用户名: 密码: 验证码:
湖南人群非综合征性耳聋GJB2(Cx26)基因突变分析及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:为明确湖南人群中非综合征性耳聋患者发病的遗传学基础,分析了患者GJB2基因突变的情况,并探索其发病的分子机制。
     方法:经过详细的病史询问和临床检查,收集了符合要求的、无亲缘关系的非综合征耳聋患者140例。PCR扩增患者GJB2基因的编码序列全长,纯化回收扩增产物,直接双向测序,用DNAStar软件分析测序结果,统计患者GJB2基因突变情况。选择研究中发现的突变,设计引物扩增突变体全长,将其构建到pEGFP表达载体,经菌液PCR检测、双酶切鉴定并测序验证之后,转染Hela细胞,行Western blot检测,荧光染色后在荧光显微镜下观察Cx26的表达情况,比较野生型与突变体之间亚细胞定位的差别;计数它们形成间隙连接通道的细胞数目,统计分析是否存在差异。
     结果:在140个无亲缘关系的耳聋患者中,共有56例检测到了Cx26基因突变,检出率达40%(56/140);其中29例患者两个Cx26等位基因都发生突变,另27例患者只有一个Cx26等位基因突变,等位基因突变率为30.4%(85/280)。一共发现了10种不同的碱基变异,包括7种致病突变和3种多态。7种致病突变分别是无义突变c.139G>T;移码突变c.176_191del 16和c.235delC;错义突变c.109G>A、c.344T>G、c.550C>T和c.571T>C。c.344T>G是一个新报道的错义突变。最常见的突变是235delC,共有27个患者检测到该突变,比例达19.3%(27/140),其中纯合突变20例,复合杂合突变2例,杂合突变5例,占所有致病性等位基因的55.3%(47/85等位基因)。109G>A突变频率仅次于235delC,有25个患者检测到该突变,检出率达17.9%(25/140),其中纯合突变7例,杂合突变18例,占所有致病性等位基因的37.6%(32/85等位基因)。选择在患者中发现的突变,构建了Cx26 wt及其突变体的真核表达载体:pEGFP-Cx26 wt, pEGFP-Cx26 V37I和pEGFP-Cx26F115C;转染Hela细胞后,成功表达Cx26 wt及其突变体的GFP融合蛋白;但是突变体在细胞定位和分布上与Cx26 wt无区别,形成通道的细胞数目也没有明显的差异。
     结论:Cx26是导致湖南人群NSHL的最常见的基因,其235delC突变是湖南人群NSHL最常见的突变;Cx26基因p.F115C和p.V37I两种突变体转染Hela细胞后,不影响其形成细胞间隙连接的能力,但其形成的间隙连接是否有正常功能还有待进一步研究。
Objective:To identify genetic characteristics in patients of Hunan province with nonsydromic hearing loss (NSHL), determine the prevalence and spectrum of mutations in GJB2(Cx26) gene, explore the pathogenic molecular mechanism.
     Methods:140 sporadic cases of NSHL without genetic relationship were collected after enquiring history and clinical examinations. Molecular studies were performed by amplifing the coding region of Cx26 gene, purifing the PCR products, then bidirectional sequencing directly.Sequences were analysed by DNAStar software, determine the prevalence and spectrum of mutations in Cx26 gene. Cx26 gene mutants, which primers were designed to amplify,were selected, then constructed into pEGFP vector,transfected into Hela cells after identification by bacteria PCR, double restriction enzyme analysis and sequence. Western blot was performed. Expression of Cx26-EGFP protein were observed in fluorescence microscope after fluorescent staining,compare the differences of fluorescent localization between the wild type and the mutants.Account the mumber of cells that formed gap junction channels, statistic analysis were used to define whether there were differences.
     Results:Among the 140 NSHL patients without genetic relationship,56 patients were detected Cx26 gene mutation, the relevance ratio was 40%(56/140). Both of the two Cx26 alleles were mutated in 29 patients and one Cx26 allele in 27 patients, the rate of allele mutation was 30.4%(85/280).10 types of variations were detected, containing 7 types of pathogenic mutations and 3 types of polymorphisms. The 7 types of pathogenic mutations were nonsense mutation c.139G>T, frameshift mutation c.235delC and c.176-191del16, and missense mutation c.109G>A、c.344T>G、c.550C>T and c.571T>C. c.344T>G is a newly reported missense mutation. The c.235delC mutation which was detected in 27 patients was the most prevalent mutation, the relevance ratio was 19.3%(27/140), including homozygous mutation in 20 patients, heterozygous in 5 and compound heterozygous in 2, accounting for 55.3%(47/85)of the pathogenic alleles. The c.109G>A mutation which was detected in 25 patients was just next to c.235delC, the rate was 17.9%(25/140), including homozygous mutation in 7 patients and heterozygous in 18, accounting for 37.6%(32/85) of the pathogenic alleles. pEGFP-Cx26 wt, pEGFP-Cx26 V37I and pEGFP-Cx26 F115C eukaryotic expression vectors were constructed, after transfected into Hela cell,Cx26 wt and two mutants'Cx26 and GFP fusion protein were expressed successfully. The fluorescent localization and distribution assay of the two mutants showed no differences with the wildtype, as well as the numbers of cells that formed gap junction channels, indicating that they can not impair the conformation of the gap junctions. mutation is the most hot-spot in patients of Hunan province. The two mutants of Cx26,c.V371 and c.F115C,do not affect the conformation of gap junction after transfected into Hela cell,but whether the gap junction exist normal function need to do further research.
