皂荚提取物对肝癌细胞小鼠TGF-β/Smads信号系统调控的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:全世界平均每年约有100万人死于肝癌。近年来,研究肿瘤细胞中信号转导通路的作用成为阐明肿瘤发生发展机制和寻找有效生物学治疗手段的热点。研究表明TGF-β/Smads信号异常的传导是肿瘤浸润和转移的重要因素。中医认为肿瘤的形成病机很复杂,认为痰浊内阻是肿瘤形成的病机关键。著名医学家朱丹溪在他的主要著作都列有痰门,探讨其理法方药,尤其在肿瘤的发病因素的认识上提出与痰有关。皂荚是具有“祛痰化湿、散结消肿”功效的抗肿瘤的常用中药。我们希望通过研究皂荚提取物(乙酸乙酯提取)对小鼠肝癌细胞TGF-β/Smads信号系统调控的影响,为皂荚提取物(乙酸乙酯提取)是否具有抗肝癌的作用提供参考。
     方法:
     第一部分:理论探讨
     1从中医理论上阐明痰和肿瘤的关系。强调痰、毒和瘀相互影响、相互转化、相互胶着是肿瘤发生和发展的关键。
     2提出从“痰”论治肝癌的可行性。并阐明化痰药“皂荚”具有抗癌作用的前期研究依据。
     第二部分:皂荚的文献研究
     从皂荚的一般特性研究;皂荚的历史研究探讨;含有皂荚的方剂研究;皂荚的药理学研究和皂荚的临床应用等方面阐明皂荚的特点和研究价值。
     第三部分:实验研究
     我们采用清洁级的昆明种小鼠60只。通过随机方法(随机数字表法)将实验动物分为6组,实验分为阴性对照组(吐温80溶剂);皂荚提取物(乙酸乙酯提取)3个浓度组(26.0mg/d、13.0mg/d、7.8mg/d);阳性对照组(金龙胶囊组);空白对照组(不造模组)。每组10只小鼠。造模采用小鼠右腋皮下接种H22肝癌细胞悬液的方法。造模后第2天到第16天,按实验分组和要求(每只灌胃量为0.4ml,已经配好浓度)进行灌胃。造模后第17天处死小鼠,收集标本进行各项检查。实验一:观察各组小鼠大体情况;各组小鼠死亡率;各组小鼠剥瘤称重,计算各组肿瘤抑制率和病理学观察。实验二:检测各组小鼠血清中的γ-谷氨酰转移酶(GGT),碱性磷酸酶(ALP),总蛋白(TP),白蛋白(ALB)和甲胎蛋白(AFP)的浓度。实验三:实时荧光定量的方法检测各组小鼠肝脏组织中的Smad4mRNA和Smad7mRNA的表达。实验四:免疫组化的方法检测Smad4和Smad7蛋白质的表达。
     结果:
     实验一:皂荚提取物对接种H22肝癌细胞荷瘤小鼠一般生物学特性和病理学的观察
     1鼠大体观察:空白对照组小鼠活动正常,精神状态很好,毛发正常,并且有光泽,饮食正常,大小便正常。皂荚提取物(高剂量组),皂荚提取物(中剂量组),皂荚提取物(低剂量组)和阳性对照组(金龙胶囊组),各组小鼠毛发脱落、有稀疏感、光泽度欠佳,精神不振,活动明显减少,饮食较空白对照组明显减少,饮水少较空白对照组明显减少不明显,大小便情况较空白对照组少,对外界反应慢。阴性对照组(溶剂土温80)的情况类似。右侧前肢接种H22肝癌细胞的小鼠,接种部位可见大小不等的肿块。有部分小鼠腹腔部位出现腹部胀大,用指尖触诊,有明显波动感,考虑为形成的腹水。
     2昆明种小鼠的死亡率达21.67%。
     3各组小鼠肿瘤重量比较:皂荚提取物(高)平均肿瘤重量2.87±0.34,皂荚提取物(中)平均肿瘤重量3.68±0.34,皂荚提取物(低)平均肿瘤重量3.64±0.36,阳性对照组平均肿瘤重量2.60±0.36与阴性对照组平均肿瘤重量4.73±0.40比较明显降低,P<0.01;阴性对照组,皂英提取物(中),皂荚提取物(低)与阳性对照组比较明显增高,P<0.01;皂荚提取物(高)与阳性对照组比较肿瘤重量无统计学差异,P>0.05。
     各组小鼠肿瘤抑制率:阳性对照组为45%;阴性对照组为0;皂荚提取物高剂量组39%;皂荚提取物中剂量组22%;皂荚提取物低剂量组为23%。
     4病理学观察:空白对照组小鼠肝脏的肉眼和显微镜下观察都表现正常,模型组各组小鼠总体上较空白对照组(非模型组)有更多的不正常的表现。
     阴性对照组,皂荚提取物中剂量组和皂荚提取物低剂量组病理学观察:肉眼大体观察:小鼠的肝脏体积较空白对照组小鼠明显增大;质地较空白对照组硬度增强;肝脏表面可见多个散在的灰白结节。阴性对照组最多,皂荚提取物中剂量组和皂荚提取物低剂量组比阴性对照组略少。光学显微镜下:肝小叶结构不清晰,肝细胞索排列不整齐。细胞核形态明显异常,肝细胞有部分细胞核增大,或核质比例增大。
     阳性对照组,皂荚提取物高剂量组病理学观察:肉眼大体观察:小鼠的肝脏体积较空白对照组小鼠略有增大;质地较空白对照组硬度略有增强,但不及阴性对照组;肝脏表面可以偶见散在的灰白结节。阳性对照组和皂荚提取物高剂量组没有明显差别。光学显微镜下:肝小叶结构欠清晰,肝细胞索排列不整齐。细胞核形态异常不明显。推测皂荚提取物高剂量组能通过对肝癌癌瘤有明显抑制癌细胞生长的作用,从而延缓肝癌细胞造成肝脏组织的进一步损伤,从而起到保护肝脏的目的。
     实验二:皂荚提取物对接种H22肝癌细胞荷瘤小鼠肝功能相关指标的影响
     小鼠血清GGT水平:阳性对照组平均值23±2 U/L、皂荚提取物组(高)平均值23±2 U/L与阴性对照组平均值38±2U/L比较明显降低,P<0.01;皂荚提取物组(中)平均值27±2U/L,皂荚提取物组(低)平均值37±2U/L与阴性对照组平均值比较降低P<0.05。皂荚提取物组(中)平均值,皂荚提取物组(低)平均值,阴性对照组平均值与阳性对照组平均值比较明显降低,P<0.01。
     小鼠血清ALP水平:阳性对照组平均值25±5 IU/L、皂荚提取物组(高)平均值34±6 IU/L、皂荚提取物组(中)平均值56±5 IU/L与阴性对照组平均值90±8 IU/L比较明显降低,P<0.01;皂荚提取物组(低)平均值75±7水平于阴性对照组比较降低P<0.05。皂荚提取物组(高)皂荚提取物组(中),皂荚提取物组(低),阴性对照组ALP水平于阳性对照组比较明显降低,P<0.01。
     小鼠血清TP:阳性对照组平均值70±2、皂荚提取物组(高)平均值65±6、皂荚提取物组(中)平均值59±3和皂荚提取物组(低)平均值58±3的TP水平于阴性对照组平均值47±4比较明显增高,P<0.01;。皂荚提取物组(中),皂荚提取物组(低)和阴性对照组的TP水平于阳性对照组比较明显降低,P<0.01。
     小鼠血清ALB:阳性对照组平均值30±2、皂荚提取物组(高)平均值29±1的小鼠ALB水平于阴性对照组平均值22±2比较明显增高,P<0.01。皂荚提取物组(中)平均值25±3,皂荚提取物组(低)平均值23±2和阴性对照组的小鼠ALB水平于阳性对照组比较明显降低,P<0.01。
     小鼠血清AFP:结果各组小鼠AFP的数值均没有测出。实验三:皂荚提取物对接种H22肝癌细胞荷瘤小鼠TGF-β/Smads信号转导通路smad4 mRNA和smad7 mRNA表达的影响
