用户名: 密码: 验证码:
SCR烟气脱硝模拟中试系统研发及催化剂制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物是造成大气污染的主要污染源之一。选择性催化还原(SCR)是目前国际上应用最广泛、技术最成熟的高效烟气脱硝工艺。而我国SCR技术研究起步较晚,迅速壮大的烟气脱硝市场现今完全被国外企业所垄断,SCR技术国产化迫在眉睫。因此,研发一套SCR模拟中试研究平台,结合SCR催化剂的平行开发,为最终开发出符合我国国情的具有自主知识产权的全套SCR烟气脱硝技术奠定基础,具有十分广阔的市场效益和环境效益。
     本文以普通工业窑炉烟气脱硝为切入点,结合前人的研究成果和实践经验,以化工原理为基础,借鉴各类化工工艺流程,设计、建造了一套近似实际工况、可全面开展SCR各关键技术单项及综合研究的SCR烟气脱硝模拟中试研究系统。该系统具备以下功能及特点:
     (1)系统可提供试验范围内的各类源烟气,保证各类研究在近似实际烟气条件下开展,且主烟气直接由燃烧器供给,稳定可靠,温控连续,NO_x浓度可通过自主开发的NO_x发生装置按需准确配给,从源头上保障了研究成果的宽覆盖面及可靠性;
     (2)自行设计的喷氨系统可实现氨氮比在0.6~1.6范围内的连续可控投加,对应各类催化剂,可综合研究喷氨方式、喷氨量、雾化效果、氨逃逸率及脱硝效果的影响规律,为工业系统的喷氨系统设计及专属催化剂的运行参数确定提供支持;
     (3)通过改变静态混合器中混合元件的单元结构、组数及位置可开展“混合”这一重要单元的综合研究,进行工业混合器的优化设计,为经济、高效地达到理想的混合效果奠定基础;
     (4)通过各类气流分布组件的组合,利用专有气流分布检测系统进行测试,可综合开展SCR烟气脱硝系统的流场调控研究,结合数值模拟计算,为最终快速、准确地进行工业装置的气流分布优化设计提供技术支撑;
     (5)反应器内可自由装设一至三层各类规格的脱硝催化剂,可综合开展催化剂的工业化活性试验研究及运行规律研究,为早日开发出我国自有的高效商业整体式脱硝催化剂、完成SCR全套工艺设计的国产化提供基础平台。
     此外,本文还对SCR脱硝催化剂的制备进行了初步的探索,依据前人的研究成果进行了催化剂的试制,并采用扫描电镜对制备出的催化剂样品进行了表征研究,为找到符合
    SCR反应要求的活性成分及相应的载体的匹配及制备工艺的选择做了些许探索。
The nitrogen oxide (NO_x) is one of the main pollution sources which result in air pollution. The Selectivity Catalyst Reduction (SCR) which currently is the most wide used efficiently technique applies in flue gas denitrification. But the technical research of SCR of our country starts relatively late, the strengthened rapidly flue gas denitrification market and is totally monopolized by the overseas enterprise now, SCR technological production domesticization is extremely urgent. So, research and develop one and SCR simulating pilot plant scale experimental study platforms, combine the parallel development of SCR catalyst, flue gas denitrification technology and establish the foundation in order to develop flue gas of complete SCR with independent intellectual property right which accords with the national conditions of our country finally, have very wide market benefit and environmental benefit.