引文
[1]Van Camp, G., P. Willems and R. Smith, Nonsyndromic hearing impairment: unparalleled heterogeneity. Am J Hum Genet.,1997.60(4):p.758-764.
    [2]Kemperman, M.H., L.H. Hoefsloot and C.W. Cremers, Hearing loss and connexin 26. J R Soc Med,2002.95(4):p.171-7.
    [3]Willecke, K., S. Jungbluth, E. Dahl et al., Six genes of the human connexin gene family coding for gap junctional proteins are assigned to four different human chromosomes. Eur J Cell Biol,1990.53(2):p.275-80.
    [4]Mignon, C., C. Fromaget, M.G. Mattei et al., Assignment of connexin 26 (GJB2) and 46 (GJA3) genes to human chromosome 13q11→q12 and mouse chromosome 14D1-E1 by in situ hybridization. Cytogenet Cell Genet,1996. 72(2-3):p.185-6.
    [5]Kiang, D.T., N. Jin, Z.J. Tu et al., Upstream genomic sequence of the human connexin26 gene. Gene,1997.199(1-2):p.165-71.
    [6]Kelsell, D.P., J. Dunlop, H.P. Stevens et al., Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature,1997.387(6628):p. 80-3.
    [7]Lautermann, J., W.J. ten Cate, P. Altenhoff et al., Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res,1998. 294(3):p.415-20.
    [8]Kikuchi, T., R.S. Kimura, D.L. Paul et al., Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl),1995. 191(2):p.101-18.
    [9]Kelley, P.M., D.J. Harris, B.C. Comer et al., Novel Mutations in the Connexin 26 Gene (GJB2) That Cause Autosomal Recessive (DFNB1) Hearing Loss. The American Journal of Human Genetics,1998.62(4):p.792-799.
    [10]Denoyelle, F., D. Weil, M.A. Maw et al., Prelingual deafness:high prevalenceof a 30delG mutation in the connexin 26 gene. Hum Mol Genet,1997. 6(12):p.2173-7.
    [11]Kudo, T., K. Ikeda, S. Kure et al., Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet,2000.90(2):p.141-5.
    [12]Fuse, Y., K. Doi, T. Hasegawa et al., Three novel connexin26 gene mutations in autosomal recessive non-syndromic deafness. Neuroreport,1999.10(9):p. 1853-7.
    [13]Feng, Y., C. He, J. Xiao et al., [An analysis of a large hereditary postlingually deaf families and detecting mutation of the deafness genes]. Lin Chuang Er Bi Yan Hou Ke Za Zhi,2002.16(7):p.323-5.
    [14]Richard, G., T.W. White, L.E. Smith et al., Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Human Genetics,1998.103(4):p. 393-399.
    [15]D'Andrea, P., V. Veronesi, M. Bicego et al., Hearing loss:frequency and functional studies of the most common connexin26 alleles. Biochemical and Biophysical Research Communications,2002.296(3):p.685-691.
    [16]Bruzzone, R., V. Veronesi, D. Gom et al., Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Letters,2003.533:p.79-88.
    [17]Hung-Li Wang, Wen-Teng Chang, A. H. et al., Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J Neurochem,2003.84(4):p.735-742.
    [18]Murgia, A., E. Orzan, R. Polli et al., Cx26 deafness:mutation analysis and clinical variability. J Med Genet,1999.36(11):p.829-32.
    [19]Rabionet, R., L. Zelante, N. Lopez-Bigas et al., Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene. Hum Genet, 2000.106(1):p.40-4.
    [20]Wu, B.L., N. Lindeman, V. Lip et al., Effectiveness of sequencing connexin 26 (GJB2) in cases of familial or sporadic childhood deafness referred for molecular diagnostic testing. Genet Med,2002.4(4):p.279-88.
    [21]Liu, X.Z., X.J. Xia, X.M. Ke et al., The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet,2002.111(4-5):p.394-7.
    [22]Snoeckx, R.L., B. Djelantik, L. Van Laer et al., GJB2 (connexin 26) mutations are not a major cause of hearing loss in the Indonesian population. Am J Med Genet A,2005:135(2):p.126-9.
    [23]Sobe, T., S. Vreugde, H. Shahin et al., The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population. Hum Genet,2000.106(1):p.50-7.
    [24]Antoniadi, T., K. Gronskov, A. Sand et al., Mutation analysis of the GJB2 (connexin 26) gene by DGGE in Greek patients with sensorineural deafness. Hum Mutat,2000.16(1):p.7-12.
    [25]Antoniadi, T., R. Rabionet, C. Kroupis et al., High prevalence in the Greek population of the 35delG mutation in the connexin 26 gene causing prelingual deafness. Clin Genet,1999.55(5):p.381-2.
    [26]Neocleous, V., G. Portides, V. Anastasiadou et al., Determination of the carrier frequency of the common GJB2 (connexin-26) 35delG mutation in the Greek Cypriot population. Int J Pediatr Otorhinolaryngol,2006.70(8):p.1473-7.
    [27]Loffler, J., D. Nekahm, A. Hirst-Stadlmann et al., Sensorineural hearing loss and the incidence of Cx26 mutations in Austria. Eur J Hum Genet,2001.9(3):p. 226-30.
    [28]Janecke, A.R., A. Hirst-Stadlmann, B. Gunther et al., Progressive hearing loss, and recurrent sudden sensorineural hearing loss associated with GJB2 mutations--phenotypic spectrum and frequencies of GJB2 mutations in Austria. Hum Genet,2002.111(2):p.145-53.
    [29]Medlej-Hashim, M., M. Mustapha, E. Chouery et al., Non-syndromic recessive deafness in Jordan:mapping of a new locus to chromosome 9q34.3 and prevalence of DFNB1 mutations. Eur J Hum Genet,2002.10(6):p.391-4.
