利用RNA干涉技术研究Smad2和Smad3在鼠成纤维细胞TGF-β信号通路中的不同作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RNA干扰(RNA interference,RNAi)是由双链RNA(double stranded RNA,dsRNA)介导的一种特异性基因表达沉默,是一种古老但在进化上又高度保守的基因表达调节机制。关于RNAi的基础研究和应用研究迅速成为21世纪初生命科学的热点之一,在人、小鼠及其他哺乳动物中,RNAi已广泛应用于基因功能验证、信号转导和基因治疗等领域的研究。由于哺乳动物缺乏体内siRNA介导的沉默放大效应,利用DNA载体在细胞内稳定转录出siRNAs,并维持长时间抑制效果的方法已被证明是行之有效的。转化生长因子β(TGF-β,transforming growth factors beta),在细胞生长、发育、分化和物质代谢等方面均有极其重要的作用,而Smads蛋白是目前所知的唯一的TGF-β受体胞内激酶底物,在TGF-β信号转导中起着关键的作用。本研究通过构建RNAi的DNA表达载体,特异地、有效地抑制TGF-β/Smads信号通路中通路特异性Smads—Smad2和Smad3基因在NIH/3T3小鼠成纤维细胞中的表达,分别在mRNA水平和蛋白质水平研究Smad2和Smad3的不同作用和相互关系及在TGF-β信号转导过程中所处的地位。具体研究结果如下:
     1.确定了外源TGF-β1诱导NIH/3T3细胞中Smads蛋白表达的最佳浓度和时间。通过设置添加TGF-β1处理的不同浓度梯度和时间梯度,利用半定量RT-PCR和Western-blottting分析方法确定诱导Smads蛋白达到最高表达量的浓度和时间分别为5μg/L和3小时,并发现Smad3的表达对TGF-β1的刺激尤为敏感,从0.5小时起一直持续高效表达。
     2.构建了靶基因的shRNA DNA表达载体。按照siRNA的设计规则,针对Smad2和Smad3基因分别设计了5条21bp的siRNA序列,合成了10条62-64bp的双链DNA寡核苷酸序列,并将它们分别插入到RNAi-Ready pSIREN-RetroQ-ZsGreen质粒载体中,获得了包括阳性和阴性对照的12个shRNA的DNA表达质粒,并经酶切和测序验证。
     3.建立了一套比较有效的RNAi的技术体系。将所获得12个RNAi表达质粒利用脂质体介导的方法分别转染NIH/3T3小鼠成纤维细胞,提取转染细胞的总RNA和总蛋白质,采用半定量RT-PCR和Western-blotting方法分析了siRNA抑制效果,获得了两个特异地、有效地抑制Smad2和Smad3表达的RNAi表达质粒。分析这两个有效的siRNA序列发现,正义链第10位的碱基在设计中具有重要的作用,当第10位为U时,抑制效率最高,其次是C,最后是A/G。
     4.分析了Smad2和Smad3在TGF-β信号转导过程中的不同作用。在mRNA水平和蛋白质水平分别检测了Smad2-depleption细胞、Smad3-depleption细胞和Smad2+3-deoleption细胞中Smad2、Smad3和Smad4的表达,发现在Smad2-depleption细胞中Smad3和Smad4的表达提高,而在Smad3-depleption细胞中Smad2的表达没有发生改变,Smad4的表达降低。表明TGF-β信号在NIH/3T3细胞转导过程中,Smad3起到关键的调节作用。
     5.建立了混合RNAi表达质粒有效地抑制靶基因表达的方法。分别针对于Smad2和Smad3 mRNA序列不同区段的4个shRNA表达质粒等比例混合,构成Smad2-RNAi池和Smad3-RNAi池,利用脂质体将RNAi混合质粒共同导入NIH/3T3细胞中,经半定量RT-PCR和Western-blotting方法分析,发现RNAi池抑制Smad2或Smad3表达的效果要明显高于单一的RNAi表达质粒。表明针对靶基因mRNA序列不同区段的混合RNAi表达质粒可以提高RNAi的抑制效果,为有效利用RNAi表达载体研究基因的功能提供了一个新的策略。
RNA interference(RNAi) is an old and evolutionarily conserved regulative mechanism of sequence-specific,post-transcriptional gene silencing by the introduction of double stranded RNA(dsRNA) homologous in sequence to the silenced gene to trigger the degradation of homologous mRNA.The fundamental and applied research about RNAi has quickly become the hotspot of life science at beginning of the 21 century.To the human,mouse and the other mammals,RNAi had been wildly used in the field of gene function,signal transduction and gene therapy.Due to the lack of silencing amplification mechanisms in mammalian cells,siRNA-expression vector,which works as a platform to produce a large amount of siRNA for a relatively long period,is a versatile method of application of RNAi.Transforming growth factors beta(TGF-β),plays a key role in cell growth,differentiation,proliferation and substance metabolism.Smads protein, the only substrates of TβR(TGF-βreceptor) kinase,are critical mediators of TGF-βsignaling transducer.In this study,we had constructed the DNA expression vectors of RNAi.The endogenous expression of Smad2 and Smad3 were specifically and effectively suppressed by Smad2- and Smad3 siRNA expression plasmids in NIH/3T3 fibroblast cells. We also investigated the different role of Smad2 and Smad3 and the relationship among Smads in TGF-βsignaling.The main results are as follows:
