罗格列酮抑制TGF-β1诱导的人Tenon's囊成纤维细胞活化及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     青光眼滤过性手术(glaucoma filtering surgery, GFS)术后滤过道瘢痕化是导致手术失败的主要原因。一些抗代谢药物在手术中的局部应用虽然提高了手术的成功率,但是这类药物应用的时间难以个体化,常常因为放置时间过短而出现作用不明显或因为放置时间过长以及对眼部组织的广泛作用而导致一系列严重的并发症,对患者本来已经受损的视功能造成新的威胁。因此通过对滤过道的瘢痕形成机制的研究,寻找一种更加安全、特异、有效的方法是目前GFS术后抗瘢痕形成研究的热点和难点。
     由于GFS术后滤过道瘢痕化是一种局部组织的纤维增生性病变,而该病变的核心环节是由于人Tenon's囊成纤维细胞(Human Tenon's Fibroblasts,HTFs)的活化、增殖、转化并分泌众多促纤维化因子及合成大量的细胞外基质所导致的。因此阻止HTFs活化、增殖、转化是调控GFS术后滤过道瘢痕形成的关键。以往研究表明促使HTFs活化增殖最重要的诱导因子是转化生长因子-β(transforming growth factorsβ, TGF-β),它是伤口愈合的重要调节因子,在GFS术后的瘢痕形成中起重要的作用。但是TGF-β除了诱导HTFs活化外,还有其他诸如调节细胞分化、促进成骨和造血、促进血管生成等生物活性。由于其作用靶点繁多、生物学效应复杂,因此完全阻断TGF-β会有潜在抑制免疫、抑制炎症反应及阻碍伤口愈合的不利影响。因此目前研究集中于在TGF-β致瘢痕化作用的特异性信号传导通路上寻找更为特异、安全的治疗方法。在TGF-β促进瘢痕形成的的信号传导通路中,Smads蛋白家族被认为是起重要作用,因此常常作为靶位进行抗瘢痕研究。
     罗格列酮是一种人工合成的高选择性过氧化物酶体增生物激活受体-γ(peroxisome Proliferator-activated receptor-γ, PPAR-γ)的激动剂,是一种胰岛素增敏剂,目前常用于治疗2型糖尿病。近年来研究发现该药物还具有抗炎,调控免疫功能,抗纤维化的作用。
     本研究通过探讨罗格列酮对TGF-β1诱导的HTFs活化增殖的抑制作用及其相关机制,为GFS术后滤过道瘢痕化的预防及治疗提供新的思路。
     目的
     原代培养HTFs,研究TGF-β1及罗格列酮对体外培养的HTFs活化、增殖的影响,为罗格列酮抑制GFS术后滤过道瘢痕形成提供理论支持。
     方法
     1.在手术中取青光眼患者的Tenon's囊组织,采用组织块培养法培养原代HTFs。
     2.建立TGF-β1诱导HTFs活化的细胞模型。研究TGF-β1作用的最适浓度。观察细胞形态变化,研究α平滑肌肌动蛋白(αsmooth muscle actin,α-SMA),结缔组织生长因子(connective tissue growthfactor, CTGF),Ⅰ型胶原蛋白(typeⅠCollagen, ColⅠ)以及细胞信号传导通路相关因子Smad2/3的表达。
     3.研究罗格列酮对HTFs活化的影响。以不同浓度的罗格列酮预处理细胞2h,再用最适浓度的TGF-β1诱导HTFs,摸索药物作用的最佳浓度,并研究细胞增殖、迁移能力的改变并进一步检测α-SMA, CTGF, ColⅠ, Smad2/3及PPAR-γ表达的改变。
     结果
     1.在体外成功地培养了人Tenon’s囊成纤维细胞,培养的细胞形态稳定,生长规律,冷冻和复苏对细胞的活性影响不大。
     2.建立了TGF-β1诱导HTFs活化的细胞模型。TGF-β1诱导HTFs后细胞形态发生改变,细胞免疫荧光证实细胞表达α-SMA蛋白,提示细胞活化;进一步研究表明α-SMA的表达在转录水平以及蛋白水平上均有上调,其表达峰值分别为24h和48h;CTGF的表达在转录水平以及蛋白水平上也有上调,其表达峰值分别为12h和24h;同时ColⅠ的的表达在转录水平以及蛋白水平上亦有上调;信号通路蛋白P-Smad2/3表达增加,峰值在24h。
     3.罗格列酮对TGF-β1诱导的细胞活化有抑制作用。5μMol/L、10μMol/L罗格列酮对HTFs无明显细胞毒性作用;可以抑制细胞的增殖迁移;在一定程度上可以抑制TGFβ1诱导的α-SMA, CTGF, ColⅠ的表达上调,同时抑制P-Smad2/3的表达,但对PPAR-γ的表达有促进作用。
     结论
     罗格列酮对体外培养HTFs没有明显毒性作用,可在一定程度上减弱了转化生长因子-β1对人Tenon's囊成纤维细胞的活化作用,其机制可能是抑制了TGF/Smad信号传导通路的活化。
BACKGROUND
     The first irreversible blind leading disease in the world is glaucoma. In our country, glaucoma filtering surgery (GFS) is still one of the principal means for treating advanced glaucoma. A main problem threatening long-term success rate of GFS is postoperative scarring process. Though antimetabolite drugs could effectively inhibit the formation of scarring, they also related with serious complications such as wound leakage, infection, hypotony maculopathy, even endophthalmitis which limit their application. Antifibrotic therapeutic methods with safe and effective effects are desirable.