    [30]Casale, M., Low prevalence of the deafness-associated 35delG mutation in the connexin-26 (GJB2) gene in a Sicilian population. Clin Genet,2003.63(6):p. 541-2.
    [31]Lucotte, G. and A. Pinna, Elevated frequencies of the 35delG allele of the connexin 26 gene in Corsica, France. Clin Genet,2003.64(6):p.517-8.
    [32]Wang, Y.C., C.Y. Kung, M.C. Su et al., Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet,2002.10(8):p.495-8.
    [33]肖自安,Cx26 (GJB2)相互作用蛋白质的筛选与鉴定及其在遗传性非综合征性学语前聋中突变的分析(博士学位论文).2002.
    [34]Li, Q.Z., Q.J. Wang, F.L. Chi et al., [The roles of connexin genes in sporadic hearing loss population]. Zhonghua Yi Xue Za Zhi,2007.87(16):p.1097-101.
    [35]Roux, A.F., N. Pallares-Ruiz, A. Vielle et al., Molecular epidemiology of DFNB1 deafness in France. BMC Med Genet,2004.5:p.5.
    [36]吴伟锋,基于DHPLC的遗传性耳聋基因突变检测平台的建立和应用(硕士学位论文).2006.
    [37]Brobby, G.W., B. Muller-Myhsok and R.D. Horstmann, Connexin 26 R143W mutation associated with recessive nonsyndromic sensorineural deafness in Africa. N Engl J Med,1998.338(8):p.548-50.
    [38]Abe, S., S. Usami, H. Shinkawa et al., Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet,2000.37(1):p.41-3.
    [39]贺定华,GJB4和GJB2基因在遗传性耳聋中的研究(硕士学位论文).2004.
    [40]Marlin, S., E.-N. Garabedian, G. Roger et al., Connexin 26 Gene Mutations in Congenitally Deaf Children:Pitfalls for Genetic Counseling. Arch Otolaryngol Head Neck Surg,2001.127(8):p.927-933.
    [41]Kenna, M.A., B.-L. Wu, D.A. Cotanche et al., Connexin 26 Studies in Patients With Sensorineural Hearing Loss. Arch Otolaryngol Head Neck Surg,2001. 127(9):p.1037-1042.
    [42]Wilcox, S.A., K. Saunders, A.H. Osborn et al., High frequency hearing loss correlated with mutations in the GJB2 gene. Human Genetics,2000.106(4):p. 399-405.
    [43]L Bason, T.D., K Lewis, U Shah, W Potsic, A Ferraris, P Fortina, E Rappaport I, D Krantz, Homozygosity for the V37I Connexin 26 mutation in three unrelated children with sensorineural hearing loss. Clin Genet,2002.61(6): p.459-464.
    [44]Huculak, C., H. Bruyere, T.N. Nelson et al., V37I connexin 26 allele in patients with sensorineural hearing loss:evidence of its pathogenicity. Am J Med Genet A,2006.140(22):p.2394-400.
    [45]Palmada, M., K. Schmalisch, C. B贼mer et al., Loss of function mutations of the GJB2 gene detected in patients with DFNB1-associated hearing impairment. Neurobiology of Disease,2006.22(1):p.112-118.
    [46]Park, H.J., S.H. Hahn, Y.M. Chun et al., Connexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope,2000.110(9):p.1535-8.
    [47]肖自安,冯永and潘乾,非综合征性耳聋患者连接蛋白26基因突变的研究.中华耳鼻咽喉科学杂志,2000.35:p.188-191.
    [48]Robertson.JD, New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol,1957(3):p.1043-1048.
    49. Dermietzel, R., T.K. Hwang and D.S. Spray, The gap junction family:structure, function and chemistry. Anat Embryol (Berl),1990.182(6):p.517-28.
    [50]Musil, L.S., A.C. Le, J.K. VanSlyke et al., Regulation of connexin degradation as a mechanism to increase gap junction assembly and function. J Biol Chem, 2000.275(33):p.25207-15.
    [51]Evans, W.H. and P.E. Martin, Gap junctions:structure and function (Review). Mol Membr Biol,2002.19(2):p.121-36.
    [52]Jiang, J.X. and D.A. Goodenough, Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A,1996.93(3):p.1287-91.
    [53]Ahmad, S., J.A. Diez, C.H. George et al., Synthesis and assembly of connexins in vitro into homomeric and heteromeric functional gap junction hemichannels. Biochem J,1999.339 (Pt 2):p.247-53.
    [54]Elfgang, C., R. Eckert, H. Lichtenberg-Frate et al., Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol,1995.129(3):p.805-17.
    [55]Cohen-Salmon, M., T. Ott, V. Michel et al., Targeted Ablation of Connexin26 in the Inner Ear Epithelial Gap Junction Network Causes Hearing Impairment and Cell Death. Current Biology,2002.12(13):p.1106-1111.
    [56]Kumar, N.M. and N.B. Gilula, The Gap Junction Communication Channel. Cell, 1996.84(3):p.381-388.
    [57]Willecke, K., J. Eiberger, J. Degen et al., Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem,2002.383(5):p. 725-37.
    [58]Simon, A.M. and D.A. Goodenough, Diverse functions of vertebrate gap junctions. Trends Cell Biol,1998.8(12):p.477-83.
    [59]Bruzzone, R., Learning the language of cell-cell communication through connexin channels. Genome Biol,2001.2(11):p. REPORTS4027.