     1.The best concentration and time of Smads expression by TGFβ-induction in NIH/3T3 fibroblast cells were confirmed.The cells were treated with different concentration of TGF-β1 for 4h and cultured for various length of time with 5μg/L TGF-β1-treatment,respectively.At the best concentration(5μg/L) and length of time(3 hours) with TGF-β1-treatment,the expressions of Smads achieve the maxim by RT-PCR and Western-blotting.We also found that the Smad3 would be more sensitive to TGF--, because the Smad3 had been at the high expression status from 0.5h.
     2.The shRNA expression plasmids of targeted genes were constructed.We designed 5 shRNAs against Smad2 and Smad3 mRNA on the base of siRNA rules,respectively. Individual dsDNA oligonucleotide encoding an appropriate shRNA was inserted into a pSIREN-RetroQ-ZsGreen vector,in which the interfering RNAs were driven by the human U6 promoter followed by CMV IE promoter-driven ZsGreen.We obtained 12 recombinant plasmids,including negative control and positive control.These plasmids were confirmed by enzymic digestion and sequencing.
     3.The effectively technology about RNAi was established.The 12 recombinant plasmids were transfected into NIH/3T3 fibroblast cells by Lipofectamin~(TM) 2000 Reagent. The total RNA and protein of transfected cells were isolated.By analysis with RT-PCR and Western-blotting,we obtained two effective shRNA expression plasmids,which could specifically and effectively inhibit the expression of Samd2 and Smad3.We found the position 10 was very important to designing by analysis the sequences of the two functional siRNA.We believed that position 10 of the sense strand with U rather than A, G or to a lesser extent,C for satisfactory inhibition of gene expression.
     4.The different role of Smad2 and Smad3 in TGF-βsignal transducer was discussed. We detected the expression of Smad2,Smad3 and Smad4 in Smad2-depletion cells, Smad3-depletion cells and Smad2+3-depletion cells at the level of mRNA and protein. We observed that the expression of Smad3 and Smad4 were increased in Smad2-depletion cells,but,the expression of Smad2 wasn't changed and the mRNA expression of Smad4 was decreased in Smad3-depletion cells.We suggested that the Smad3 could be the critical mediator in TGF-βsignal pathway.
