga T, Iinuma K, Hirano A, et al. Motion compensated interframe coding for video conferencing. In: Proceeding of National Telecommunications Conference (NTC81). New Orleans,LA, 1981, C9.6.1-9.6.5.
    [53] Renxiang Li, Bing Zeng, Ming L. Liou. A new three-step search algorithm for block motion estimation. IEEE Transactions on Circuits and System for Video Technology. 1994, 4(4):438-442
    [54] Po Lai Man, Ma Wing Chung. A novel four-step search algorithm for fast block motion estimation. IEEE Transactions on Circuits and System for Video Technology. 1996, 6(3):313-317.
    [55] Lurng-Kuo Liu, Ephraim Feig. A block based gradient descent search algorithm for block motion estimation in video coding. IEEE Transactions on Circuits and System for Video Technology, 1996, 6(4):419-422
    [56] Shan Zhu, Kai-Kuang Ma. A new diamond search algorithm for fast block- matching motion estimation. IEEE Trans Image Processing. 2000, 9(2):287-290.
    [57] Cheung CH, Po LM. A novel cross-diamond search algorithm for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology. 2002, 12(12):1168-1177.
    [58] Ce Zhu, Xiao Lin, Lap-Pui Chau. Hexagon-based search pattern for fast block motion estimation. IEEE Transactions on Circuits and System for Video Technology. 2002, 12(5):349-355.
    [59] Tourapis A M, Au O.CL, Liu M L. Predictive motion vector field adaptive search technique (PMVFAST)–enhancing block based matching estimation. In: Proceedings of Visual Communications and Image Processing. San Jose, Calif, USA: Proceedings of SPIE, 2001: 883-892.
    [60] Wiegand, Thomas.Study of Final Committee Draft of Joint Video Specification (ITU-T Rec. H.264, ISO/IEC 14496-10 AVC0). Joint Video Team of ISO/IEC MPEG & ITU-T VCEG. Document JVT-F100, 6th Meeting, Awaji, Japan, 2002, 5-13
    [61] Martucci S A, Sodagar I, Chiang T, et al. A zerotree wavelet video coder. IEEE Transactions on Circuits and System for Video Technology.1997, 7(2):109-118
    [62] Ohta M, Nogaki S. Hybrid picture coding with wavelet transform and overlapped motion compensated interframe prediction coding. IEEE Transactions on Signal processing, 1993, 41(12):3416-3424
    [63]钟敏生,马争鸣.基于小波系数块的运动补偿.自动化学报, 2004, 30(1):64-69
    [64] Zhu C,Lin X,Chau L, et al. Enhanced hexagonal search for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(10):1210-1214
    [65] Yao Nie, Kai-Kuang Ma. Adaptive rood pattern search for fast blockmatching motion estimation. IEEE Transactions on Image Process, 2002,11(12): 1442-1448
    [66]崔锦泰.小波分析导论.西安:西安交通大学出版社,1994, 12-22
    [67]赵松年,熊小芸.子波变换与子波分析.北京:电子工业出版社. 1996, 36-62
    [68] Metin Uz K, Vetterli M, LeCall D.J. Interpolative multiresolution coding of advanced television with compatible subchannels. IEEE Transactions on Circuits and Systems for Video Technology, 1991, 1(1):86-89
    [69] Y.-Q. Zhang , S. Zafar. Motion-compensated wavelet transform coding for color video compression. IEEE Transactions on Circuits and Systems for Video Technology, 1992, 2(3):285–296
    [70]张义荣,鲜明,肖顺平等.一种基于小波分析的多分辨运动补偿视频编码器的设计.计算机工程与应用,2004, 40(31):110-113
    [71]龚涛,丁润涛.基于小波变换的块匹配运动估计方法.天津大学学报, 2003, 3:320-324
    [72] Kenji T, Joseph B S, Bove V M. A scalable motion-compensated subband image coder. IEEE Trans. Commun, 1994, 2:1894-1901
    [73] A.Nosratinia, M.Orchard. A multi-resolution framework for backward motioncompensation. In: Proceedings of SPIE Electronic Imaging. San Jose, CA, 1995, 190-200