     Smad4mRNA表达:扩增倍数阳性对照组平均值0.566±0.092和皂荚提取物高剂量组平均值0.471±0.069与阴性对照组平均值0.320±0.099比较明显增高,P<0.01;皂荚提取物中剂量组平均值0.363±0.058和皂荚提取物低剂量组平均值0.280±0.067与阳性对照组比较比较明显降低,P<0.01。
     Smad7mRNA表达:扩增倍数阳性对照组平均值2.007±0.499、皂荚提取物组(高剂量组)平均值2.230±0.491的小鼠肝脏组织中Smad7mRNA表达水平于阴性对照组平均值3.537±0.401比较明显降低,P<0.01。
     皂荚提取物组(中剂量组)平均值3.106±0.410,皂荚提取物组(低剂量组)平均值3.613±0.416和阴性对照组小鼠肝组织中Smad7mRNA表达水平于阳性对照组比较明显增高,P<0.01。
     实验四:皂荚提取物对接种H22肝癌细胞荷瘤小鼠TGF-β/Smads信号转导通路smad4和smad7蛋白表达的影响
     Smad4蛋白表达:阳性对照组的小鼠肝脏Smad4蛋白表达水平平均值2973.190±248.540与阴性对照组平均值1196.399±837比较明显增高,P<0.01。皂荚提取物组(高剂量组)平均值2295.187±820.119与阴性对照组比较增高,P<0.05。
     阴性对照组的小鼠肝脏Smad4蛋白表达水平与阳性对照组比较明显降低,P<0.01。皂荚提取物组(中剂量组)平均值1558.835±302.801和皂荚提取物组(低剂量组)平均值988.614±338.995与阳性对照组比较降低,P<0.05。
     Smad7蛋白表达:阳性对照组平均值1454.381±302.405和皂荚提取物组(高剂量组)平均值1494.202±399.553的小鼠肝脏Smad7蛋白表达水平与阴性对照组平均值2239.589±272.892比较明显降低,P<0.01。皂荚提取物组(中剂量组)平均值1496.981±505.121与阴性对照组比较降低,P<0.05。
     阴性对照组和皂荚提取物组(低剂量组)平均值2330.056±177.105的小鼠肝脏Smad7蛋白表达水平与阳性对照组比较明显增高,P<0.01。
     结论:皂荚提取物(乙酸乙酯提取)的抗肝癌的作用可能有下列机理实现:①改善荷瘤小鼠的生存质量而抑制肿瘤对机体的损伤。②通过抑制接种部位肿瘤体的大小而起到抗癌的作用。③通过保护荷瘤小鼠的肝脏功能而起到保护肝脏的作用④皂荚提取物高剂量组(26.0mg/d)能通过增强Smad4mRNA的表达和下调Smad7mRNA的表达。⑤皂荚提取物高剂量组(26.0mg/d)能通过增强Smad4蛋白的表达和下调Smad7蛋白的表达。综合起到抗癌作用。
Objective:About 100 million people worldwide each year die from liver cancer. In recent years, studies of tumor cell signal transduction pathway into the development of mechanisms and clarify the tumor biology to find an effective treatment for hot spots. The results show that abnormal signal transduction TGF-β/Smads tumor invasion and metastasis is an important factor. TCM pathogenesis of tumor formation is complex and that the phlegm resistance is the key to the pathogenesis of tumor formation. Zhu Dan-famous medical scientist in his major works are listed with sputum door of their hair cut herbs, especially in tumors raised awareness of risk factors related with sputum. Acacia is a "phlegm dampness, Sanjiexiaozhong" anti-tumor efficacy of drugs commonly used. We hope that by studying the acacia extract (ethyl acetate extract) on liver cancer cell signaling system in the regulation of TGF-β/Smads for acacia extract (ethyl acetate extract) it has a reference against liver cancer.
     Methods:
     PartⅠ:Theory
     1 From the Chinese medicine theory to clarify the relationship between sputum and tumor. Stressed sputum, drugs and stasis interaction, mutual transformation, tumorigenesis and mutual stalemate is key to development. 2 raised from the "phlegm" On the feasibility of liver cancer treatment. And set out phlegm medicine "acacia" anti-cancer based on a preliminary study.
     PartⅡ:the literature of acacia
     From the general properties of acacia; acacia historical study; with the prescription of acacia; acacia pharmacological research and clinical applications such as acacia acacia clarify the characteristics and research value.
     PartⅢ:Experimental Study
