用户名: 密码: 验证码:
陕西、甘肃、四川三省小麦条锈菌分子群体遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是我国小麦安全生产最严重的威胁之一,病原菌为小麦条锈病菌(Puccinia striiformis West. f.sp. tritici)。该菌是一种活体寄生的、可远程气流传播的植物病原真菌,因气温和寄主缺乏在我国小麦主产区不能越夏,需要借助气流远程传播在数百到数千公里的范围内完成灭绝-再定殖循环,其越夏区群体对其完成周年循环和物种存续有着特殊重要的意义。陇南、川西北是条锈菌重要的越夏区之一,同时,由于该地区地形条件复杂,条锈菌在该区域内的川区、河谷地带可完成周年循环,因此,其被认为是我国小麦条锈菌流行区系中最为重要的核心区,它们不仅是菌源基地,而且还可能是新小种的主要策源地。目前,各地区条锈菌小种组成常被用为菌源区间传播的佐证之一,但小种组成不能作为流行区划的基本依据。利用传统的调查观察的方法对三省流行体系的推断需要分子遗传学研究的证实和完善,而且对该地区间的菌源传播关系还没有深入的研究。本研究以甘肃、陕西和四川三省的小麦条锈菌群体为研究对象,采用SSR标记进行分子群体遗传学分析,在研究各省小麦条锈菌群体遗传结构的基础上,分析三省小麦条锈菌的传播关系,为条锈菌的流行区划提供佐证。同时对陕、甘、川三省小麦条锈菌群体遗传的多样性、群体遗传结构特点及其演化过程进行系统的分子生态学分析。得出以下结果:
     1.四川省小麦条锈菌群体遗传多样性比较丰富,地区之间存在明显的差异,川西北和四川盆地的种群遗传多样性相对较高,而四川西南部和四川东南部的种群遗传多样性较低。四川小麦条锈菌群体存在一定的遗传分化,地区间的遗传变异仅占14.92%,群体间的遗传变异占总变异的23.06%,群体内遗传变异占60.02%,遗传变异主要存在于群体内部。基因流和共享基因型从分子水平证实了四川小麦条锈菌在地区间的传播,且川西北和四川盆地之间的菌源交流最为广泛。
     2.陕西省小麦条锈菌群体具有较高的遗传多样性,地区间无显著差异。条锈菌群体具有较低的遗传变异性,地区间遗传变异占12.26%,群体间10.88%,群体内76.86%,遗传变异主要存在于群体内部。基因流证实了小麦条锈菌在陕西省各地区间存在广泛的交换或短距离的移动,关中和陕南两个地区条锈菌群体存在显著的基因交流。
     3.甘肃省小麦条锈菌表现出很丰富的遗传多样性,这可能与其特殊的地理环境条件、小麦的栽培方式及品种有关。其中,陇南和天水地区的条锈菌遗传多样性高于平凉地区。其遗传分化程度很低。遗传分化系数(Gst)为0.17,群体内变异占总变异的83.0%。甘肃小麦条锈菌群体存在一定的基因流,各地区之间的基因流水平存在显著的差异,其中天水与平凉的基因流较强,天水与陇南、陇南与平凉次之,各个地区间菌源交流广泛。
     4.陕、甘、川三省的小麦条锈菌种群中,陇南种群、天水种群、四川盆地种群具有相对较高的遗传多样性,而川西南种群和川东南种群的遗传多样性水平相对较低。结果显示,三省小麦条锈菌群体具有丰富的SSR基因型,其中陇南、天水和平凉种群的基因型频率最高。三省小麦条锈菌群体具有较低的遗传变异性,遗传变异主要来自于群体内部。陕、甘、川三省总的小麦条锈菌基因流(Nm)为1.23,表明三省小麦条锈菌存在一定的菌源交流。
Stripe rust (or yellow rust) of wheat (Triticum aestivum), caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat in China. The fungus is an obligate biotrophic pathogen. Spores of it could be spread by wind in long distance, so making epidemics across large areas. Since Longnan and northwest of Sichuan is one of the most important over-summering areas of P. striiformis f. sp. tritici in China, the objective of this study was to determine genetic structure of P. striiformis f. sp. tritici populations in this region with TP-M13-SSR technique. The main results are summarized as following:
     1. Genetic diversity for the pathogen population from northwest of Sichuan and Sichuan Basin were much higher than that from other regions. Genetic differentiation was also investigated. The results showed that interregional genetic variation accounted for 14.92% of the total, while interpopulational variation 23.6% and intrapopulational variation 60.02%. Moreover, our molecular data on gene flow and genotype confirmed the migration of pathogen populations among regions in Sichuan, in particular, between northwest of Sichuan and Sichuan Basin.