    [60]Goodenough, D., J. Goliger and D.L. Paul, Connexins, connexons, and intercellular communication. Annu Rev Biochem,1996.65:p.475-502.
    [61]Krutovskikh, V. and H. Yamasaki, Connexin gene mutations in human genetic diseases. Mutation Research/Reviews in Mutation Research,2000.462(2-3):p. 197-207.
    [62]Suchyna, T.M., L.X. Xu, F. Gao et al., Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature,1993. 365(6449):p.847-9.
    [63]Martin, P.E., R.J. Errington and W.H. Evans, Gap junction assembly:multiple connexin fluorophores identify complex trafficking pathways. Cell Commun Adhes,2001.8(4-6):p.243-8.
    [64]Oh, S., Y. Ri, M.V. Bennett et al., Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron,1997. 19(4):p.927-38.
    [65]Kronengold, J., E.B. Trexler, F.F. Bukauskas et al., Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels. J Gen Physiol,2003.122(4):p. 389-405.
    [66]Skerrett, I.M., J. Aronowitz, J.H. Shin et al., Identification of amino acid residues lining the pore of a gap junction channel. J Cell Biol,2002.159(2):p. 349-60.
    [67]Toloue, M.M., Y. Woolwine, J.A. Karcz et al., Site-directed mutagenesis reveals putative regions of protein interaction within the transmembrane domains of connexins. Cell Commun Adhes,2008.15(1):p.95-105.
    [68]Dahl, G., R. Werner, E. Levine et al., Mutational analysis of gap junction formation. Biophys J,1992.62(1):p.172-80; discussion 180-2.
    [69]Hennemann, H., G. Kozjek, E. Dahl et al., Molecular cloning of mouse connexins26 and-32:similar genomic organization but distinct promoter sequences of two gap junction genes. Eur J Cell Biol,1992.58(1):p.81-9.
    [70]White, T.W., D.L. Paul, D.A. Goodenough et al., Functional analysis of selective interactions among rodent connexins. Mol Biol Cell,1995.6(4):p. 459-70.
    [71]Rubin, J.B., V.K. Verselis, M.V. Bennett et al., Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys J,1992.62(1):p.183-93; discussion 193-5.
    [72]White, T.W., R. Bruzzone, S. Wolfram et al., Selective interactions among the multiple connexin proteins expressed in the vertebrate lens:the second extracellular domain is a determinant of compatibility between connexins. J Cell Biol,1994.125(4):p.879-92.
    [73]Paemeleire, K., P.E. Martin, S.L. Coleman et al., Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43,32, or 26. Mol Biol Cell, 2000.11(5):p.1815-27.
    [74]Castro, C., J.M. Gomez-Hernandez, K. Silander et al., Altered formation of hemichannels and gap junction channels caused by C-terminal connexin-32 mutations. J Neurosci,1999.19(10):p.3752-60.
    [75]TenBroek, E.M., P.D. Lampe, J.L. Solan et al., Ser364 of connexin43 and the upregulation of gap junction assembly by cAMP. J Cell Biol,2001.155(7):p. 1307-18.
    [76]Torok, K., K. Stauffer and W.H. Evans, Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem J,1997.326 (Pt 2):p. 479-83.
    [77]Falk, M.M., L.K. Buehler, N.M. Kumar et al., Cell-free synthesis and assembly of connexins into functional gap junction membrane channels. Embo J, 1997.16(10):p.2703-16.
    [78]Maestrini, E., B.P. Korge, J. Ocana-Sierra et al., A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Hum Mol Genet,1999.8(7): p.1237-43.
    [79]Heathcote, K., P. Syrris, N.D. Carter et al., A connexin 26 mutation causes a syndrome of sensorineural hearing loss and palmoplantar hyperkeratosis (MIM 148350). J Med Genet,2000.37(1):p.50-1.
    [80]van Steensel, M.A., M. van Geel, M. Nahuys et al., A novel connexin 26 mutation in a patient diagnosed with keratitis-ichthyosis-deafness syndrome. J Invest Dermatol,2002.118(4):p.724-7.
    [81]Nyquist, G.G., C. Mumm, R. Grau et al., Malignant proliferating pilar tumors arising in KID syndrome:a report of two patients. Am J Med Genet A,2007. 143(7):p.734-41.
    [82]Richard, G., N. Brown, A. Ishida-Yamamoto et al., Expanding the phenotypic spectrum of Cx26 disorders:Bart-Pumphrey syndrome is caused by a novel missense mutation in GJB2. J Invest Dermatol,2004.123(5):p.856-63.
    [83]van Geel, M., M.A. van Steensel, W. Kuster et al., HID and KID syndromes are associated with the same connexin 26 mutation. Br J Dermatol,2002.146(6): p.938-42.
    [84]Grifa, A., C.A. Wagner, L. D'Ambrosio et al., Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet,1999. 23(1):p.16-8.
    [85]Lamartine, J., G. Munhoz Essenfelder, Z. Kibar et al., Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nat Genet,2000.26(2):p.142-4.
    [86]Macari, G., M. Landau, P. Cousin et al., Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am J Hum Genet,2000. 67(5):p.1296-301.
    [87]Xia, J.H., C.Y. Liu, B.S. Tang et al., Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet,1998.20(4):p.370-3.
    [88]Richard, G., L.E. Smith, R.A. Bailey et al., Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet,1998.20(4):p. 366-9.
    [89]Bergoffen, J., S.S. Scherer, S. Wang et al., Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science,1993.262(5142):p.2039-42.
    [90]Casasnovas, C., I. Banchs, J. Corral et al., Clinical and molecular analysis of X-linked Charcot-Marie-Tooth disease type 1 in Spanish population. Clin Genet, 2006.70(6):p.516-23.