     We use the Kunming mice of clean grade 60. Through the random method (random number table) to experimental animals were divided into 6 groups, were divided into negative control group (Tween 80 solvent); honey locust extract (ethyl acetate extraction) 3 concentrations (26.0mg/d,13.0mg/d,7.8mg/d); positive control group (Jinlong Capsule group); blank control group (not in the model).10 mice in each group. Modeling using the right mouse inoculated subcutaneously with H22 liver cell suspension method. 2 days after modeling, to 16 days, the two experimental groups and requirements (amount of each administered 0.4ml, already with a good concentration) were administered.17 days after modeling, the mice were killed to collect samples of the inspection. Experiment 1: the general situation of mice; mortality of mice in each group; stripping of mice tumor weight, tumor inhibition rate of each group and Pathology. Experiment 2:detection of serum levels ofγ-glutamyl transferase (GGT), alkaline phosphatase (ALP), total protein (TP), albumin (ALB) and alpha-fetoprotein (AFP) concentration. Experiment 3:Real-time fluorescence quantitative method to detect the liver tissue of mice and Smad7mRNA Smad4mRNA expression. Experiment 4:Immunohistochemistry was used to detect the expression of Smad4 and Smad7 protein.
     Results:
     Experiment 1:acacia extract inoculated mice bearing H22 hepatoma cell biological characteristics of normal and pathological observations
     1 observation:control activities in the normal mice, in good spirits, normal hair, and shiny, eating normal, urine normal. Acacia extract (high dose group), acacia extract (middle dose group), acacia extract (low dose) and the positive control group (dragon capsule), hair loss in mice in each group, there are sparse feel, gloss poor, listlessness, decreased activity, diet significantly reduced compared with the control group, less drinking water than the control group decreased obvious, toilet cases less than the control group, the outside world is slow to respond. Negative control (solvent soil temperature of 80) will be similar. Right flank of the mice inoculated with H22 hepatoma cells, the inoculation site lumps of varying sizes. Some parts of mouse peritoneal swollen abdomen, palpation with the fingertips, there is obviously a sense of volatility, consider the formation of ascites.
     2 Kunming 21.67% mortality in mice.
     3 Comparison of tumor weight of mice in each group:acacia extract (high) the average tumor weight of 2.87±0.34, acacia extract (in) the average tumor weight of 3.68±0.34, acacia extract (lower) the average tumor weight of 3.64±0.36, positive control group The average tumor weight of 2.60±0.36 and the average tumor weight of negative control group decreased significantly compared to 4.73±0.40, P<0.01; the negative control group, acacia extract (middle), acacia extract (low) and the positive control group was significantly higher, P<0.01; acacia extract (high) and the positive control group no significant difference in tumor weight, P>0.05.