     2. Stripe rust of wheat population in Shaanxi Province had a high genetic diversity, no difference between the different regions. Stripe rust populations had low genetic variability, genetic variation between regions accounted for 12.26%, while interpopulational variation 10.88%, 76.86% within populations, genetic variation exists within groups. Gene flow confirmed there is widespread throughout the range of exchange or short-distance movement in Shaanxi Province. Southern of Shaanxi and Guanzhong groups had significant gene flow.
     3. Genetic diversity of the population from Longnan and Tianshui were higher than that from Pingliang region. Genetic differentiation of it was so lower. The results showed that Gst is 0.17, intrapopulation variation 83%. Our molecular data on gene flow confirmed the migration of pathogen populations among regions in Gansu Province. In particularly, gene flow is stronger between Tianshui and Pingliang than other regions.
     4. Genetic diversity of the population from Longnan population, Tianshui population and Sichuan Basin population is higher than others’population in Shaanxi Province, Gansu Province and Sichuan Province. Result showed that SSR genetype of the stipe rust from three provinces was rich.
引文
陈长卿. 2008.中国小麦条锈菌分子群体遗传结构研究.陕西杨凌:西北农林科技大学博士论文
    陈雪燕,王亚娟,雒景吾,吉万全. 2007.陕西省小麦地方品种主要性状的遗传多样性研究.麦类作物学报, 27 (3) :456– 460
    韩冰. 2006.中法两国小麦条锈菌群体遗传多样性分析.沈阳:沈阳农业大学硕士论文
    贾瑞祥. 2006.中国小麦条锈菌主要流行小种DNA多态性分析.北京:中国农业大学硕士论文
    井金学,商鸿生,李振岐. 1992. ~(60)Coy射线对小麦条锈病菌夏孢子的生物学效应.核农学报,6(2): 116-120
    井金学,商鸿生,李振岐. 1993.紫外线照射对小麦锈菌生物学效应的研究.植物病理学报,24(4): 299-304
    井金学. 1992.紫外线诱导小麦条锈病菌毒性突变的研究.陕西杨凌:西北农业大学博士论文
    康振生,李振岐,商鸿生. 1994.小麦条锈菌夏孢子阶段核相状况的研究.植物病理学报,24(1):26-31
    康振生,李振岐,商鸿生. 1994.小麦条锈菌异核新菌系的筛选及核游离试验研究.植物病理学报,24(2): 101-105
    李振岐,商鸿生. 1989.小麦锈病及其防治.上海:上海科学技术出版社,121-128
    李振岐,曾士迈. 2002.中国小麦锈病.北京:中国农业出版社,224-230