    [91]Chung, K.W., I.N. Sunwoo, S.M. Kim et al., Two missense mutations of EGR2 R359W and GJB1 V136A in a Charcot-Marie-Tooth disease family. Neurogenetics,2005.6(3):p.159-63.
    [92]Mackay, D., A. Ionides, Z. Kibar et al., Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet,1999.64(5):p.1357-64.
    [93]Kyo, N., H. Yamamoto, Y. Takeda et al., Overexpression of connexin 26 in carcinoma of the pancreas. Oncol Rep,2008.19(3):p.627-31.
    [94]Hong, R. and S.C. Lim, Pathological significance of connexin 26 expression in colorectal adenocarcinoma. Oncol Rep,2008.19(4):p.913-9.
    [95]Ezumi, K., H. Yamamoto, K. Murata et al., Aberrant expression of connexin 26 is associated with lung metastasis of colorectal cancer. Clin Cancer Res, 2008.14(3):p.677-84.
    [96]Jiang, J.X., D.L. Paul and D.A. Goodenough, Posttranslational phosphorylation of lens fiber connexin46:a slow occurrence. Invest Ophthalmol Vis Sci,1993. 34(13):p.3558-65.
    [97]Teubner, B., V. Michel, J. Pesch et al., Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet, 2003.12(1):p.13-21.
    [98]Nelles, E., C. Butzler, D. Jung et al., Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc Natl Acad Sci USA,1996.93(18):p.9565-70.
    [99]Temme, A., A. Buchmann, H.D. Gabriel et al., High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr Biol, 1997.7(9):p.713-6.
    [100]Simon, A.M., D.A. Goodenough, E. Li et al., Female infertility in mice lacking connexin 37. Nature,1997.385(6616):p.525-9.
    [101]Kirchhoff, S., E. Nelles, A. Hagendorff et al., Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr Biol,1998.8(5):p.299-302.
    [102]Reaume, A.G., P.A. de Sousa, S. Kulkarni et al., Cardiac malformation in neonatal mice lacking connexin43. Science,1995.267(5205):p.1831-4.
    [103]Gong, X., E. Li, G. Klier et al., Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell,1997.91(6):p.833-43.
    [104]Gerido, D.A. and T.W. White, Connexin disorders of the ear, skin, and lens. Biochimica et Biophysica Acta (BBA)-Biomembranes,2004.1662(1-2):p. 159-170.
    [105]Deschenes, S.M., J.L. Walcott, T.L. Wexler et al., Altered trafficking of mutant connexin32. J Neurosci,1997.17(23):p.9077-84.
    [106]Martin, P.E., S.L. Coleman, S.O. Casalotti et al., Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum Mol Genet,1999.8(13):p.2369-76.
    [107]Rouan, F., T.W. White, N. Brown et al., trans-dominant inhibition of connexin-43 by mutant connexin-26:implications for dominant connexin disorders affecting epidermal differentiation. J Cell Sci,2001.114(Pt 11):p. 2105-13.
    [108]VanSlyke, J.K., S.M. Deschenes and L.S. Musil, Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell,2000.11(6):p.1933-46.
    [109]S. Prasad, R.A.C.G.E.G.R.J.H.S., Genetic testing for hereditary hearing loss: Connexin 26 (GJB2) allele variants and two novel deafness-causing mutations (R32C and 645-648delTAGA).2000. p.502-508.
    [110]Naray-Fejes-Toth, A. and G. Fejes-Toth, Subcellular localization of the type 2 llbeta-hydroxysteroid dehydrogenase. A green fluorescent protein study. J Biol Chem,1996.271(26):p.15436-42.
    [111]Wang, H.G., U.R. Rapp and J.C. Reed, Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell,1996.87(4):p.629-38.
    [112]Pedraza, L., L. Fidler, S.M. Staugaitis et al., The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron, 1997.18(4):p.579-89.
    [113]Hanakam, F., R. Albrecht, C. Eckerskorn et al., Myristoylated and non-myristoylated forms of the pH sensor protein hisactophilin Ⅱ:intracellular shuttling to plasma membrane and nucleus monitored in real time by a fusion with green fluorescent protein. Embo J,1996.15(12):p.2935-43.
    [114]Yano, M., M. Kanazawa, K. Terada et al., Visualization of mitochondrial protein import in cultured mammalian cells with green fluorescent protein and effects of overexpression of the human import receptor Tom20. J Biol Chem, 1997.272(13):p.8459-65.
    [115]Holm, I., A. Mikhailov, T. Jillson et al., Dynamics of gap junctions observed in living cells with connexin43-GFP chimeric protein. Eur J Cell Biol,1999. 78(12):p.856-66.
    [116]Jordan, K., J.L. Solan, M. Dominguez et al., Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells. Mol Biol Cell,1999.10(6):p.2033-50.
    [117]Falk, M.M., Connexin-specific distribution within gap junctions revealed in living cells. J Cell Sci,2000.113 (Pt 22):p.4109-20.
    [118]Falk, M.M. and U. Lauf, High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech,2001.52(3):p.251-62.
    [119]Laird, D.W., K. Jordan and Q. Shao, Expression and imaging of connexin-GFP chimeras in live mammalian cells. Methods Mol Biol,2001.154:p.135-42.
    [120]Laird, D.W., K. Jordan, T. Thomas et al., Comparative analysis and application of fluorescent protein-tagged connexins. Microsc Res Tech,2001. 52(3):p.263-72.
    [121]Lauf, U., P. Lopez and M.M. Falk, Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett,2001.498(1):p.11-5.