    [74] A. Nosratinia, M.T.Orchard. Multi-resolution backward video coding. In: Proceedings of IEEE International Conference on Image Processing, Washington, DC, 1995, 563-566
    [75] H.-W. Park, H.-S. Kim. Motion estimation using low-band-shift method for wavelet-based moving-picture coding. IEEE Transactions on Image Processing, 2000, 9(4):577–587
    [76] Kim Hyung Sun, Park Hyun-Wook. Wavelet-based moving picture coding using shift-invariant motion estimation in wavelet domain. Signal Processing: Image Communication, 2001, 16(7):667-679
    [77]宋传鸣,王相海.一种新的小波域视频可分级运动估计方案.计算机学报, 2006, 29(12):2112?2118
    [78] G. Karlsson, M. Vetterli. Sub-band Coding of Video Signals for Packet- Switched Networks. In: Proceedings of SPIE Conference on Visual Communications and Image Processing, Cambridge,MA, 1987, 446-456
    [79] A.S. Lewis, G. Knowles. Video compression using 3D wavelet transforms. Electron. Lett., 1990, 26(6):396–398
    [80] B.-J. Kim, W.A. Pearlman. An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT). In: Proceeding of the IEEE Data Compression Conference, Snowbird, 1997, 251–260
    [81] Hisang S-T. High scalble subband/wavelet image and video coding.[ Rennsselaer Polytechnic Institute PH.D dissertation]. Troy, New York : Rennsselaer Polyte- chnic Institute, 2002,12-50.
    [82] S B. Girod. The efficiency of motion-compensated prediction for hybrid video coding of video sequences. IEEE J. Sel. Areas Commun. SAC-5,1987, 1140–1154
    [83] J.-R. Ohm. Three-Dimensional Subband Coding with Motion Compensation. IEEE Trans. Image Processing, 1994, 3(5): 559-571
    [84] D. Taubman, A. Zakhor. Multirate 3-D subband coding of video. IEEE Trans. Image Process. 1994, (3):572–588
    [85] J.-R. Ohm, M. van der Schaar, J. W. Woods. Interframe wavelet coding motion picture representation for universal scalability. EURASIP Signal Processing: Image Communication, Special issue on Digital Cinema, 2004, 19(9):877-908
    [86] A. Secker, D. Taubman. Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), Thessaloniki, Greece, 2001, 1029-1032
    [87] B. Pesquet-Popescu, V. Bottreau. Three-dimensional lifting schemes for motion compensated video compression. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Proceeding (ICASSP), Salt Lake City, UT, 2001, 1793-1796
    [88] Nagita Mehrseresht, David Taubman. Adaptively weighted update steps inmotion compensated lifting based scalable video compression. In: IEEE International Conference on Image Processing (ICIP), Barcelona,Spain, 2003, 2:771-774
    [89] Davide Maestroni, Marco Tagliasacchi,Stefano Tubaro. In-band adaptive update step based on local content activity. In: Visual Communication and Image Processing. Beijing,SPIE/IEEE, 2005
    [90] N. Mehrseresht, D. Taubman. An efficient content-adaptive MC 3D-DWT with enhanced spatial and temporal scalability. In: Proceedings of the IEEE International Conference on Image Processing (ICIP'04), Singapore, 2004, 2: 1329-1332
    [91] J.C. Ye, M.van der Schaar. Fully Scalable 3D Overcomplete Wavelet Video Coding using Adaptive Motion Compensated Temporal Filtering. In: Proceedings of VCIP2003, Lugano, Switzerland, 2003,1169-1180
    [92] Y. Andreopoulos, A. Munteanu, J. Barbarien, et al. In-band motion compensated temporal filtering. Signal Processing: Image Communication, 2004, (8): 653-673
    [93] David Taubman, Nagita Mehresresht, Raymond Leung. SVC Technical Contribution: Overview of recent technology development at UNSW. ISO/IEC JCT1/SC29 Wg11/m10868, Redmond, 2004.