     5.The method of mixture RNAi expression plasmids for effectively suppression expression of targeted gene was established.Four shRNA-expression plasmids,which homologize in sequence to the different position of the targeted gene,were mixed according to the same concentration and made up of the pool of Smad2-RNAi or Smad3-RNAi.The pool of Smad2-RNAi or Smad3-RNAi was trandfected into NIH/3T3 fibroblast cells by Lipofectamin~(TM) 2000 Reagent.By RT-PCR and Western-blotting,we found the inhibition the expression of Smad2 or Smad3 with the pool RNAi would be better than that of the one shRNA-expression plasmid.This result indicated that the mixture of RNAi expression plasmid,which act on the different region of the targeted mRNA,could increase the inhibitory ability of siRNA.This method provide for studying gene function with the technology of RNAi a new strategy.
引文
1.卜友泉,杨正梅,宋方洲.新基因功能研究的策略与方法.生命科学研究,2006,10(2):95-98.
    2.陈峰,郑敏,陈智.Smad2和Smad3在TGF-β1信号转导中的作用.国际流行病学传染病学杂志,2006,03(33):187-189.
    3.郭宁,宗利丽,严景华,丁丽华,朱建华,叶棋浓.Smads转录激活检测系统的建立.生物技术通讯,2007,18(2):189-192.
    4.郭晓红,周忠孝.转录后基因沉默-RNA干涉.基础医学与临床,2003,23(1):24-26.
    5.郭永红,罗金燕.TGF-β超家族与Smad信号转导研究进展.医学综述,2005,8:685-688.
    6.韩佃刚,肖蓉,信吉阁,韩干身,徐昆龙.功能基因组学的研究方法.中国畜牧兽医,2007,34(1):62-64.
    7.何志巍,谢鹭,许亮国,蓝轲,刘卫东,张玲,任彩萍,史建凌,周文,姚开泰.一个与人鼻咽癌相关新基因的克隆.科学通报,2000,45(11):1168-1174.
    8.胡庆柳,朴英杰.转化生长因子β及其生物学效应.生物学通报.2000,09:18-20.
    9.纪宗玲,刘继中,陈苏民.基因功能的研究方法.生物工程学报,2002,18(1):117-120.
    10.江舸,金由辛.RNA干扰.生命科学.2003,15(1):1.
    11.黎真,傅衍.RNAi技术-一项使特异基因表达沉默的新技术.畜牧与兽医.2003,35(11):37-39.
    12.李子银,陈受宜.植物的功能基因组学研究进展.遗传,2000,22(1):57-60.
    13.柳洋,文继舫,郑长黎.TGF-β与细胞周期调控的研究进展.国外医学:生理病理科学与临床分册.,2003,23(5):541-544.
    14.孟祥兵,王秀芳.基因沉默.生命的化学,2001,21(2):111-113.
    15.明佳.Smads蛋白家族与TGF-β的细胞内信号转导.国外医学:分子生物学分册,2003,02:58-62.
    16.戚华兵,宋瑞华,杜晓兰,赵玲,苏楠,刘道诚,李福兵,陈林.条件性缺氧诱导因子-1αRNAi转基因小鼠模型的建立.生物工程学报,2008,24(1):27-32
    17.申景岭,闫承慧,刘艳.TGF-β/Smads在肺癌中的表达研究.遗传学报,2003,30(7):681-686.
    18.师科荣,王爱国.功能基因组学的研究方法.生物技术通讯,2002,13(4): 301-304.
    19.孙建国,廖荣霞,陈正堂.RNA干涉分子机制研究进展.生物化学与生物物理进展,2002,29(5):678-681.
    20.陶彦彬,蒋建雄,易自力,李骏智.功能基因组学及其研究方法.生物技术通报,2007,05:61-64.
    21.吴元明,陈苏民.RNA干涉的最新研究进展.中国生物化学与分子生物学报,2003,19(4):411-417.
    22.杨金水.基因组学.高等教育出版社,2002.
    23.杨琼琼,余学清,段文娟,李晓燕,黄锋先.TGF-β1显著上调其信号蛋白Smad2在腹膜间皮细胞中的表达.中国病理生理杂志,2004,20(10):1790-1793.
    24.杨晓,孙彦洵,周江.Smad5双等位基因剔除ES细胞的建立及其初步研究.中国科学,2000,30:577-584.
    25.殷红,杜冠华.功能基因筛选方法的研究进展.国外医学药学分册,2003,30(6):321-327.
    26.尹秀山,张令强,贺福初.RNAi技术在转基因动物中的应用.遗传,2006,28(3):351-356.
    27.张浩,彭佑铭,刘映红,龙志高,吴鼎文,敖翔,陈仙花.TGF-β1刺激对人腹膜间皮细胞内Smad信号转导通路的影响.中南大学学报,2004,29(2):142-147.
    28.张云艳,李雪,隋丽华,王琦,李璞,傅松滨.卵巢癌中TGF-β/Smads信号通路的功能研究.遗传学报,2004,31(8):759-765.
    29.赵剑华,王秀琴,刘芝华,吴.功能基因组学的研究内容与方法.生物化学与生物物理进展,2000,27(1):6-8.
    30.Amarzguioui M,Prydz H.An algorithm for selection of functional siRNA sequences.Biochem Biophys Res Commun,2004,316(4):1050-1058.
    31.Ashrafi K,Chang FY,Watts JL,Fraser AG,Kamath RS,Ahringer J,Ruvkun G.Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes.Nature,2003,421(6920):268-272.
    32.Attisano L,Wrana JL.Smads as transcriptional co-modulators.Curr Opin Cell Biol,2000,12(2):235-243.
    33.Barton GM,Medzhitov R.Retroviral delivery of small interfering RNA into primary cells.Proc Natl Acad Sci U S A,2002,99(23):14943-14945.
    34.Bass BL.Double-stranded RNA as a template for gene silencing.Cell,2000, 101(3): 235-238.
    