    [122]. Lopez, P., D. Balicki, L.K. Buehler et al., Distribution and dynamics of gap junction channels revealed in living cells. Cell Commun Adhes,2001.8(4-6):p. 237-42.
    [123]Thomas, T., K. Jordan and D.W. Laird, Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions. Cell Commun Adhes,2001.8(4-6):p.231-6.
    [124]Lauf, U., B.N. Giepmans, P. Lopez et al., Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci U S A,2002.99(16):p.10446-51.
    [125]J.萨姆布鲁克,DW.拉塞尔著。黄培堂等译。,《分子克隆实验指南》(第三版).1399-1405.
    [126]Raquel Rabionet, P.G.X.E., Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum. Mutat,2000. 16(3):p.190-202.
    [127]吴伟峰,冯永,胡浩et al.,运用变性高效液相色谱(DHPLC)对中国人非综合征性耳聋进行GJB2基因突变分析.中国耳鼻咽喉颅底外科杂志2006.12(4):p.241-247.
    [1]FortnumL, H. M., A. Q. Summerfield, D. H. Marshall, et al. Prevalence ofpermanent childhood heating impairment in the United Kingdom andimplications for universal neonatal heating screening:questionnaire basedascertainment study. Bmji,2001.323(7312):536-40.
    [2]Resendes, B. L., RE. Williamson, and C. C. Morton. At the speed Of sound: gene discovery. mtheauditory system. Am JHumGenet,2001.69(5):923-35.
    [3]rekin, M., K. S. Amos, and A. Pandya. Advances in hereditary deafnessLanect,2001.358(9287):1082-90.
    [4]VanCamp, G and R.Smith. Hereditary Hearing Loss Homepage
    [5]Wang,Q. J., C. Y Ln, N. Li,et al. Y-linked inheritance o fnonsyndromic hearing impairment in a large Chinese family. J Med Genet,2004.41(6):e8O.
    [6]Morton,C. C., Genetics. genomies and gene discovery inthe auditory system. Hum Mol Genet.2002.11(10):1229-40.
    [7]胡浩,邬玲仟,梁德生等非综合征型感音神经性聋相关基因研究进展.中华耳鼻咽喉头颈外科杂志,2005,40(8):633-7。
    [8]Fransen E. Van Camp G. nle COCH gene:a frequent cause of hea-ring impairment and vestibular dysfunction?Br J Audio.1999; 33:297-302.
    [9]Usami, S., k.Takahashl, I. Yuge,et al. Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction,but not of Meniere's disease.Eur J Hum Genet,2003.1110):744-8.
    [10]Khetarpal U. Schuknecht HF, Gacek RR, et al. Autosomal dominant sensofineural hearing loss. Pedigrees, audiologic findings, an d temporal bone findings in two kindreds. Arch Otolaryngol Head Neck Surf 1991; 117: 1032-1042.
    [11]Manolis,E.N., N. Yandavi,J. B. Nadol. Jr. et al. A gene for. on-syndromie autosomal dominant progressive po-di,gual semorineural hearing loss maps to chromosome 14q12-13. Hum Mol Genet,1996.5(7):1047-50.
    [12]Robertson,N. G, L. Lu, S. Heller,et al. Mutations in a novel cochlear gene Cause. DFNA9,a human nonsyndromic deafness with vestibular dysfunction.Nat Genet,1998.20(3):299.303.
    [13]Huygen PLM, Verhagen WIM. Peripheral vestibular and vestibulo。ocular dysfunction in hereditary disorders. A review of the literature an d a report on some additional findings. J Vestib Res.1994:4:81-104.
    [14]Born SJH, Kunst HPM, Huygen PLM, et al. Nonsyndromal autosomal hearing impairment:ongoing phenotypical characterization of genotypes. Br J AudioL 1999; 33:335-348.
    [15]Verhagen WIM, Bom SJH, Huygen PLM, et al. Familial pmgresskevestib-ulocochlear dysfunction caused by a COCH mutation(DFNA9). Arch NeuroL 2000; 57:1045.1047.
    [16]Verhagen W IM, Bom SJH, Fransen E, et aL Hered itary cochleovestibulardysfunction dueto a COCH genemutation(DFNA9):a follow-up study of a family. Clin OtolaryngoL 2001; 26:477-483.
    [17]Verstreken M, Declan F, Wuyts FL, et al. Hereditary otovestibular dysfunction and Meniere's disease in a large Belgian family is caused by a missense mutation in the COCH gene. Otol Neurotology.2001; 22:874-881.
    [18]Street,V.A.. J. C. Kallmalx,N. G Robert. et,al.Anovel DFNA9 mutation in the vWFA2 domaia of COCH alters a conserved cysteine residue and intrachain. disulfide bond formation resulting in progressive hearing loss and site-specific vestibular and central oculomotor dysfunction. Am J Med Genet.A,2005.139(2):86-95.
    [19]Strom TM。Hortrm~el K, Hofmann S al. Diabetes insipidus. diabetes mellitus, optic atrophy and deafness(DIDMOAD)caused by mutations in a novel gene(wolfrarnin)coding for a predicted transmembrane protein. Hum Mol Genet,1998,7(13):2021
    [20]BespalovaJ. N., G Van Camp, S. J. Bom,et al. Mutations in the Wolfram syndrome 1 gene(WFS1)are a common cause of low frequency semorineural hearingloss. Hum Mol Genet. et,2001.10(22):2501-8.
    [21]Young,T. L., E. Ives,E. Lylleh. et al. Non-syndromie progressive hearing loss DFNA38 is caused by beterozygous missense mutation in the Wolfram syndrome gene WFS1. Hum Mol(Genet,2001.10(22):2509-14.