    [94] Whitaker.J.数字电视技术:高清晰度数字视频原理与应用.曹晨等译.第三版.北京:电子工业出版社, 2002, 128-152
    [95] W iegand T, Sullivan G J , Luth ra A , et al. Overview of the H. 264 /AVC video coding standard. Transactions on Circuits and Systems for Video Technology, 2003, 13(7):560-576
    [96] Huang Yuwen, Hsieh Bing-Yu. Analysis and complexity reduction of multiple reference frames motion estimation in H.264AVC. IEEE Transactions on Circuits and System for Video Technology, 2006, 16(4):507-521
    [97]黎铁军,沈承东,李思昆.一种支持PMVFAST运动估计算法的VLSI体系结构.计算机研究与发展, 2005, 42(4):537-543
    [98] Banh Xuanquang, Tan Yappeng. Adaptive dual-cross search algorithm for block- matching motion estimation. IEEE Transactions on Consumer Electronics, 2004, 50(2):766-775
    [99]倪伟,郭宝龙,丁贵广.基于六边形的运动矢量场自适应搜索算法.计算机工程, 2005, 31(13):10-12
    [100]N. I. Cho, S. K. Mitra. Warped discrete cosine transform and its application in image compression. IEEE Transactions on Circuits and System for Video Techn- ology, 2000, 10:1364-1373
    [101]王炜,崔炳哲.语音与图像的数字信号处理.第一版.北京:科学出版社, 2004, 152-176
    [102]Stephane Mallat.信号处理的小波导引.杨力华,戴道清,黄文良等译.第二版.北京:机械工业出版社,2003, 193-212
    [103]郑治真,沈萍等.小波变换及其Matlab工具的应用.北京:地震出版社, 2001:123-176
    [104]Ngyuen T.Q. The design of arbitrary FIR digital filters using the eigenfilter method. IEEE Transactions on signal processing, 1993, 41:1128-1139
    [105]SWELDENS W. The lifting scheme: A new philosophy in biorthogonal wavelet constructions. In: Proceedings of SPIE on Wavelet Applications in Signal and Image Processing III. San Diego: SPIE, 1995: 68-79
    [106]钟广军,成礼智,陈火旺.基于提升方法的简单小波滤波器.计算机工程与科学,2003,25(1):39-41
    [107]David B.H. Tay, Bundoora. A Class of Lifting Based Integer Wavelet Transform., In: International Conference on Image Processing. Thessaloniki, Greece:ICIP, 2001, 602 - 605
    [108]成礼智,郭汉伟.小波与离散变换理论及工程实践.第一版.北京:清华大学出版社, 2005, 74-81
    [109]K. A. Kotteri, A. E. Bell, J. E. Carletta. Design of multiplierless, high- performance, wavelet filter banks with image compression applications. IEEE Trans. Circuits Syst. I, 2004, 51:483-494
    [110]HyungJun Kim, Li, C.C. Lossless and lossy image compression using biorthogonal wavelet transforms with multiplierless operations. IEEE Transactions on Circuits and Systems--II: Analog and Digital Signal Porcessing 1998, 45(8):1113-1118
    [111]Cohen A I, Daubechies I,Feauveau J C. Biorthogonal Bases of CompactlySupported Wavelets. Comm Pure and Applied Math, 1992, 45:485-560
    [112]Wim Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets. SIAM Journal on Mathematical Analysis, 1997, 29(2):511-546
    [113]Ingrid Daubechies, Wim Sweldens. Factoring wavelet transforms into lifting steps. Fourier Analysis and Applications, 1998, 4(3):247-269
    [114]王相海.基于小波的视频空间可分级编码研究.计算机科学,2002,29(7):115-117
    [115]ISO/IEC 13818-2:Information technology——Generic coding of moving pictures and associated audio information, part2:visual. 1996
    [116]ISO/IEC JTC1/SC29/WG11. Overview of the MPEG 4 standard, Singapore,2000.