    This text flue gas denitrification as the breakthrough point with the ordinary flue gas of industrial kiln, combine forefathers' research results and practical experience, based on chemical principle, draw lessons from all kinds of chemical technological process, design, build one approximate actual operating mode, can launch SCR every key technology individual event and research of SCR flue gas denitrification simulating pilot plant scale experimental study system in an all-round way. This system possesses the following function and characteristic:
    (1) The system can offer the experiment all kinds of research is launched under the approximate real flue gas condition, and the main flue gas is supplied from the burning device directly, it is reliable to be steady, accuse of it in succession warmly, NO_x density can press and need accurate ration through NO_x that is developed independently, have ensured the wide coverage rate and dependability of the research results from source;
    (2) The ones that designed gushed out the ammonia system and can realize the ammonia
     nitrogen than shooting adding continuously and controllably in 0.6-1.6 ranges by oneself, all kinds of corresponding catalyst, very comprehensive research gushes out ammonia way, amount of ammonia gushed out, the ammonia slip and influence of flue gas denitrification efficiency, confirm the support of offering for the operation parameter which gushes out ammonia system designing and exclusive catalyst of industry's system;
     (3) Can be launched through changing the unit structure, group counting and position of mixing the component in the static mixer of behavior "Mix" Comprehensive research of this important unit, carry on the optimization design of the industry mixer, for economy, reach the ideal result of mixing and establish the foundation high-efficiently;
     (4) Distribute the association of the package through all kinds of air currents, utilize the exclusive air current to distribute the detection system to test, can launch SCR flue gas and take off the flowing in feld and adjusting and controlling and studying of the nitre system synthetically, combine the numerical simulation to calculate, offer technical support for the fact that the air current of carrying on the commercial plant fast, accurately;
     (5) Can install denitrification catalyst of a all kinds of specifications to the third Floor freely in the reactor, can launch the industrialized active experimental study of the catalyst and operate the law to study synthetically, of high-efficient commerce in our country for the fact that will develop the own integral production domesticization that denitrification catalyst, finishes complete technological design of SCR of high-efficient commerce in our country as soon as possible.
     In addition, this text has also carried on preliminary exploration to preparation of SCR denitrification catalyst, having carried on the trial-production of the catalyst according to forefathers' research results, adopting and scanning the electric mirror will signify research to the catalyst sample preparing out, for is it accord with SCR react active composition and corresponding match and choice, preparation of craft of carrier of demand make some explore to find.
引文
[1] 黄诗坚.NOX的危害及其排放控制[J].电力环境保护,2004,20(1):24.
    [2] 严艳丽,魏玺群.NOx的脱除及回收技术[J].低温与特气,2000,18(4):25.
    [3] 李喆,徐国胜,何剑.氮氧化物污染治理技术的发展[C],中国环保产业协会电除尘委员会,第十一届全国电除尘学术会议,第三届全国脱硫学术会议论文集.武汉:《十一届全国电除尘学术会议论文集》编辑部,2005.664-670.
    [4] 孙德荣,吴星五.我国氮氧化物烟气治理技术现状及发展趋势[J].云南环境科学,2003,22(3):47.
    [5] 吴杰.V_2O_5-WO_3-MoO_3/TiO_2催化剂脱硝性能的试验研究[D].杭州:浙江大学,2006:10.
    [6] 刘炜,张俊丰,童志权.选择性催化还原法(SCR)脱硝研究进展[J].工业安全与环保,2005,31(1):26-27.
    [7] 路涛,贾双燕,李晓芸.关于烟气脱硝的SNCR工艺及其技术经济分析[J].现代电力,2004,21(1):20.
    [8] S Masuda, H Nakao. Control of NOx by positive and negative pulsed corona discharges [J]. IEEE Trans Ind Appl, 1990, 26(3): 374-383.
    [9] 张大欣,徐光,赵焰,刘静,黄湘.电子束半干法烟气净化试验装置[J].高技术通讯,2003,22(2):80-81.
    [10] 许行勇,徐建昌,李雪辉,王乐夫.固体吸附/再生法同时脱硫脱硝技术的研究进展[J].广州化工,2003,31(1):6.
    [11] 王德荣,林彦奇,赵蔚,宋刚,刘德才.利用焦炭吸附进行燃煤烟气脱硫脱氮技术的研究[J].环境保护科学,2002,28(2):4-6.
    [12] 蒋文举,毕列锋,李旭东.生物法废气脱硝研究[J].环境科学,1999,20(3):34.
    [13] 朱国荣,解永刚.SCR技术应用于国内大型燃煤电站锅炉的技术探讨[J].电站系统工程,2005,21(3):38.
    [14] 沈学静,王海舟.固定源NOx的排放控制及DeNOx催化剂的应用[J].钢铁,2000,35(9):70-71.
    [15] Economidis N V, Peria D A, Smimiotis P G. Comparison of TiO_2-based oxide catalysts for the selective catalytic reduction of NO: effect of aging the vanadium precursor solution [J]. Applie Catalysis, 1999, 23(1): 123-134.
    [16] Buenoa JMC, Bethkeb GK, Kungb MC, Kungb HH. Supported VPO catalysts for selective oxidation of butane Ⅲ: Effect of preparation procedure and SiO2 support [J]. Catal Today, 1998, 43(1): 101-110.