     The activation of Human Tenons fibroblasts (HTFs) is essential for postoperative repairing, however continuous presence of this active state is related to increased deposition of extra cellular matrix (ECM) proteins which lead to postoperative scarring. This process is regulated by various inflammatory factors, among which transforming growth factor (TGF)-βhas been recognized as a key cytokine. However besides inducing HTFs activation TGF-βtill has other biological activity such as regulating cell differentiation, promoting osteogenesis and hematopoiesis, and inducing angiogenesis. For its complicated biological effects completely blocking TGF-βmay potentially suppress immune and block wound healing. So we committed to find a even more specific and safe method to regulate fibrosis after GFS. TGF-βexerts its multiple biologic actions by activating several intracellular signal transduction systems, and Smads family of proteins has been recently identified as a predominant signal transducer of TGF-β.
     Rosiglitazone one of the specific thiazolidinediones (TZDs) is a synthetic high-affinity ligands for peroxisome proliferator-activated receptor (PPAR)-γa member of the nuclear hormone receptor super family of ligand-activated transcription factors. In clinic it widely used for treating of non-insulin-dependent diabetes mellitus. Besides it effects on metabolism, current studies have begun to indicate additional important roles for PPAR-γagonists in the regulation of inflammation, connective tissue remodeling, and organ fibrosis.
     In the present study we provided novel data demonstrating the ability of rosiglitazone to block TGF-βmediated profibrotic effects in HTFs. These activities support the concept that rosiglitazone may have exciting potential method for counteract postoperative scarring after GFS.
     PURPOSE
     To culture human Tenon's fibroblasts. To investigate the inhibition role of the synthetic peroxisome proliferators-activated receptor (PPAR)-γagonist rosiglitazone on TGF-βinduced human Tenon's fibroblasts activation, and to assess the possible mechanism of it.
     METHODS
     1. Tenon's biopsy samples were obtained during standard Glaucoma Filtering Surgery and cultured in vitro.
     2. HTFs were treated with various concentration of TGF-β. The optimization concentration was assessed by Cell count kit-8. The morphologic changes of HTFs were observed. The expression of Alpha smooth muscle action (a-SMA), connective tissue growth factor (CTGF), typeⅠCollagen (ColⅠ), were detected with RT-PCR, Western-Blot,α-SMA was also examined with immunofluorescence. Smad2/3, was assessed by Western-Blot.