     The mice tumor inhibitory rate:45% positive control; negative control group was 0; acacia extract high-dose group 39%; acacia extracts dose group 22%; acacia extract low-dose group was 23%.
     4 Pathological observation:the control group's eye and liver under the microscope all appear normal, model group mice in each group overall than the control group (non-model group) have more abnormal performance.
     Negative control group, acacia extracts dose group and low dose of acacia extract pathological observation:visual general observation:the liver volume than the control group mice increased significantly; texture than the control group increased hardness; liver surface shows multiple nodules scattered in the gray. The most negative group, acacia extracts dose group and low dose group of acacia extract the control group slightly less than the negative. Optical microscope:hepatic lobules was not clear, liver cells arranged in irregular claims. Obviously abnormal nuclear shape, some nuclei of liver cells increases, or increases the proportion of nuclear transfer.
     Positive control group, high dose of acacia extract pathological observation:general observation of the naked eye:the liver volume than the control group mice increased slightly; texture and hardness than the control group slightly increased, but less than the negative control group; liver surface can be scattered in the gray nodules occasionally. Positive control group and the acacia extract high-dose group was not significantly different. Optical microscope:hepatic lobules unclear, the liver cells arranged in irregular claims. Abnormal nuclear morphology was not obvious. Speculated that the high dose group of acacia extract through the inhibition of liver cancer tumors are significant growth of cancer cells, liver cells and thus delay further liver damage caused to serve the purpose of protecting the liver.
     Experiment 2:inoculation of acacia extract on mice bearing H22 liver cancer cells related to indicators of liver function
     levels of serum GGT:the positive control group average of 23±2 U/L, acacia extract group (high) mean 23±2 U/L and the negative control group averaged 38±2U/L compared significantly lower, P<0.01; acacia extract group (middle) mean 27±2U/L, acacia extract group (low) average of 37±2U/L compared with the negative control group average lower P<0.05. Acacia extract group (middle), on average, acacia extract group (low), on average, the average negative control group compared with the positive control group mean decreased, P<0.01.
     Serum ALP level:the positive control group mean 25±5 IU/ L, acacia extract group (high) mean 34±6 IU/L, acacia extract group (middle), average 56±5 IU/L and negative control group, mean 90±8 IU/L were significantly decreased, P<0.01; acacia extract group (low) average of 75+7 levels lower in the negative control group P<0.05. Acacia extract group (high), acacia extract group (middle), acacia extract group (low), ALP level in negative control group compared with the control group decreased significantly, P<0.01.
     Serum TP:positive control group average of 70±2, acacia extract group (high) mean 65±6, acacia extract group (middle), mean 59±3 and acacia extract group (low) average of 58±3 of the TP level in the negative control group average of 47±4 were significantly increased, P<0.01;. Acacia extract group (middle), acacia extract group (low) and the negative control group TP level in the positive control group decreased significantly, P<0.01.
     Serum ALB:positive control group mean 30±2, acacia extract groups (high) mean 29±1 in the mouse ALB level in the negative control group average of 22±2 were significantly increased, P <0.01. Acacia extract group (middle), mean 25±3, acacia extract group (low) average of 23±2 and the negative control group of mice ALB level in the positive control group decreased significantly, P<0.01.
     Serum AFP:Results mice AFP values were not measured.
     Experiment 3:acacia extract inoculated mice bearing H22 hepatoma cells TGF-β/Smads signal transduction pathway in smad4 mRNA and smad7 mRNA expression
     Smad4mRNA expression:positive amplification control group mean 0.566±0.092 and acacia extract high-dose group averaged 0.471±0.069 and the average negative control group was significantly higher compared 0.320±0.099, P<0.01; acacia extracts dose group was Value of 0.363±0.058 and acacia extract low-dose group averaged 0.280±0.067 compared with positive control group decreased significantly, P<0.01.
     Smad7mRNA expression:positive amplification control group mean 2.007±0.499, acacia extract group (high dose) mean 2.230±0.491 in the mouse liver tissue Smad7mRNA expression level in the negative control group average of 3.537±0.401 significantly lower compared, P<0.01.
     Acacia extract group (middle dose group) mean 3.106±0.410, acacia extract group (low dose group) average of 3.613±0.416 and the negative control group of mice the expression of liver tissue Smad7mRNA compared with the control group significantly increased, P<0.01.
     Experiment 4:acacia extract inoculated mice bearing H22 liver cancer cell signal transduction pathway TGF-β/Smads smad4 and smad7 protein expression
     Smad4 protein expression:positive control group of mice liver protein levels of Smad4 average 2973.190±248.540 and the average of the negative control group was significantly higher compared 1196.399±837, P<0.01. Acacia extract group (high dose) average 2295.187±820.119 increased compared with the negative control group, P<0.05.
     Negative control group of mice liver Smad4 protein levels compared with the positive control group decreased significantly, P<0.01. Acacia extract group (middle dose group) average 1558.835±302.801 and acacia extract group (low dose) average 988.614±338.995 decreased compared with the positive control group, P <0.05.