    [22]Czyms,K, S. Thys, L. Van Laer.et al. The WFS1 gene, responible for low frequency scmorineural hearing loss and Wolfram syndrome,is expressed in a variety of inner ear cells,Histochem Cell Biol.2003.119(3):247-56.
    [23]Strom,T. M., k Hortnagel S. Hofmann,. et al. Diabetes imipidus, diabetes mellitus, optic atrophy and deafness(DIDMOAD)caused by mutations in a novel gene(wolframin)coding for a predicted trallsmelTlbrane protein. Hum Mol Genet,1998.7(13):2021-8.
    [24]Takeda,K..H. Inoue, Y Tanizawa,et al. WFSl(Wolfram syndrome 1)gene product:predominant subcellular localization to endoplasmic reticulum in cultured ceils and neuronal expression in rat brain. Hum Mol Genet,2001.1 0(5):477-84.
    [25]Gurfler,N., Y IOta,A. Mh-Fe, et al. Two families with nonsyndromic low-frequency hearing loss harbor novel mutation sin Wolfram syndrome gene 1. J MoI Med,2005.83(7):553-60.
    [26]Lynch,E.D..M. k Lee, J. E. Morrow,et al. Nonsyndromic deafness DFNAI associated with mutation of a human homolog of the Drosophila gene diaphanous Science,1997.278(5341):1315-8.
    [27]Inoue,H..Y Tanizawa,J. Wasson,et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet,1998.20(2):143-8.
    [28]SwiR,RG, M. H, Poly meropoulos o R.Torms,ct al. Predisposition of Wolff am syndrome heterozygotes to psychiatric illness. Mol Psychiatry,1998.3(1):86-91.
    [29]Crym, k, M. Pfister,R. J. Pennings. q, ct al. Mutations in the WFS1 gene that cause. low-frequency sensorineural hearing loss arc small non-inactivating mutations. Hum Genet,2002. 110(5):389-94.
    [30]Guilford,P..S. Ben Arab, S. Blanchard, et al. A non-syndrome form of neurosensory recessive deafness maps to the pericentromerie region of chromosome 13q. Nat Genet,1994.6(1):24-8.
    [31]Kelsell, D. E, J. Dunlop,H. E Stevens, Ct al. Connexin 26 mutations in hereditary non-syndromic semorineural deafness Nature.1997.387(6628):80-3.
    [32]Kikuchi T, Kimura RS, Paul DL, et al. Gapjunction systems in the mammalian cochlea[J]. Brain Res Rev,2000,32:163
    [33]Denoyelle, E, G Lina-Granade, H. Plauchu,et al. Connexin 26 gene linked to adominantdeafness. Nature.1998.393(6683):319-20.
    [34]Richard,G, T.W.White, L. E. smith,et al. Functional defects of Cx26 resulting from a heterozygom missense mutation in a family with dominant deaf-mutismand palmoplantar keratoderma. Humc,em,1998.103(4):393-9.
    [35]Richard,Q, F. Rouan,C. E. W'dloughby,et al. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome.Am J Hum Genet,2002.70(5):1341-8.
    [36]Kenneson,A, K.Van Naarden Braun,and C. Boyle. GJB2(connexin 26) variants and nonsyndromic sensorineural hearing IOSS:a HuGE review. Goner Mcd,2002.4 (4) 258-74.
    [37]Hismi 13o, Yilmaz ST, Incesulu A, et al. Effects of GJB2 geno-types on the audiological phenotype variability is present for all genotypes[J]. Int J Pediatr Otorhinolaryngol,2006,70:1687
    [38]Denoyelle, F., D. Weft, M. A. Maw,et al. PreUngual deafness:high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet,1997.6(12): 2173-7.
    [39]Estivill, X..P Fortina,S. Surrey,et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness Lancet,1998.351(9100):394-8.
    [40]Zelante, L..P. Gasparini.X. Estivill,et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness(DFNB1)in Mediterraneans.Hum Mol Genet,1997.6(9):1605-9.
    [41]Dong,J,D. 1LKatz,C. M. Eng,etal. Nonradioactive detection of the common Connoxin 26 167delT and 35delG mutations and frequencies among Ashkenazi Jews.Mol Gonot Metab,2001.73(2):160-3.
    [42]Lerer,I., M. Sagi, E. Malamud, et al. Contribution of connexin 26 mutations to nonsyndromic deafness in AshkeDazi patients and the variable phenotypic effect of the mutation 167delT.AmJMedGenet,2000.95(1):53-6.
    [43]Morell,RJ.,HJ. Kim,L. J. Hood,et al. Mutations in the~oRllexin 26 gene(GJB2)among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med,1998.339(21):1500-5.
    [44]Kudo, T, K Ikeda,S. Kure,et al. Novel mutations in the connexin 26 gene(GJB2)responsible for childhood deafness in the Japanese populatiog Am J MedGenet,2000.90(2):141.5.
    [45]Liu,X. Z., XJ. Xia,X. M. Ke, et al. The prevalence of connexin 26(Gin2)mutations in the Chinese population. Hum Genet,2002.111(4-5): 394-7.
    [46]Park,HJ., S. H. Hahn,YM. Chun,et al. Conuexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope,2000.110(9):1535-8.
    [47]戴朴,于飞,刘新,等。18个省市聋校学生非综合征性聋病分子流行病学研究(I)-GJB2 235delC和线粒体DNA 12SrRNA A1555G突变筛查报告[J],中华耳科学杂志,2006,4:1
    [48]Hamelmaon,C, GK Amedofu,K. Albrecht,et al. Pattern of connexin 26(GJB2)mutations causing sensorineural hearing imvairment in Ghana. Hum Murat,2001.18(1):84.5.