    李振岐. 1980.我国小麦品种抗条锈性丧失原因及其解决途径.中国农业科学, 13(3): 72-76
    刘志斋,王天宇,黎裕. 2007. TP-M13-SSR技术及其在玉米遗传多样性研究中的应用.玉米科学,15(6): 10-15
    陆宁海. 2009.中国西北越夏区小麦条锈菌分子流行学研究.陕西杨凌:西北农林科技大学博士论文
    马青,康振生,李振岐. 1993.小麦条锈菌夏孢子芽管在小麦叶片上结合现象的研究.西北农业大学学报,21(2): 97-99
    马青,李振岐,商鸿生. 1991.小麦条锈菌夏孢子芽管结合现象的观察.西北农业大学学报,S1:45-48
    商鸿生,井金学,李振岐. 1994.紫外线诱导小麦条锈菌毒性突变的研究.植物病理学报,25(4): 347-351
    单卫星,陈受宜,吴立人,李振岐.1995.中国小麦条锈菌流行小种的RAPD分析.中国农业科学,28: 1-7
    陈受宜,张耕耘,单卫星,李振岐,吴立人.1997.小麦条锈菌一个中度重复DNA序列家族的鉴定.中国科学(C辑),27: 241-246
    单卫星. 1995.小麦条锈菌分子遗传标记的建立.陕西杨凌:西北农业大学博士论文. 1-65
    沈丽,罗林明,陈万权,赵志模,王进军. 2008.四川省小麦条锈病流行区划及菌源传播路径分析.植物保护学报,35(3): 220-226
    万安民,牛永春,吴立人,袁文焕,李高宝,贾秋珍,金社林,杨家秀,李艳芳,毕云青.1999.
    1991~1996年我国小麦条锈菌生理专化研究.植物病理学报,29(1): 15-21
    王保通.2007.中国小麦条锈菌优势种群预测及主要流行菌系的AFLP指纹分析.西北农林科技大学博士论文
    王保通,李高宝,李强,王芳,康振生. 2007. 2001~2005年陕西省小麦条锈菌生理小种变化动态. 西北农林科技大学学报, 35(3):209-212,216
    王凤乐,商鸿生,李振岐. 1995.中国小麦条锈菌生理小种同工酶分析.植物病理学报, 25(2):101-105
    韦革宏,朱铭羲.1999.分子生物学新方法在根瘤菌分类中的应用.西北农业大学学报,27: 85-89
    吴立人,牛永春. 2000.我国小麦条锈病持续控制的策略.中国农业科学, 33(5): 46-54.
    阎培生,罗信昌,周启. 1999.木耳属真菌rDNA特异性扩增片段的RFLP研究.菌物系统, 18(2): 206-213
    张惠文,张倩茹,周启星,张成刚.2003.分子微生物生态学及其研究进展.应用生态学报, 14(2): 286-292
    郑文明,陈受宜,康振生,王阳,吴立人,李振岐. 2005.甘肃天水地区小麦条锈菌自然群体DNA指纹分析.菌物学报, 24(2): 199-206
    郑文明,陈受宜,康振生. 2000. PSR(Puccinia striiformis Repeat)序列的基因组特性和指纹遗传稳定性研究.植物病理学报,30(3): 222-225
    郑文明. 1999.小麦条锈菌分子群体遗传学研究.陕西杨凌:西北农业大学博士论文. 1-73
    Anderson N O. 1986. The distribution of the genus Lilium with reference to its evolution. Herbertia, 42: 1-18
    Bayles RA, Flath K, Hovm?ller MS, de Vallavieille-Pope C. 2000. Break down of the Yr17 resistance to yellow rust of wheat in northern Europe-A case study by the yellow rust sub-group of COST817. Agronomie, (20): 805-811
    Burdon JJ, Roelfs AP. 1985. Isozyme and virulence variation in asexually reproducing populations of Puccinia graminis and P. recondite on wheat. Phytopathology, 75: 907-913.