     Smad7 protein expression:positive control group average of 1454.381±302.405 and acacia extract group (high dose group) average 1494.202±399.553 Smad7 protein expression in mouse liver, the level of the average negative control group was decreased significantly compared 2239.589±272.892, P< 0.01. Acacia extract group (middle dose group) average 1496.981±505.121 decreased compared with the negative control group, P<0.05. Negative control group and acacia extract group (low dose) average 2330.056±177.105 in the mouse liver Smad7 protein levels compared with the positive control group was significantly higher, P<0.01.
     Conclusion:The acacia extract (ethyl acetate extract) of anti-liver cancer cells may have mechanisms to achieve the following:①to improve the quality of life of mice and inhibit the tumor on the body damage.②inoculation site by inhibiting the size of the tumor play a role in cancer.③tumor-bearing mice by protecting liver function and play a role in protecting the liver④acacia extract the high dose group (26.0mg/d) through enhanced expression and reduced Smad7mRNA Smad4mRNA expression.⑤acacia extract high-dose group (26.0mg/d) through increased Smad4 protein expression and reduced Smad7 protein. Play a role in comprehensive cancer.
引文
[1]王吉耀,廖二元,胡品津,等.内科学[M],北京:人民卫生出版社,2005,1:513.
    [2]张振宇,张赤志,许汉林,等.皂荚提取物对人肝癌细胞相关基因表达的调控作用[J].中西医结合肝病杂志,2008;18(2):93~95.
    [3]Pils D, Wittinger M, Petz M, et al. BAMBI is overexpressed in ovarian cancer and co-translocates with Smads into the nucleus upon TGF-ss treatment[J]. Gynecol Oncol,2010; 117(2):189-197.
    [4]陈锐深.现代中医肿瘤学[M],北京:人民卫生出版社,2003,1:3.
    [5]南京中医学院校释.诸病源候论校释[M].上册,北京:北京出版社,1980,1:580.
    [6]南京中医学院校释.诸病源候论校释[M].上册,北京:北京出版社,1980,1:576.
    [7]南京中医学院校释.诸病源候论校释[M].上册,北京:北京出版社,1980,1:580.
    [8]宋.许叔微.普济本事方[M],上海:上海科学技术出版社,1978,99.
    [9]元.罗天益.卫生宝鉴[M].卷十四,北京:人民卫生出版社,1983,65.
    [10]金.张子和.儒门事亲[M].卷三,上海:上海卫生出版社,1958,4.
    [11]明.李中梓.医宗必读[M],北京:人民卫生出版社,1995,378.
    [12]凌昌全.肿瘤治疗存在的问题及中西医结合的研究重点[J].中西医结合学报,2003;1(3):168~170.
    [13]魏品康,俞珊,赵颖,等.肿瘤从痰论治探源[C].上海:国际中西医肿瘤研究论坛论文专辑,2008:257.
    [14]朱曾柏.中医痰病学[M],北京:人民卫生出版社,1984,1:2.
    [15]喻松仁,周步高,刘春燕.朱丹溪痰病证治及基础方探析[J].中医杂志,2010;51(1):88.
    [16]张年顺.痰病钩玄[J].山东中医药大学学报,2004;28(2):86~ 89.
    [17]朱曾柏.中医痰病学[M],北京:人民卫生出版社,1984,1:313.
    [18]陈四清.周仲瑛教授从癌毒辨治肿瘤经验[J].新中医,2004;36(2):7.
    [19]魏品康,俞珊,赵颖,等.肿瘤从痰论治探源[C].上海:国际中西医肿瘤研究论坛论文专辑,2008:259.
    [20]李春杰,魏品康,施俊,等.恶性肿瘤从痰论治的研究思路与方法[J].解放军保健医学杂志,2007;9(4):241~243.
    [21]郭雁冰,张波,杨戈.等.从痰瘀论治酒精性肝病初探[J].吉林中医药,2008;28(8):560.
    [22]柴可群,王德玉.从痰论治肿瘤及临床应用[J].浙江中医学院学报,1996;20(2):1~3.
    [23]吴玉生,杨海燕.邓铁涛教授“痰瘀相关理论”在肿瘤疾病的临床应用[J].现代医院,2005;5(6):39.
    [24]钱彦方.肿瘤从痰论治探讨[J].中国中医基础医学杂志,1999;5(2):42.
    [25]雷载权.中药学[M],上海:上海科学技术出版社,2001,227-228.
    [26]香港理工大学.中药皂荚浓缩液具有抗癌特性[J].山东中医药大学学报,2005;31(4):286.
    [27]张振宇,张赤志,许汉林,等.皂荚提取物对人肝癌细胞相关基因表达的调控作用[J].中西医结合肝病杂志,2008;18(2):93~95.
    [28]顾万春,兰彦平,孙翠玲,等.世界皂荚(属)的研究与开发利用[J].林业科学,2003;39(4):127.
    [29]国家林业局国有林场和林木种苗工作总站主编.中国木本植物种子[M],北京:中国林业出版社,2008,8:287-289.
    [30]刘瑞贵,王伟.皂角刺与其伪劣品野皂荚刺的鉴别[J],中药材,1996;19(1):14~15.