    [17] Kleemann M, Elsener M, Koebel M, Wokaun A. Investigation of the ammonia adsorption on monolithic SCR catalysts by transient response analysis [J]. Applied Catalysis B, 2000, 27(1): 238-242.
    [18] Baltensperger U, Markus A, Heinz W et al. Use of Positron-Emitting N for Studies of the Selective Reduction of NO by NH3 over Vanadia/Titania Catalyst at Very Low Reactant Concentrations [J]. Phys Chem, 1993, 97(4): 12325-12330.
    [19] 王树荣,王琦,王建华,高翔,骆仲泱,岑可法.选择性催化还原脱硝技术在燃煤电厂的应用及发展[J].电站系统工程,2005,21(4):13.
    [20] 赵宗让.电厂锅炉SCR烟气脱硝系统设计优化[J].中国电力,2005,28(11):69-74.
    [21] 管一明,胡宇峰.火电厂高飞灰布置SCR系统的主要组成和设备[J].电力环境保护,2004,20(4):25-27.
    [22] 杨忠灿,文军,徐党旗.燃煤锅炉的选择性催化还原烟气脱硝技术[J].广东电力,2006,19(2):17.
    [23] 李勇.后石电厂600MW机组烟气脱硝系统及工艺特点介绍[J].山东电力技术,2001,20(4):42.
    [24] 曲虹霞.催化脱除燃煤烟气中NOX的研究[D].南京:南京理工大学,2004:20.
    [25] 孙旭光,姚强,郭鲁阳.飞灰改性脱硝催化剂小型工业化试验研究[J].热力发电,2006,20(4):25.
    [26] 王松岭,董建勋,于遂影,黄其励,王智,王志强.选择性催化还原烟气脱硝技术中间试验[J].动力工程,2005,25(6):895-897.
    [27] 陈五平.无机化工工艺学[M].北京:化学工业出版社,2002:241-244.
    [28] 符德学.无机化工工艺学[M].西安:西安交通大学出版社,2005:315-317.
    [29] 李光华.工业化学[M].北京:化学工业出版社,1988:234-243.
    [30] 陈代宾.燃煤电厂选择性催化脱硝工艺的实践与探讨[J].电力环境保护,2003,19(3):21.
    [31] 郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002:536-541.
    [32] 周兴求.环保设备设计手册—大气污染控制设备[M].北京:化学工业出版社,2004:535-537.
    [33] 苏航.SCR系统中板式和蜂巢式催化剂的选取[J].电力环境保护,2005,21(2):28.
    [34] 张鹏.飞灰基SCR催化剂脱硝活性测试与表征[D].北京:清华大学,2005:10.
    [35] 张继光.催化剂制备过程技术[M].北京:中国石化出版社,2006:11-15.
    [36] 王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2001:38-68.
    [37] 许越.催化剂设计与制备工艺[M].北京:化学工业出版社,2003:209-234.
    [38] Khodayari R, Ingemar Odenbrand CU. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants [J]. Appl Catal, 2000, 30(3): 87-99.
    [39] 田柳青,叶代启.以堇青石蜂窝陶瓷为载体的新型钒氧化物脱氮催化剂研究[J].环境科学,2004,25(1):7-8.
    [40] 王建华,高翔,阎志勇,骆仲泱,倪明江.以多孔陶瓷为载体的V_2O_5-WO_3-SiO_2/TiO_2催化剂上NH_3选择性催化还原NO的实验研究[J].能源工程,2005,19(1):12.
    [41] Forzatti P. Present status and perspectives in deNOx SCR catalysis [J]. Applied Catalysis, 2001, 30(3): 221-236.
    [42] Krishnan A T, Boehman A L. Selective catalytic reduction of Nitric Oxide with ammonia at low temperature [J]. Applied catalysis, 1998, 18(3): 189-198.
    [43] 戴华,叶代启,田柳青.SO_2及水蒸汽对新型钒氧化物脱氮催化剂活性的影响[J].工业催化,2005,13(6):48.
    [44] 王建华.V_2O_5-WO_3-SiO_2/TiO_2和Ag/Al_2O_3催化剂选择性催化还原(SCR)氮氧化物的试验研究[D].杭州:浙江大学,2005:46-58.
    [45] 闫志勇.Ti,Al基SCR催化剂及其脱硝性能研究[D].杭州:浙江大学,2005:37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700