    35. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 2004, 428(6981): 431-437.
    
    36. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363-366.
    
    37. Billy E, Brondani V, Zhang H, Muller U, Filipowicz W. Specific interfence with gene expression induced by long,double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc.Natl.Acad.Sci, 2001,98: 14428-14433.
    
    38. Biondi CA, Das D, Howell M, Islam A, Bikoff EK, Hill CS, Robertson EJ. Mice develop normally in the absence of Smad4 nucleocytoplasmic shuttling. Biochem J, 2007, 404(2): 235-245.
    
    39. Bird A. The essentials of DNA methylation. Cell, 1992, 70: 5-8 .
    
    40. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002,296(5567): 550-553.
    
    41. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2002,2(3):243~247.
    
    42. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol, 2002,29(1): 23-39.
    
    43. Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol, 2001, 8(3): 248-253.
    
    44. Chalk AM, Wahlestedt C, Sonnhammer EL. Improved and automated prediction of effective siRNA. Biochem Biophys Res Commun, 2004, 319(1): 264-274.
    
    45. Chang H, Lin C, Chen Y, Yu W. Using siRNA Technique to Generate Transgenic Animals with Spatiotemporal and Conditional Gene Knockdown. Am J Pathol, 2004,165(5): 1535-1541.
    
    46. Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature, 1997, 389(6646): 85-89.
    
    47. Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A, 2000, 97(12): 6499-6503.
    
    48. Codon A. Novel pattern of DNA methylation in Neurospora crassa transgenic for the foreign gene hph. Nucleic Acids Research, 1997,25(12):2409~2416.
    
    49. Cogoni C, Romano N, Macino G Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek, 1994, 65(3): 205-209.
    
    50. Cordeiro MF. Beyond mitomycin: TGF-β, and wound healing. Prog Ret Eye Res, 2002,21:75-89.
    
    51. Da Silva Xavier G, Qian Q, Cullen PJ, Rutter GA. Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing. Biochem J, 2004, 377: 149-158.
    
    52. Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF. Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol, 1999,19(4): 2495-2504.
    
    53. de Caestecker MP, Piek E, Roberts AB. Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst, 2000, 92(17): 1388-1402.
    
    54. de Caestecker MP, Yahata T, Wang D, Parks WT, Huang S, Hill CS, Shioda T, Roberts AB, Lechleider RJ. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem, 2000, 275(3): 2115-2122.
    