    Brown JKM. 1996. The choice of molecular marker methods for population genetic studies of plant pathogens. New Phytopathologist, 133: 183–195
    Brown JKM, Hovmoller MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297:537–541
    C.Q. Chen, W.M. Zheng, H. Buchenauer, L. L. HUANG, N. H. LU, Z. S. KANG. 2009. Isolation of microsatellite loci from expressed sequence tag library of Puccinia striiformis f. sp. Tritici. Molecular Ecology Resources, 9:236–238
    Celine RA, Claude VP, Yves B, Caroline L. 2002. Characterisation of a length polymorphism in the two intergenic spacers of ribosomal RNA in Puccinia striiformis f. sp. tritici, the causal agent of wheat yellow rust. Mycol Res, 106(8): 918-924
    Chen X, Line RF, Leung H. 1993. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology, 83(12): 1489-1497
    Dickinson M J, Wellings C R, Pryor A. 1990. Variation in the double-strand RNA phenotype between and within different rust species. Canadian Journal of Botany, 68: 599-604.
    Enjalbert J, Duan X, Giraud T, Vautrin D, de Vallavieille-Pope C, Solignac M. 2002. Isolation of twelve microsatellite loci, using an enrichment protocol in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Molecular Ecology Notes, 2: 563- 565
    Enjalbert J, Duan X, Leconte M, Hovm?ller MS, de Vallavieille-Pope C. 2005. Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France. Molecular Ecology,14: 2065-2073
    Excoffier LG, Laval, Schneider. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 47-50
    Futuyma DJ. 1986. Evolutionary biology. Sinauer Associates, Inc. Sunderland, Massachusettes Gassner G, Straib W. 1932. Die Bestimmung der biologischen Rassen des Weizengel-brostes (Puccinia glumarum f.sp. tritici (Schmidt) Erikss. u. Henn.). Arbeiten aus der Biologischen Reichsanst Land Forstwirtsch, 20: 141-163
    Gottelli D, Sillero-Zubiri C, Applebaum GD, Girman D, Roy M, Garcia-Moreno J, Ostrander E, and Wayne RK. 1994. Molecular genetics of the most endangered canid: The Ethiopian wolf Canissi mensis. Molecular Ecology, 3(4): 301-312
    Hamrick JL. 1989. Isozymes and the analysis of genetic structure in plant populations. In D. E. Soltis, and P. S. Soltis (eds.), Isozyme in plant biology. Dioscorides press. Portland. Oregon, 87-105
    Hedrick PW. 1984. Population biology: The evolution and ecology of populations. Jones and Bartlett, Inc. U.S.A. 445
    Hovmoller MS. 2001. Disease severity and pathotype dynamics of Puccinia striiformis f. sp. tritici in Denmark.Plant Pathology, 50: 181–189
    Hovm?ller MS, Justesen AF, Brown JKM. 2002. Clonality and long-distance migration of Puccinia striiformis f.sp. tritici in north-west Europe. Europe Plant Pathology, 51(1): 24-32
    Ibrahim KM, Nichols RA, Hewitt GM. 1996. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77: 282-291
    Jarman AP, Wells RA. 1989. Hypervariable minisatellites: Recombinators on innocent bystanders. Trends Genet, 5: 367-371
    Johnson R, RW Stubbs, E Fuchs. 1972. No-menclature for physiologic races of Puccinia striiformis infecting wheat. Transactions of the British Mycological Society, 58:475–480
    Justesen AF, Ridout CJ, Hovmoller MS. 2000. The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant athology, 51:13–23
    Justesen AF, Ridout CJ, and Hovmoller MS. 2002. The recent history of Puccinia striiformis f.sp.tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathology, 51:13–23
    Lehman N. 1998. Conservation biology: genes are not enough. Current Biology, 8(20): 722-724
    Line RF,Sharp EL,Powelson RL. 1970. A system for differentiating races of Puccinia striiformis in United States. Plant Disease Report, 54: 992-994
    Litt M, Luty J. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal Human Genetic, 44: 397-401
    Malcolm L, Hunter JR. 1996. Foundments of Conservation Biology. London: Blackwell Science Inc, 79
    Martin F, Selosse MA, Le TF. 1999. The nuclear rDNA intergenic spacer of the ectomycorrhizal basidiomycete Laccaria bicolor: structural analysis and allelic polymorphism. Microbiology, 145: 1605-1611
    Mayr E. 1954. Change of genetic environment and evolution. In J. Huxley, A. C. Hardy, and E. B. Ford (eds.). Evolution as a Process. Allen and Unwin, London, 157-180.