     3. HTFs were pretreated with different concentrations of rosiglitazone (0.1umol/1-3μumol/1) and then activated with 5ng/mL TGF-β1. Cell count kit-8 was accessed for cell viability and proliferation, wound closure assay was performed to assess cell migration. The expression of Alpha smooth muscle action (a-SMA), connective tissue growth factor (CTGF), typeⅠCollagen (ColⅠ), were detected with RT-PCR, Western-Blot, a-SMA was also examined with immunofluorescence. PPAR-y, P-Smad2/3 were assessed by Western-Blot.
     RESULTS
     1. HTFs were successfully cultured in vitro. They had normal morphosis and stable growth characteristic, before and after freezing and resusxitation.
     2. After induced by TGF-β1 the mRNA and protein expression of a-SMA were up-regulation, with a peak at 24 and 48 hours. The mRNA and protein expression of CTGF were up-regulation, with a peak at 12 and 24 hours. The expression of ColⅠand P-Smad2/3 were also up-regulated.
     3. Rosiglitazone could attenuate TGF-β1 induced up-regulation of a-SMA, CTGF and ColⅠ. It could availably increase the expression of PPAR-γ, and effectively attenuated the phosphorylation of Smad2/3.
     CONCLUSIONS
     Rosiglitazone can effectively attenuate TGF-β1 induced activation of HTFs, without obvious toxic effect. The possible mechanism might be rosiglitazone interfering the TGF-β/Smad pathway.
引文
[1]Yoon PS, Singh K. Update on antifibrotic use in glaucoma surgery, including use in trabeculectomy and glaucoma drainage implants and combined cataract and glaucoma surgery. Curr Opin Ophthalmol,2004,15:141~146
    [2]Akarsu C, Onol M, Hasanreisoglu B. Postoperative 5-fluorouracil versus intraoperative mitomycin C in high-risk glaucoma filtering surgery:extended follow up. Clin Exp Ophthalmol,2003,31:199~205
    [3]Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol,2003,48(3):314~346
    [4]Loon SC, Chew PT. A major review of antimetabolites in glaucoma therapy. Ophthalmologics 1999,213(4):234-245
    [5]Greenfield DS, Liebmann JM, Jee J, et al. Late onset bleb leaks after glaucoma filtering surgery. Arch Ophthalmol,1998,16:443~447
    [6]Mietz H, Addicks K, Bloch W, et al. Long-term intraocular toxic effects on topical mitomycin-C in rabbits. J Glaucoma,1996,5:325~333
    [7]Wolner B, Liebmann JM, Sassani JW, et al. Late bleb-related endophthalmitis after trabeculectomy with adjunctive 5-flourouracil. Ophthalmology,1991,98:1053~ 1060
    [8]Waheed S, Liebmann JM, Greenfield DS, et al. Recurrent bleb infections. Br J Ophthalmol,1998,82:926~929
    [9]Mac I, Soltau JB. Glaucoma-filtering bleb infections. Curr Opin Ophthalmol, 2003,14:91~94
    [10]Belyea DA, Dan JA, Stamper RL, et al. Late onset of sequential multifocal bleb leaks after glaucoma filtration surgery with 5-fluorouracil and mitomycin C. Am J Ophthalmol,1997,124:40~45
    [11]Parrish R, Minckler D. Late endophthalmitis:filtering surgery time-bomb? Ophthalmology,1996,103:1167~1168
    [12]Higginbotham EJ, Stevens RK, Musch DC, et al. Bleb-related endophthalmitis after trabeculectomy with mitomycin C. Ophthalmology,1996,103:650~656
    [13]Jampel HD, Quigley HA, Kerrigan-Baumrind LA, et al. Glaucoma surgical outcomes study group. Risk factors for late-onset infection following glaucoma filtration surgery. Arch Ophthalmol,2001,119:1001~1008
    [14]Mietz H, Jacobi PC, Krieglstein GK. Postoperative application of mitomycin for trabeculectomies. Arch Ophthalmol,2000,118:1341~1348
    [15]Kangas TA, Greenfield DS, Flynn HW, et al. Delayed onset endophthalmitis associated with conjunctival filtering blebs. Ophthalmology,1997,104:746~752
    [16]Soltau JB, Rothman RF, Bidenz DL, et al. Risk factors for glaucoma filtering bleb infections. Arch Ophthalmol,2000,118:338~342