    55. Dennis C. Small RNAs: the genome's guiding hand? Nature, 2002, 420(6917): 732.
    
    56. Dennler S, Huet S, Gauthier JM. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene, 1999, 18(8): 1643-1648.
    
    57. Derynick R. Nomenclature vertebrate mediators of TGF-β family signals. Cell, 1996,87:173.
    
    58. Domeier ME, Morse DP, Knight SW, Portereiko M, Bass BL, Mango SE. A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science, 2000, 289(5486): 1928-1931
    
    59. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411(6836): 494-498.
    60. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 2001,15(2): 188-200.
    
    61. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001,20(23):6877-6888.
    
    62. Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002,26(2): 199-213.
    
    63. Fassler R, Martin K, Forsberg E, Litzenburger T, Iglesias A. Knockout mice: how to make them and why. The immunological approach.Int Arch Allergy Immunol, 1995, 106(4): 323-34.
    
    64. Feng XH, Zhang Y, Wu RY, Derynck R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev, 1998,12: 2153-2163
    
    65. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
    
    66. Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol, 2004, 85(2):47-64.
    
    67. Gong D, James E F J. Picking a winner: new mechanistic insights into the design of effective siRNAs. Trends Biotechnol, 2004, 22(9): 451-454.
    
    68. Gou D, Weng T, Wang Y, Wang Z, Zhang H, Gao L, Chen Z, Wang P, Liu L. A novel approach for the construction of multiple shRNA expression vectors. J Gene Med, 2007,9(9): 751-763.
    
    69. Graff JM, Bansal A, Melton DA. Xenopus Mad proteins transduce distinct subset of signals for the TGF-P superfamily. Cell, 1996, 85: 479-487.
    
    70. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81(4): 611-620.
    
    71. Hannon GJ. RNA interference. Nature, 2002,418(6894): 244-251.
    
    72. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci, 2001,114:4557-4565.
    
    73. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997, 390(6659): 465-471.
    74. Hemann MT, Fridman JS, Zilfou JT, Hernando E, Paddison PJ, Cordon-Cardo C, Hannon GJ, Lowe SW. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet, 2003, 33(3): 396-400.
    
    75. Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res, 2002, 30(8): 1757-1766.
    
    76. Hutvagner G, Zamore PD. RNAi: nature abhors a double-strand. Curr Opin Genet Dev, 2002,12(2): 225-232.
    
    77. Hutvagner G Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett, 2005, 579(26): 5850-5857.
    
    78. Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell, 2002,10(2): 283-294.
    
    79. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature, 2002,418(6896): 435-438.
    
    80. Jorgensen RA. Cosuppression, Flower Color Patterns, and Metastable Gene Expression States. Science, 1995,268(5211): 686-691.
    
    81. Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 1998, 95(7): 1017-1026.
    
    82. Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell, 1999, 99(2): 133-141.
    
    83. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2): 209-216.
    
    84. Kim BC, Mamura M, Choi KS, Calabretta B, Kim SJ. Transforming growth factor beta 1 induces apoptosis through cleavage of BAD in a Smad3-dependent mechanism in FaO hepatoma cells. Mol Cell Biol, 2002, 22(5): 1369-1378.
    
    85. Kim SG, Kim HA, Jong HS, Park JH, Kim NK, Hong SH, Kim TY, Bang YJ. The Endogenous Ratio of Smad2 and Smad3 Influences the Cytostatic Function of Smad3.Mol Biol Cell, 2005,16(10): 4672-4683
    
    86. Kim YO, Park SJ, Balaban RS, Nirenberg M, Kim Y. A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc Natl Acad Sci U S A, 2004, 101(1): 159-164.
    87. Kobayashi N, Matsui Y, Kawase A, Hirata K, Miyagishi M, Taira K, Nishikawa M, Takakura Y. Vector-based in vivo RNA interfence: dose- and time- dependent suppression of transgene expression. J Pharmacol Exp Ther, 2004; 308: 688-693.
    
    88. Kumiko UT, Naito YK, Takahashi F, Haraguchi T, Hiroko OH, Juni A, Ryu U, Kaoru S. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res, 2004, 32(3): 936-948.
    
    89. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H. The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells. Blood, 1998, 92(11): 4003-4012.
    