    [31]杨海东.皂荚的多种功效及其绿化应用[J].贵州农业科学,2003; 31(4):73~74.
    [32]李永康,皂荚属.贵州植物志第七卷(种子植物)[M],成都:四川民族出版社,1989,57.
    [33]中国科学院植物研究所.中国高等植物图鉴第二册[M],北京:科学出版社,1980,7.
    [34]南京林学院.树木学[M],北京:中国农业出版社,1980.22.
    [35]黄元鸿.皂荚种子胶的羧甲基化及其应用[M],1965.
    [36]蒋建新,张卫明,朱莉伟,等.我国皂荚资源的化学利用[J].中国野生植物资源,2003;22(6):9
    [37]梁静谊,安鑫南,蒋建新,等.皂荚化学组成的研究[J].中国野生植物资源,2003;22(3):44.
    [38]高学敏.中药学(中医医学高级丛书)[M],北京:人民卫生出版社,2000,1212-1215.
    [39]胡国华,翟瑞文.瓜尔豆胶的特性及其在食品工业中的应用[J].冷饮与速冻食品工业,2002;8(4):18~26.
    [40]李时珍.本草纲目下册.皂荚[M],北京:人民卫生出版社,1982,11.
    [41]牛跃丽.挖掘中药的特殊功能[J].陕西中医,2001;2(4):246.
    [42]李时珍.本草纲目下册.皂荚[M],北京:人民卫生出版社,1992,2014-2012.
    [43]沈妙福.皂荚的临床运用[J].北京中医,1997;2:39.
    [44]徐叔云,卞如濂,陈修,等.药理实验方法学[M],北京:人民卫生出版社,2002,第3版:1757-1758.
    [45]杨丽华,杨金霞,王学美,等.温度及冻融对壁虎抗H22肝癌作用的影响[J].中西医结合肝病杂志,2008;18(4):225-228.
    [46]徐叔云,卞如濂,陈修,等.药理实验方法学[M],北京:人民卫生出版社,2002,第3版:1861.
    [47]孙振球.医学统计学[M],北京:人民卫生出版社,2005,第2版: 72.
    [48]张乃鑫.临床技术操作规范·病理学分册[M],北京:人民军医出版社,2007,1:3.
    [49]刘刚.Excel在统计分析中的应用[M],北京:人民卫生出版社,2002,170~174.
    [50]李玉林.病理学[M],北京:人民卫生出版社,2009,第7版:195.
    [51]Dempo K, Shisak N, Yoshida Yet al. Immunof luorescent study on a-Fetoprotrin producing cell in the early stage of 3-Methyl-4dimethylaminoazobenzene [J]. CancerRes,1975; 35 (5): 282-1287.
    [52]Hixson DC, Affigne S, Far is RA, McBride AC. Delineation of anti-genic of ethionine induced liver cancer in the rat[J]. Pathology,1996; 64 (2):79.
    [53]Anthony PP, Vogel CL, Barker LF. A prema-lignant condition J Clin Pathology [J]. Liver cell dysplasia,1973; 26 (3):217—223.
    [54]Roncalli M, Borzio M, Biagi GD et al. Liver cell dysplasia in cir-rhosis serologic and immunhistochemical study [J]. Cancer,1986; 57(6):1515~1521.
    [55]Weichselbaum, P. E., Am. J. Clin. Path.16:40(1946).
    [56]Peters, T., Clin. Chem.14:1147(1968).
    [57]Willard R. Faulkner, et al. Selected Methods for the Small Clinical Chemistry Laboratory [M], Washington:American Association for Clinical Chemistry.1982:317.
    [58]陈文彬.诊断学[M],北京:人民卫生出版社,2009,第7版:418.
    [59]Kiyono K, Suzuki HI, Matsuyama H, et aL. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells [J]. Cancer ReS, 2009; 69 (23):52.
    [60]Subramanian G, Schwarz R E, Higgins L, et aL. Targeting endogenous transforming growth factor beta receptor signaLing in SMAD4 deficient pancreatic carcinoma ceLLs inhibits their inva-aive phenotypeL [J]. Cancer Res,2004; 64 (15):5200-5211.
    [61]郑建明,朱明华.TGF-β/Smads信号转导与胰腺癌[J].肿瘤防治杂志,2005;12(14):1113.
    [62]Shi Y. StructuraL insights on Smad function in TGF beta signaLing [J]. Bioessays,2001; 23(3):223-232.
    [63]Raftery LA, TwomblyV, Wharton K, et al.Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila [J]. Genetics,1995; 139(1):241-254.
    [64]Liu YP, Liu J, Palmiter RD, et al. Inhibitory effects of two oligosaccha rides on murine melanoma experimental live rmetastasis[J]. Letters Biotechnol,1996; 9(3):198.
    [65]戴芙蓉.Smad2和Smad4蛋白与子宫内膜腺癌[J].国外医学妇产科学分册,2006;33(2):127.
    [66]Villanueva A, Garcia C,Paules AB,et al. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells[J]. Oncogene,1998; 17(15):1969-1978.