    [117]ITU-T. Draft ITU-T Recommendation H.263. Video coding for low bit rate communication. Telecommnication Standardization Sector of International Telecommunication Union,1995
    [118]C. Caffario, C. Guaragnella, F. Bellifemine,et al. Motion compensation and multiresolution coding, Signal Process: Image Communication,1994, 6:123-142
    [119]S. Kim, T. Aboulnasr, S. Panchanathan. Adaptive multiresolution motion estimation techniques for wavelet-based video coding. In: Proceedings of SPIE Visual Communications and Image Processing. Chicago,USA:SPIE, 1998, 965-974
    [120]Davide Maestroni, Augusto Sarti, Marco Tagliasacchi, et al. Fast in-band motion estimation with variable size block matching. In: International Conference on Image Processing. Singapore: ICIP, 2004, 2287-2290
    [121]Andreopoulos,Y. Munteanu,A.Van der Auwera, et al. Complete-to-Overcomplete Discrete Wavelet Transforms: Theory and Applications. IEEE Transactions on Signal Processing,2005, 53(4):1398-1412
    [122]R. Zaciu, C. Lamba, C. Burlacu, et al. Image compression using an overcomplete discrete wavelet transform, IEEE Transactions on Consumer Electronics, 1996, 42(3):800–807
    [123]Wang Q, Ghanbari M. Scalble coding of very high resolution video using the virtual zerotree. IEEE Trans circuits and systems for video technology, 1997, 7(5):719-727
    [124]Magarey J ulian , Kingsbury N. Motion estimation using a complex-valued wavelet t ransform. IEEE Transactions on Signal Processing, 1998, 46(4): 1069-1084
    [125]王兵,赵荣椿,蒋晓悦等.一种基于小波变换的运动估计方法.西北工业大学学报, 2004, 22(4):417-421
    [126]李锌,尹宝才.基于小波空间的可伸缩视频编码.计算机工程与应用, 2005, 36:19-22
    [127]M.K. Mandal, E.Chan, X.Wang, et al. Multiresolution motion estimation techniques for video compression. Optical Engineering, 1996, 35: 128-136
    [128] Jens-Rainer Ohm.Advances in Scalable Video Coding. Proceedings of the IEEE, 2005, 93:42-56
    [129]Shih-Ta Hsiang, John W. Woods, Jens-Rainer Ohm. Invertible temporal subband/wavelet filter banks with half-pixel-accurate motion compensation. IEEE Transactions on Image Processing, 2004, 13(8):1018-1028
    [130]FengLing li. Improved motion-compensated temporal filtering (MCTF) for scalable video coding: [Santaclara University PH.D dissertation]. California :Santaclara University, 2006:15-41
    [131]B. Pesquet-Popescu, V. Bottreau. Three-dimensional lifting schemes for motion-compensated video compression. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA: IEEE ICASSP, 2001, 1793-1796
    [132]L. Luo, J. Li, S. Li, et al. Motion compensated lifting wavelet and its application in video coding. In: Proceedings of the IEEE International Conference on Multimedia and Expo, Tokyo, Japan: ICME, 2001, 481-484
    [133]N. Mehrseresht, D. Taubman. A flexible structure for fully scalable motion compensated 3D-DWT with emphasis on the impact of spatial scalability. IEEE Trans. Image Process. 2006, 15:740-753
    [134]A.Secker, D.Taubman. Lifting-based invertible motion adaptive transfor (LIMAT) framework for highly scalable video compression. IEEE Trans. Image Process, 2003, 12:1530-1542
    [135]Valentin V,Cagnazzo M,Antonini M,et al.Scalable context-based motion vector coding for video compression. In: Proceedings of the Picture Coding Symposium. Saint-Malo,France: PCS, 2003, 63-70
    [136]Solomon J. A., Watson A. B., Ahumada A. Visibility of DCT Basis Functions: Effects of Contrast Masking. In: Proceedings of Data Compression Conference. Snowbird, Utah: IEEE Computer Society Press, 1994, 361-370
    [137]A. Secker, D. Taubman. Highly scalable video compression using a lifting-based 3D wavelet transform with deformable mesh motion compensation. In:Proceedings of the IEEE International Conference on Image Processing, Rochester, New York, USA:ICIP, 2002, 24-28