    90. Labbe E, Silvestri C, Hoodless PA, Wrana JL, Attisano L. Smad2 and Smad3 positively and negatively regulates TGF -dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell, 1998,2:109-120.
    
    91. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol, 2002,20(5): 500-505.
    
    92. Li G, Zhu YJ, Yang X, Guo ZJ, Xu WB, Tian XL. Effect of TGF-β/Smad signaling pathway on lung myofibroblast differentiation. Acta Pharmacologica Sinica, 2006, 28(3): 382-39.
    
    93. Li JH, Zhu HJ, Huang XR, Lai KN, Johnson RJ, Lan HY. Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol, 2002,13(6): 1464-1472.
    
    94. Li YJ, Azuma A, Usuki J, Abe S, Matsuda K, Sunazuka T, Shimizu T, Hirata Y, Inagaki H, Kawada T, Takahashi S, Kudoh S, Omura S. EM703 improves bleomycin-induced pulmonary fibrosis in mice by the inhibition of TGF-beta signaling in lung fibroblasts. Respir Res, 2006,7: 16.
    
    95. Liu C, Gaca MD, Swenson ES, Vellucci VF, Reiss M, Wells RG Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta ) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J Biol Chem, 2003, 278(13): 11721-11728.
    
    96. Liu F, Pouponnot C, Massague J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev, 1997, 11(23): 3157-3167.
    
    97. Luo B, Heard AD, Lodish HF. Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci U S A, 2004, 101(15): 5494-5499.
    
    98. Luo KQ, Chang DC. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Bioph Res Co, 2004, 318: 303-310.
    
    99. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev, 2005, 19(23): 2783-2810.
    