    [49]del Castillo, I., M. Villamar,M. A. Moreno-Pelayo, et al. Adeletion involving the conncxin 30 gene in nonsyndromic hearing impairment N Engl J Med,2002.346(4):243.9.
    [50]Li, X. C., L. A. Everett,A.K.Lalwani, et al. A mutation in PDS causes nonsyndromic recessive deafness.Nat Genet,1998.18(3):215-7.
    [51]Everett,L. A., H, MorslL D. IC Wu,et al. Expression pattern of the mouse ortholog of the Pendred's syndrome gene(Pds)suggests a key role for pendrin in the inner ear.Pro cNatl Acad Sci USA,1999.96(17):9727-32.
    [52]Everett,L.A., B.Glaser,J.C. Beck,et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene(I'DS). Nat Genet,1997.17(4):411-22.
    [53]Borck,G, C Roth,U. Martine,et al. Mutations in the PDS gene in German families with Pendred's syndrome:V138F is a founder mutation. J Clin Endocdnol Metab,2003.88(6):2916.21.
    [54]Coyle, B., W. Reardon,J. A. Herbrick,ct al. Molecular analysis of the PDS gene in Pendred syndrome. Hum Mol Genet,1998.7(7):1105-12.
    [55]Park,H. J., S. Shaukat,X. Z. Liu,ct al. Origins and frequencies of SLC26A4 (PDS)mutations in east and south Asians:global implications for theepidemiology of deafness. J Med Genet,2003.40(4):242-8.
    [56]Usami, S., S. Abe, M. D. Weston,et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet,19919.104(2):188-92.
    [57]de Kok,Y. J., S. M. vail der IVharel. M. Bitner-Olindzic,et al. Association between X-linked mixed deafnss and mutations in the POU domain gene POU3F4. Science.1995.267(5198):685-8.
    [58]Phippard,D., L. Lu,D.Lee,et al. Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci, 1999.19(14):5980-9.
    [59]Talbot,J. M. and D. F. Wilson. Computed tomographic diagnosis Of X-linked congenital mixed deafness, fixation of the stapedial footplate, andperilymphatie gusher. AmJ Otol,1994.15(2):177-82.
    [60]Phelps, PD., W.Reardon,M. Pembrey,et al. X-linked deafness, stapes gushers and a distinctive defect of the inner ear.Neuroradiology,1991.33(4):326-30.
    [61]杨淑芝,袁慧军,白琳娜,等.Waardenburg综合征Ⅱ型家系研究.中华医学杂志,2005,185(38):2686-2690
    [62]Friedman,T. B., J. M. Sehultz,T.13en-Yosef,et al. Recent advances in the understanding of syndromic forms of hearing loss. Ear Hear,2003.24(4): 289.302.
    [63]Read,A,P.and V.E. Newton. Waardenburg syndrome. J Med Genet,1997.34(8): 656-65.
    [64]Sanelaez-Martin,M., A.Rodriguez-Gareia,J. Perez-Losada, et,al. SLUG(SNA12) deletions in patients with Waardenburg disease Hum Mol Genet,2002.11(25): 3231-6.
    [65]Cullen RD,Zdanski C, Roush P,et al.Cochlear implants in Waardenburg syndromeLaryngoscope,2006,116(7):1273-1275
    [66]Tagra S, Talwar AK, Walia RL, et al. Waardenburg syndrome. Indian J Dermatol Venereol Leprol,2006,72(4):326
    [67]Vernon,M. Usher's syndrome-deafness and progressive blindness. Clinical cases, prevention,theory and literature survey. J Chronic Dis,1969.22(3):133-51.
    [68]Smith,RJ., C. I. Berlin,J. E.Hejtmancilet al., Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. Am J Med Genet,1994.50(1):32-8.
    [69]Allmect,Z. M., S. Riazuddin,S. Riazuddin,et al. The molecular genetics of Usher syndrome. Clin Genet,2003.63(0:431-44.
    [70]Eudy,J. D., M. D. Weston,S. Yao, et al. Mutation of a gene encoding a protein with extra cellular matrix motifs in Usher syndrome type a. Science, 1998.250(5370):1753-7.
    [71]Joemuu,T., R.Hamalainen,B. Yuan,et al. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3. Am J Hum Goner,2001.69(4):673-84.
    [72]Weston,M. D., M. W.Luijendijk,K. D. Humphrey,et al. Mutatiom in the VLGRI gene implicate G-protein signaling in the pathogenesis of Usher syndrome typeⅡAmJHumGenet,2004.74(2):357-66.
    [73]Mazzuec,o, G, P. Barsotti,Ao. Mu,ta,et al. Ultrastractural and findings in Alport's syndrome:a study of 108 patients from 97 Italian families with particular emphasis 011 COL4A5 gene mutation correlation. J Am Soc Nephrol, 1998.9(6):1023-31.
    [74]Barker,D. F., S. L. Hostikka.J.Zhou,et al. Identification of mutations in the COL4A5 collagen gene in Alport syndome. Science,1990.248(4960):1224-7.
    [75]Zhang, X., J. Zhou,S.T Recdcrs, ct aL. Stricture of the human type IV collagen COL4A6 gene, which is mutated in Alport syndrome-associated leiomyomatosis Genomics,1996.33(3):473-9.
    [76]David JW. Single gene disorders or complex traits:lessons from the thalassaemias and other monogenic diseases. BMJ,2000,321(7269): 1117-1120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700