    [17]Stamper RL, McMenemy MG, Lieberman MF. Hypotonous maculopathy after trabeculectomy with subconjunctival 5-flourouracil. Am J Ophthalmol,1992,114: 544~553
    [18]Jampel HD, Pasquale LR, Dibernardo C. Hypotony maculopathy following trabeculectomy with mitomycin-C (letter). Arch Ophthalmol,1992,110:1049-1050
    [19]Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol,2008,214(2): 199~210
    [20]Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis.Int Rev Cytol,2007,257:143~179
    [21]金惠明.细胞分子病理生理学.郑州:郑州大学出版社,2002:247-261
    [22]Desmouliere A, Badid C, Bochaton-Piallat M, et al. Apoptosis during wound healing, fibrocontractive diseases andvascular wall injury. Int J Biochem Cell Biol,1997,29:19~30
    [23]Saika S, Yamanaka O, Sumioka T, et al. Fibrotic disorders in the eye:targets of gene therapy. Prog Retin Eye Res,2008,27(2):177~196
    [24]陈凤华,马建民,王宁利,等.人Tenon's囊成纤维细胞的离体培养及生长特性观察.山东大学耳鼻喉眼学报,2008,22(4):350-355
    [25]郑健樑,郭彦,张洁,等.人眼Tenon氏囊成纤维细胞的体外培养.解剖学研 究,1999,21(2):96-97
    [26]R.I.弗雷什尼.实用动物细胞培养技术.(潘李珍,译).北京:世界图书出版社,1996
    [27]郑永唐,贲昆龙.测定细胞存活和增殖的方法的建立.免疫学杂志,1992,8(4):266-269
    [28]熊建文,肖化,张镇西.MTT法和CCK-8法检测细胞活性之测试条件比较.激光生物学报,2007,16(5):559-562
    [29]王涛,李冰晴,王津津,等.CCK-8检测法研究槲皮素对人Tenon囊成纤维细胞的抑制作用.眼科新进展,2007,27(8):576-580
    [30]Edwards LC, Freeman HS, Claxton LD. Developing azo and formazan dyes based on environmental considerations:Salmonella mutagenicity. Mutat Res, 2004,546(1):17~28.
    [31]Tipton DA, Lyle B, Babich H, et al. In vitro cytotoxic and anti-inflammatory effects of myrrh oil on human gingival fibroblasts and epithelial cells.Toxicol In Vitro,2003,17(3):301-310
    [32]Serini G, Bochaton-Piallat ML, Ropraz P, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-betal. Cell Biol,1998,142(3):873~881
    [33]Classen L, Kivela T, Tarkkanen A.Histopathologic and immuno histochemical analysis of the filtration bleb after unsuccessful glaucoma seton implantation.Ophthal mol,1996,122(2):205~212
    [34]Friedlander M. Fibrosis and diseases of the eye. J Clin Invest,2007,117(3): 576~586
    [35]Saika S. TGF beta pathobiology in the eye. Lab Invest,2006 Feb,86(2):106~15
    [36]Robertson JV, Golesic E, Gauldie J, et al. Ocular gene transfer of active TGF-beta induces changes in anterior segment morphology and elevated IOP in rats. Invest Ophthalmol Vis Sci,2010,51(1):308~318
    [37]Agarwal R, Agarwal P. Future target molecules in antiglaucoma therapy: TGF-Beta may have a role to play. Ophthalmic Res,2010.43(1):1~10
    [38]Saika S, Yamanaka O, Okada Y, et al. TGF beta in fibroproliferative diseases in the eye. Front Biosci (Schol Ed),2009,1:376~390
    [39]Saika S, Yamanaka O, Sumioka T, et al Transforming growth factor beta signal transduction:a potential target for maintenance/restoration of transparency of the cornea. Eye Contact Lens,2010,36(5):286~289
    [40]DeLarco J, Todaro GJ. Membrane receptors for murine leukemia viruses: characterization using the purified viral envelope glycoprotein, gp71. Cell, 1976,8(3):365-371
    [41]Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev, 2005,19:2783~2810
    [42]Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol,2005,21:659~693
    [43]Javelaud D, Mauviel A. Mammalian transforming growth factor-betas:Smad signaling and physiopathological roles. Int J Biochem Cell Biol,2004,36: 1161-1165
    [44]Moustakas A, Pardali K, Gaal A, et al. Mechanisms of TGF-β signaling in regulation of cell growth and differentiation. Immunol Lett,2002,82:85~91
    [45]Cordeiro MF, Gay JA, Khaw PT. Human anti-transforming growth factor-beta2 antibody:a new glauocoma anti-scarring agent. Invest Ophthalmol Vis Sci, 1999,40(10):2225~2234
    [46]Mead AL, Wong TT, Cordeiro MF, et al. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci,2003,44(8):3394~3401