    [67]Xu J,Attisano L. XuJ,AttisanoL. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway [J].Proc Natl Acad Sci,2000; 97 (9):4820-4825.
    [68]Leng A, Liu T, He Y, et aL. Smad4/Smad7 balance:a role of tumorigenesis in gastric cancer [J]. Exp Mol Pathol,2009; 87(1):48-53.
    [69]Cruz Sanchcz FF, et al. Oligodendroglionous, a clinical, histological, immunocytochcmical and Iectin-binding study [J] Histopathology,1991;19 (4):361.
    [70]刘明社,赵中夫,张国英,等.RNA干扰Fas基因表达的免疫组化半定量分析[J].长治医学院学报,2007;21(6):404.
    [71]申洪,陆药丹.免疫组织化学染色的定量方法研究[J].生物医学工程学杂志,1993;10(3):281-284.
    [72]申洪.免疫组织化学显色反应强度定量方法研究(Ⅱ)[J].细胞与分子免疫学杂志,1994;4:33-35.
    [73]申洪.免疫组化染色定量方法研究(Ⅲ)[J].中国组织化学与细胞化学杂志,1995;4(1):89.
    [74]Hahn SA, Schutte M, Shmsul TM, et al.DPC4,a candidate umor suppres-sorgeneathumanchromosome18q21.1[J]. Science,1996; 271 (5247):350.
    [75]Reinacher Schick A, Baldus SE, Romdhana B, et al. Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas [J].J Pathol,2004; 202 (4):412.
    [76]张宇恒,张连峰.原发性肝细胞癌组织Smad4,p21蛋白的表达及其临床意义[J].山东医药,2008;48(31):9.
    [77]刘政,季国忠,缪林,等.人肝癌及癌旁组织中Smad4,Smad7mRNA和蛋白表达研究[J].天津医药,2004;32(12):721-723.
    [78]Chen W,FUXB, Sheng ZY. Review of current progress in the structure and function of Smad protein[J]. ChineseMedical Journal,2002; 115 (3):446-450.
    [79]imYH,LeeHS,LeeHJ, et al. Prognostic significance of the expression of Smad4 and Smad7 in human gastric carcinomas [J]. Annals of Oncology,2004; 15:574-580.
    [80]刘一平,邓继先.TGF-β家族信号的细胞内传导蛋白:SMAD蛋白家族[J].生物工程进展,2000;20(3):721-723.
    [81]Nakao A, Okumura K, Ogawa H. Smad7:a new key player in TGF-β-associated disease [J]. Trends Mol Med,2002; 8(8):361-363.
    [82]Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGF β receptor and functions as an antagonist of TGFβ signaling[J]. Cell,1997; 89(7):1165-1173.
    [1]郑建明,朱明华.TGF-β/Smads信号转导与胰腺癌[J].肿瘤防治杂志,2005;12(14):1113.
    [2]Gerard Drewes,Tewis Bouwmeester. Global approaches to Protein-Protein Interactions [J].Curr Opin Cell Biol,2003; 15 (2):199~205.
    [3]Huggett AC, Ellis PA, Ford CP, et al. Development of resistance to the growth inhibitory effects of transforming growth factor beta 1 during the spontaneous transformation of rat liver epithelial cells [J]. Cancer Res,1991; 51 (21):5929~5936.
    [4]Liu YP, Liu J, Palmiter RD, et al. Inhibitory effects of two oligosaccha rides on murine melanoma experimental live metastasis [J]. Letters Biotechnol,1996; 9(3):198.
    [5]明佳,刘旭盛,罗向东.Smads蛋白家族与TGF-β的细胞内信号转导[J].国外医学分子生物学分册,2003;25(2):89~93.
    [6]Stroschein SL, Wang W, Luo K. Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor beta-induced smad-dependent transcriptional activation [J]. J Biol Chem,1999; 274 (14):9431~9441.
    [7]Kusanagi K, Kawabata M,Mishima HK,et al.Alpha-helix 2 in the amino-terminal mad homology 1 domain is responsible for specific DNA binding of Smad3[J].J Biol Chem,2001; 276(30):28155-28163.
    [8]Itoh S, Itoh F, Goumans MJ, et al. Signaling of transforming growth factor-beta family members through Smad proteins [J]. Eur J Biochem,2000,267 (24):67-69.
    [9]Luo KX, Zhu YF, Zhang LX, et al. Insitu in vestigation of Fas FasLexpression in chronic hepatitis B in fection and related liver diseases [J]. JViral Hepat,1997; 4(5):303-307.
    [10]Kim H J, Chau Y J, Park J D, et al. Protection of rat liver microsomes aginst carbon tetrachloride-induced lipid peroxidation by red ginseng saponin through cytochrome P450 inhibition[J].Planta Med,1997; 63(5):415-418.
    [11]Attisano L, Silvestri C, Izzi L, et al.The transcriptional role of Smads and FAST(FoxHl)in TGFbeta and activin signalling[J].Mol Cell Endocrinol,2001; 180 (2):3-11.
    [12]Mehra A,Wrana J.TGF beta and the Smad signal transduction pathway [J]. Bio chem Cell Biol,2002; 80(5):605-622.