    100.Massague J. TGF-β signal transduction. Annu Rev Biochem, 1998, 67:753 -791.
    101.McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002, 3(10): 737-747.
    102.Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol, 2002,20(5): 497-500.
    103.Miyazono K. Recent advances in the research on TGF-beta/Smad signaling pathways. Tanpakushitsu Kakusan Koso, 2001,46(2): 105-110
    104.Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 1998, 95(26): 15502-15507.
    105.Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol, 1999, 181(1): 153-159.
    106.Mori Y, Chen SJ, Varga J. Modulation of endogenous Smad expression in normal skin fibroblasts by transforming growth factor-beta. Exp Cell Res, 2000, 258(2): 374-383.
    107.Mulder KM. Role of Ras and Mapks in TGFbeta signalling. Cytokine Growth Factor Rev,2000,1:23-35.
    108.Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J, 1997, 16(17): 5353-5362.
    109.Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature, 1998, 393(6687): 786-790.
    110.Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA. siRNA-directed inhibition of HIV-1 infection. Nat Med, 2002, 8(7): 681-686.
    111.Ohnishi H, Miyata T, Yasuda H, Satoh Y, Hanatsuka K, Kita H, Ohashi A, Tamada K, Makita N, Iiri T, Ueda N, Mashima H, Sugano K. Distinct roles of Smad2-, Smad3-, and ERK-dependent pathways in transforming growth factor-betal regulation of pancreatic stellate cellular functions. J Biol Chem, 2004, 279(10): 8873-8878.
    112.Onwuegbusi BA, Rees JR, Lao-Sirieix P, Fitzgerald RC. Selective loss of TGF-beta Smad-dependent signalling prevents cell cycle arrest and promotes invasion in oesophageal adenocarcinoma cell lines. PLoS ONE, 2007,2(1): 177.
    113.Overhoff M, Alken M, Far RK, Lemaitre M, Lebleu B, Sczakiel G, Robbins I. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol, 2005, 348(4): 871-881.
    114.Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev, 2002,16(8): 948-958.
    115.Paddison PJ, Hannon GJ. RNA interference: the new somatic cell genetics? Cancer Cell, 2002,2(1):17-23.
    116.Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbetal responses in human proximal-tubule epithelial cells. Biochem J, 2006, 393(2): 601-607.
    117.Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB. Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem, 2001,276(23): 19945-19953.
    118.Poncelet AC, de Caestecker MP, Schnaper HW. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int, 1999, 56(4): 1354-1365.
    119.Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol, 2003,23(20): 7230-7242.
    120.Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol, 2003, 23(20):7230-7242.
    121.Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol, 2004, 22(3):326-330.
    122.Roberts AB. TGF-beta signaling from receptors to the nucleus. Microbes Infect, 1999, 1(15): 1265-1273.
    123.Rychahou PG, Murillo CA, Evers BM. Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery, 2005,138(2): 391-397.
    124.Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A, 1996, 93(2): 790-794.
    125.Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science, 1995, 270(5235): 467-470.
    126.Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood, 2003, 101(5): 2001-2007.
    127.Schmierer B, Hill CS. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol Cell Biol, 2005, 25(22): 9845-9858.
    128.Schramke V, Allshire R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science, 2003, 301(5636):1069-1074.
    129.Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics, 1995, 139(3): 1347-1358.
    130.Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell, 1998, 94(5): 585-594
    131.Shinagawa T, Ishii S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase Ⅱ promoter. Genes Dev, 2003, 17(11): 1340-1345.
    132.Singer O, Yanai A, Verma IM. Silence of the genes. Proc Natl Acad Sci U S A. 2004,101(15): 5313-5314.
    133.Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol, 2005, 23(2): 227-231.
    134.Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev, 1998,12(1): 107-119.
    135.Sirard C, Kim S, Mirtsos C, Tadich P, Hoodless PA, Itie A, Maxson R, Wrana JL, Mak TW. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling. J Biol Chem, 2000, 275(3): 2063-2070.
    136.Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 2004,432(7014): 173-178
    137.Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 1999,99(2): 123-132.
    138.ten Dijke P. Bone morphogenetic protein signal transduction in bone. Curr Med Res Opin, 2006,22: 7-11.
    139.Teward SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA, 2003, 9(4): 493-501.
    140.Tiscornia G, Singer O, Ikawa M, Verma IM. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A, 2003,100: 1844-1848.
    141.Tracy S. Zimmermann, Amy C. H. Lee, Akin Akinc, Birgit Bramlage, David Bumcrot, Matthew N. Fedoruk, Jens Harborth, James A. Heyes, Lloyd B. Jeffs, Matthias John, Adam D. Judge, Kieu Lam, Kevin McClintock, Lubomir V. Nechev, Lome R. Palmer, Timothy Racie. RNAi-mediated gene silencing in non-human primates. Nature, 2006,441 (7089): 111-114.
    142.Tsukada S, Westwick JK, Ikejima K, Sato N, Rippe RA.SMAD and p38 MAPK signaling pathways independently regulate alpha 1(1) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells.J Biol Chem, 2005, 280(11): 10055-64.
    143.Uemura M, Swenson ES, Gaca MD, Giordano FJ, Reiss M, Wells RG Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Biol Cell, 2005,16(9): 4214-24.
    144.Urano F, Calfon M, Yoneda T, Yun C, Kiraly M, Clark SG, Ron D. A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol, 2002,158(4): 639-646.
    145 .van der Giessen K, Di-Marco S, Clair E, Gallouzi IE. RNAi-mediated HuR depletion leads to the inhibition of muscle cell differentiation. J Biol Chem, 2003, 278(47): 47119-47128.
    146.Velculescu VE, Zhang L, Vogelstein B, Kinzler KW.Serial analysis of gene expression. Science, 1995, 270(5235): 484-487.
    147.Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway:role in extracellular matrix gene expression and regulation. J Invest Dermatol, 2002,118(2): 211-215.
    148.Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ. Smad2 signaling in extraembryonic tissues determines a nterior-posterior polarity of the early mouse embryo. Cell, 1998, 92: 797-808.
    149.Wang L, Mu FY. A Web based design center for vector based siRNA and siRNA cassette. Bioinformatics, 2004,20(11): 1818-1820.
    150.Wang QS, Wang XL, Li H, Wang QY, Wang QY, Yang GX. Construction of a retroviral vector for RNA interference targeting human telomerase reverse transcriptase. Nan Fang Yi Ke Da Xue Xue Bao. 2006, 26(12): 1715-1719.
    151.Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci, 1998, 95: 9378-9383
    152.Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol, 2000, 2(2): 70-75.
    153.Wieser R, Wrana JL, Massague J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J, 1995,14(10): 2199-2208.
    