    [47]Grisanti S, Szurman P, Warga M, et al. Decorin modulates wound healing in experimental glaucoma filtration surgery:a pilot study. Invest Ophthalmol Vis Sci,2005,46(1):191~196
    [48]Nakamura H, Siddiqui SS, Shen Ⅹ, et al. RNA interference targeting transforming growth factor-β type Ⅱ receptor suppresses ocular inflammation and fibrosis. Molecular Vision,2004,10:703~711
    [49]Meyer-ter-vehn T, Sieprath S, Katzenberger B. Contractility as aprerequisite for TGF-β-Induced Myofibroblast Transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci,2006,47(11):4895~4904
    [50]Anderson S, Dicesare L, Tan I, et al. Rho-mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts. Exp Cell Res, 2004,298:574~583
    [51]Honjo M, Tanihara H, Kameda T. Potential role of Rho-associated protein kinase inhibitor Y-27632 in glaucoma filtration surgery. Invest Ophthalmol Vis Sci, 2007,48(12):5549~5557
    [52]Meyer-ter-Vehn T, Katzenberger B. Han H, et al. Lovastatin Inhibits TGF-(3-Induced Myofibroblast Transdifferentiation in Human Tenon Fibroblasts. Invest Ophthalmol Vis Sci,2008,49:3955~3960
    [53]Meyer-ter-Vehn T, Gebhart S, Sebald W, et al.P38 Ihibitors prevent TGF-β-induced myofibroblast transdifferentiation in human Tenon fibroblasts. Invest Ophthalmol Vis Sci,2006,47(4):1500~1509
    [54]Hinz B, Mastrangelo B, Iselin CE, et al. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol, 2001,159:1009~1020
    [55]Hinz B.Formation and function of the myofibroblast during tissue repair. J Invest Dermatol,2007,127(3):526~537
    [56]Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol, 1994,124:401~404
    [57]Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem,1986,261:4337~4345
    [58]Zhang K, Rekhter MC, Gordon D, et al. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis: a combined immunohistochemical and in situ hybridization study. Am J Pathol,1994,145: 114~125
    [59]Finlay GA, Thannickal VJ, Fanburg BL, et al. Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor. J Biol Chem,2000,275:27650~27656
    [60]Thannickal VJ, Aldweib KD, Rajan T, et al. Upregulated expression of fibroblast growth factor (FGF) receptors by transforming growth factor-betal (TGF-betal) mediates enhanced mitogenic responses to FGFs in cultured human lung fibroblasts. Biochem Biophys Res Commun,1998,251:437~441
    [61]Heino J, Ignotz RA, Hemler ME, et al. Regulation of cell adhesion receptors by transforming growth factor-beta:concomitant regulation of integrins that share a common beta 1 subunit. J Biol Chem,1989,264:380~388
    [62]Bradham DM, Igarashi A, Potter RL. Connective tissue growth factor:a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol, 1991,114(6):1285~1294
    [63]Ihn H. Pathogenesis of fibrosis:role of TGF-beta and CTGF. Curr Opin Rheumatol,2002,14(6):681~685
    [64]Yokoi H, Sugawara A, Mukoyama M, et al. Role of connective tissue growth factor in profibrotic action of transforming growth factor-β:a potential target for preventing renal fibrosis. Am JK idney Dis,2001,38:134~138
    [65]Phanish MK, Winn SK, Dockrell ME. Connective tissue growth factor-(CTGF, CCN2)--a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol,2010,114(3):e83-92
    [66]Daniels A, van Bilsen M, Goldschmeding R, Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxford),2009,195(3):321~338
    [67]Abraham D. Connective tissue growth factor:growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford),2008,47 Suppl 5:v8-9
    [68]Gressner OA, Gressner AM. Connective tissue growth factor:a fibrogenic master switch in fibrotic liver diseases. Liver Int,2008,28(8):1065~1079
    [69]Scotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis:the myofibroblast in focus. Chest,2007,132(4):1311~1321.