    [13]申景岭,张小玲.TGF-β/Smads信号转导途径与肿瘤发生发展的研究进展[J].国外医学遗传学分册,2003;26(3):163~166.
    [14]Villanueva A,Garcia C,Paules AB,et al. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells [J]. Oncogene,1998; 17 (15):1969-1978.
    [15]XuJ, AttisanoL.Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway[J]. Proc Natl Acad Sci U S A,2000; 97(9):4820-4825.
    [16]Torbenson M,Marinopoulos S, Dang DT, et al. Smad4 overexpression in hepatocellular carcinoma is strongly associated with transforming growth factor beta Ⅱ receptor immunolabeling[J]. Hum Pathol,2002; 33(9):871~876.
    [17]Sue SR, Chari RS, Kong FM, et al. Transforming growth factor-beta receptors and mannose 6-phosphate/insulin-like growth factor-Ⅱ receptor expression in human hepatocellular carcinoma[J]. Ann Surg,1995; 222(2):171-178.
    [18]霍艳英.TGF-β及Smads信号在癌症中的作用[J].国外医学·肿瘤学分册.2002;29:163~165.
    [19]Pran K data and Hardd L moses. STRAP and Smad7 synergize in the inhibition of transforming growth factor β signaling. Molecular and cellular biology [J],1997; 20(9):3157~3167.
    [20]刘政,季国忠,缪林,等.人肝癌及癌旁组织中Smad4、Smad7 mRNA和蛋白表达研究.天津医药,2004;32(12):721~723.
    [21]Haraguchi M, Mimaki Y, Motidome M. Steroidal saponins from the leaves of Cestrum sendtenerianum[J]. Phytochemistry,2000; 55(7): 715-720.
    [22]Bedir E, KhanlA. New steroidal glycosides from the fruits of Tribulus terrestris [J]. J Nat Prod,2000; 63 (12):1699-1701.
    [23]Barthomeuf C, Debiton E, Mshvildadze V, et al. In vitro activity of Hederacolchisid A1 compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma Cells [J].Planta Med,2002; 68 (8):672~675.
    [24]Fujioka T, Kashiwada Y, Okabe H, et al. Antitumor agents 171. Cytotoxicities of lobatosidesB, C, D and E cyclic bisdesmosides isolated from Actinostemm a lobatum Maxim[J]. Bioorg Med Chem Lett, 1996; 6 (23):2807~2810.
    [25]Kuroda M, Mimaki Y, Hasegawa F, et al. Steroidal glycosides from the bulbs of Camassia leichtlinii and their cytotoxic activities [J]. Chem Pharm Bull,2001; 49(6):726~731.
    [26]廖循,李伯刚,高小平,等.西南银莲花的活性三萜皂苷[J].中草药,2001;32(6):493~496.
    [27]盛辉,罗良,明月,等.大豆皂苷对人肺腺癌细胞增殖抑制作用研究[J].中国老年学杂志,2003;23(12):809~810.
    [28]李茂,李伟芳,覃良,等.九节龙皂甙体内的抗肿瘤作用[J].广西中医学院学报,2004;7(2):11~12.
    [29]Yu L, Ma R, Yu T, et al. Induction ofmorphological and functional differentiation of human promyelocytic leukemia cells (HL260) by Tubeimoside 1[J].Planta Med,1996; 62(2):119~121.
    [30]Sato K, Mochizuki M, Saiki I, et al. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax gingseng, ginsenoside Rb2[J].Biol Pharm Bull,1994; 17(5):635~639.
    [31]高禹,王杰军,许青,等.人参皂甙Rg3抑制肿瘤新生血管形成机制研究[J].肿瘤防治杂志,2001;28(3):179~181.
    [32]Plohmann B, Bader G, Hiller K, et al. Immunomadulatory and antitumoral effects of triteroenoid saponins [J]. Pharmazie,1997; 52(12):953~957.
    [33]Kikuchi Y,Sasa H, Kim T,et al. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside Rh2 and adjuvant effects to cisplatin in vivo [J]. Ant icancer Drug,1991; 12 (2):63~67.
    [34]Plohmann B, Bader G, Hiller K, et al.Immunomadulatory and antitumoral effects of triteroenoid saponins [J]. Pharmazie,1997; 52 (12):953~957.
    [35]赵鹏,姚思宇,李彬,等.皂甙对乙醇性肝损伤的保护作用[J].中国临床康复,2004;30(8):6686~6687.
    [36]胡文军,熊敏娟.太白榴木根皮总皂甙对小鼠的保肝作用[J].第一军医大学分校学报,2000;23(1):21~23.
    [37]刘亚平,刘杰.α-常春藤皂苷对小鼠肝脏解毒系统的作用[J].中国药 理学报,1997;18(1):33~36.
    [38]香港理工大学.中药皂荚浓缩液具有抗癌特性[J].山东中医药大学学报,2005;31(4):286.
    [39]张振宇,张赤志,许汉林,等.皂荚提取物对人肝癌细胞相关基因表达的调控作用[J].中西医结合肝病杂志,2008;18(2):93~95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700