    [138]Nikos D. Zervas, Giorgos P. Anagnostopoulos, Vassilis Spiliotopoulos et al. Evaluation of Design Alternatives for the 2-D-Discrete Wavelet Transform. IEEE Transactions on Circuits and System for Video Technology, 2001, 11(12):1246-1262
    [139]Chao-Tsung Huang, po-Chih Tseng, Liang-Gee Chen. Generic RAM-Based Architecture for Two-Dimensional Discrete Wavelet Transform With Line-based Method. IEEE Transactions on Circuits and System for Video Technology, 2005, 15(7): 910-919
    [140]Chao-Tsung Huang, po-Chih Tseng, Liang-Gee Chen. Analysis and VLSI Architecture for 1-D and 2-D Discrete Wavelet Transform. IEEE Transactions on Signal Processing, 2005, 53(4):1575-1586
    [141]Chao-Tsung Huang, Po-Chih Tseng, Liang-Gee Chen. Flipping Structure: An Efficient VLSI Architecture for Lifting-Based Discrete Wavelet Transform. IEEE Transactions on Signal Processing, 2004, 52(4):1080-1089
    [142]F. Marino. Efficient high-speed low power pipelined architecture for direct 2D discrete wavelet transform. IEEE transactions on circuits and systems-II:Anolog and digital signal processing, 2000, 47(12):1476-1491
    [143]F. Marino. Two fast architecture for the direct 2D discrete wavelet transfom. IEEE transactions on signal processing, 2001, 49(6):1248-1259
    [144]H. Yamauchi, S. Okada, Y. Matsuda, et al. 1440 x 1080 Pixel, 30 frames Per Second Motion-JPEG 2000 Codec for HD-Movie Transmission. IEEE Journal of Solid-State Circuits, 2005, 40(1):331-340
    [145]Mehboob AIom I, Wael Badawy I , Vassil Dimitrov, et al. Efficient Direct 2D Architecture for Lifted Biorthogonal DWT. In: Proceedings of the IEEE Workshop on Signal Processing Systems. Seoul, Korea:SIPS, 2003, 340-345
    [146]C.Chrysafis, A.Ortega. Line-based reduced memory, wavelet image compression. IEEE Transactions on Image Processing, 2000, 9:378–389
    [147]刘雷波,王学进,孟鸿鹰等. JPEG2000小波变换器的VLSI结构设计.电子学报, 2002, 30(11):1609-1612.
    [148]兰旭光,郑南宁,梅魁志等. JPEG2000并行阵列式小波滤波器的VLSI结构设计.电子学报,2004,32(11):1806-1809.
    [149]刘雷波. JPEG2000静止图像压缩关键技术研究及VLSI实现[清华大学博士论文].北京:清华大学, 2004,139-141
    [150]Chih-Chi Cheng, Chao-Tsung Huang, et al. Multiple-lifting Scheme: Memory- efficient VLSI Implementation for Line-based 2-D DWT. In: International Symposium on Circuits and Systems, Japan: ISCAS, 2005: 23-26.
    [151]文康益.基于JPEG2000的小波变换和EBCOT的研究与硬件设计[湖南大学硕士论文].长沙:湖南大学, 2007, 23-57
    [152]K.C.B. Tan and T. Arslan. Low power embedded extension algorithm for the lifting based discrete wavelet transform in JPEG2000. Electron Letters, 2001, 37: 1328-1330
    [153]S.W.Reitwiesner. Binary arithmetic. Advances in computers,1966:231-308
    [154]Keshab K. Parhi. VLSI数字信号处理系统与设计实现.陈宏毅译.第一版.北京:机械工业出版社, 2004,372-377
    [155]IEEE1364GRP. IEEE Standard Verilog Hardware Description language. http://www.verilog.com/IEEEVerilog.html.2004-10-20
    [156]章兢,张小刚.回转窑集成智能控制系统.电工技术学报,2002, 17(4):62-66
    [157]章兢,陈华,张小刚.基于多传感器数据融合的回转窑烧结温度检测和控制方法.控制与决策, 2002, 17(6):867-870
    [158]章兢,刘小燕.基于图像序列处理的回转窑煅烧区温度测量.电子测量与仪器学报,1999, 13(4):67-71
    [159]Texas Instrument. TMS320C64/C64x+ DSP CPU and Instruction Set Reference Guide. ww.ti.com, 2005-6
    [160]艾孟奇,刘钊.基于H.264标准的视频解码优化及DSP实现.计算机应用, 2007, 27(12): 299-301
    [161]Texas Instrument. H.263 Encoder: TMS320C6000 Implementation. www.ti.com, 2000-12
    [162]Texas Instrument. TMS320C6000 Optimizing Compiler User’s Guide. www.ti.com, 2004-5
    [163]Broadcom. BCM7043 HD/SD AVC/MPEG Video/Audio Encoder and Transcoder/Transcaler/Transrater. http://zh-cn.broadcom.com/products/Cable/ Cable-Set- Top-Box-Solutions/BCM7043, 2007.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700