    154.Wolffe AP. Transcriptional control. Sinful repression. Nature, 1997, 387: 16-17.
    155.Wotton D, Lo RS, Swaby LA, Massague J. Multiple modes of repression by the Smad transcriptional corpressor TGIR J Biol Chem, 1999,274(52): 37105-37110.
    156.Wu JW, Fairman R, Penry J, Shi Y. Formation of a stable heterodimer between Smad2 and Smad4. J Biol Chem, 2001,276(23): 20688-20694.
    157.Xavier G D S, Qian Q W, Cullen P J, Rutter G A. Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing. Biochem J, 2004, 337: 149-158.
    158.Xia XG, Zhou H, Samper E, Melov S, Xu Z. Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet, 2006, 2: 73-83.
    159.Yahata T, de Caestecker MP, Lechleider RJ, Andriole S, Roberts AB, Isselbacher KJ, Shioda T. The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors. J Biol Chem, 2000, 275(12): 8825-8834.
    160.Yanagisawa K, Osada H, Masuda A, Kondo M, Saito T, Yatabe Y, Takagi K, Takahashi T, Takahashi T. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-beta in human normal lung epithelial cells. Oncogene, 1998,17(13): 1743-1747.
    161.Yang S, Tutton S, Pierce E, Yoon K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol, 2001, 21(22): 7807-7816.
    162.Yang X, Li C, Xu X, Deng C. The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci, 1998, 95:3667-3672.
    163 .Yang YC, Piek E, Zavadil J, Liang D, Xie D, Heyer J, Pavlidis P, Kucherlapati R, Roberts AB, Bottinger EP. Hierarchical model of gene regulation by transforming growth factor beta. Proc Natl Acad Sci U S A, 2003,100(18): 10269-10274.
    164.Yi CE, Bekker JM, Miller G, Hill KL, Crosbie RH. Specific and potent RNA interference in terminally differentiated myotubes. J Biol Chem, 2003, 278(2): 934-939.
    165.Ying SX, Hussain ZJ, Zhang YE. Smurfl facilitates myogenic differentiation and antagonizes the bone morphogenetic protein-2-induced osteoblast conversion by targeting Smad5 for degradation. J Biol Chem, 2003, 278(40): 39029-39036.
    166.Yu HM, Liu B, Chiu SY, Costantini F, Hsu W. Development of a unique systemfor spatiotemporal and lineage-specific gene expression in mice. Proc Natl Acad Sci, 2005,102(24): 8615-8620.
    167.Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A, 2002, 99(9): 6047-6052.
    168.Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33.
    169.Zamore PD. Plant RNAi: how a viral silencing suppressor inactivates siRNA. Curr Biol, 2004,14:198-200.
    170.Zeng Y, Wagner EJ, Cullen BR. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell, 2002, 9: 1327-1333.
    171.Zhang ZH, Chen Y, Zhao HJ. Silencing of Heparanase by siRNA inhibits tumor metastasis and angiogenesis of human breast cancer in vitro and in vivo. Cancer Biol Ther, 2007,6(4): 587-595.
    172.Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to me diate TGF-(i-induced transcription. Nature, 1998, 394: 909-913.
    173.Zhao Q, Chen N, Wang WM, Lu J, Dai BB. Effect of transforming growth factor-beta on activity of connective tissue growth factor gene promoter in mouse NIH/3T3 fibroblasts. Acta Pharmacol Sin, 2004, 25(4): 485-489.
    174.Zhao Y, Geverd DA. Regulation of Smad3 expression in bleomycin-induced pulmonary fibrosis: a negative feedback loop of TGF-beta signaling. Biochem Biophys Res Commun, 2002, 294(2): 319-323.
    175.Zheng L, Liu J, Batalov S, Zhou D, Orth A, Ding S, Schultz PG An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci U S A, 2004,101(1): 135-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700