    Mayr E. 1993. Mechanisms of evolution. In N. A. Campbell, Biology. The Benjamin/Cummings.Publishing Company, Inc. 416.
    Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci, 1973, 70:3321-3323
    Nei M. 1987. Molecular Evolutionary Genetics. New York: Columbia University Press
    Newton AC, Caten CE, Johnson R. 1985. Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathology, 34(2): 235-247.
    Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA. 1995. Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics, 30: 450-458
    Roose Amsaleg C, de Vallavieille Pope C, Brygoo Y, Levis C. 2002. Characterisation of a length polymorphism in the two intergenic spacers of ribosomal RNA in Puccinia striiformis f. sp. tritici, the causal agent of wheat yellow rust. Mycological Research, 106: 918- 924
    Schaal BA. 1980. Measurement of gene flow in Lupinus texensis. Nature, 284: 450-451.
    Schloterer C, Tautz D. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 20: 211-215
    Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18: 233-234
    Shan WX, Chen SY, Kang ZS. 1998. Genetic diversity in Puccinia striiformis Westend. f.sp. tritici revealed by pathogen genome-specific repetitive sequence. Canadian Journal of Botany, 76: 587- 595
    Slatkin M. 1987. Gene flow and the geographic structure of natural population. Science, 236: 787-792
    Steele KA, Humphreys E, Wellings CR, Dickinson MJ. 2001. Support for a stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f. sp. tritici by use of molecular markers. Plant Pathology, 50 (2):174- 180
    Stubbs RW. 1985. The Cereal Rusts, Vol.2, Diseases, Distribution, Epidemiology, and Control. Orlando: Academic Press
    Taylor AC, Sherwin WB, Wayne RK. 1994. Genetic variationof microsatellite loci in a bottlenecked species: The northern hairy-nosed wombat Lasiorhinus krefftii. Molecular Ecology, 3(4): 277-290
    Taylor JW, Jacobson DJ, Fisher MC. 1999. The evolution of asexual fungi: Reproduction, speciation and classification. Annual Review of Phytopathology, 37:197-246
    Travison M, Lenski RE. 1996. Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics, 143: 15-26
    Wang XJ, Zheng WM, Heinrich Buchenauer, Huang LL, Kang ZS. 2008. The development of a PCR-based method for detecting Puccinia striiformis latent infections in wheat leaves. Eur J Plant Pathol, 120: 241-247
    Wellings CR, McIntosh RA. 1990. Puccinia striiformis f. sp. tritici in Australia: Pathogenic changes during the first 10 years. Plant Pathology, 39: 316-325
    Wimmer B, Kappeler PM. 2002. The effects of sexual selection and life history on the genetic structure of red fronted lemur, Eulemur fulvus rufus groups. Animal Behaviour, 64(4): 557-568
    Wright S. 1931. Evolution in Mendelian populations. Genetics, 16: 97-159
    Wright S. 1951. The genetical structure of population. Ann Eugen, 15: 323-354
    Yeh FC, Yang RC, Boyle TBJ. 1997. POPGENE, the User-friendly Sharew are for Population GeneticAnalysis. Mol Biol Biotech Center, 24
    Zhang R., Dickinson M J, Pryor A. 1994. Double-stranded RNAs in the rust fungi. Annu Rev Phytopathology, 32: 115-133
    Zheng WM, Liu F, Kang Z S, Chen SY, Li ZQ, Wu LR. 2001. AFLP fingerprinting of Chinese epidemic strains of Puccinia striiformis f. sp. tritici. Progress in Natural Sciences, 11(8): 586-593

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700