    [70]Esson DW, Neelakantan A, Iyer SA, et al.Expression of connective tissue growth factor after glaucoma filtration surgery in a rabbit model. Invest Ophthalmol Vis Sci,2004,45(2):485-491
    [71]Garrett Q, Khaw PT, Blalock TD, et al. Involvement of CTGF in TGF-beta 1-stmulation of myofibroblast differentiation and collagen matrix contraction in the presence of mechanical stress. Invest Ophthalmol Vis Sci, 2004,45(4):1109~1116
    [72]Sherwood MB. A sequential multiple-treatment targeted approach to reduce wound healing and failure of glaucoma filtration sugery in a rabbit model(an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc, 2006,104:478~492
    [73]Leask A, Holmes A, Black CM, et al. Connective tissue growth factor gene regulation. Requirements for its induction by transforming grow factor-beta in fibroblasts. J Biol Chem,2003,278(15):13008-13015
    [74]Kisseleva T, Brenner DA. Mechanisms of fibrogenesis. Exp Biol Med (Maywood),2008,233(2):109~122
    [75]Derynck R, Zhang YE. Smad-dependent and Samd-independent pathways in TGF-β family signaling. Nature,2003,425(6958):577~48
    [76]Mehra A, Wrana JL. TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol,2002,80(5):605~622
    [77]Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway:role in extracellular matrix gene expression and regulation. Inves Dermatol,2002,118(2):211~215
    [78]Deeks ED, Keam SJ. Rosiglitazone:a review of its use in type 2 diabetes mellitus. Drugs,2007,67(18):2747~2779
    [79]Werner AL, Travaglini MT. A review of rosiglitazone in type 2 diabetes mellitus. Pharmacotherapy.2001,21 (9):1082-1099
    [80]Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs):nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res,2000,49:497~505
    [81]Nakamoto M, Ohya Y, Shinzato T, et al. Pioglitazone, a thiazolidinedione derivative, attenuates left ventricular hypertrophy and fibrosis in salt-sensitive hypertension. Hypertens Res,2008,31:353~361
    [82]Yu J, Zhang S, Chu ES, et al. Peroxisome proliferator-activated receptors gamma reverses hepatic nutritional fibrosis in mice and suppresses activation of hepatic stellate cells in vitro. Int J Biochem Cell Biol,2010,42(6):948~957
    [83]Jaster R, Lichte P, Fitzner B, et al. Peroxisome proliferator-activated receptor gamma overexpression inhibits pro-fibrogenic activities of immortalised rat pancreatic stellate cells. J Cell Mol Med,2005,9:670~682
    [84]Burgess HA, Daugherty LE, Thatcher TH, et al. PPAR gamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production:implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol,2005,288:1146~1153
    [85]Chinetti G, Fruchart JC, Staels B. Peroxisome proliferators activated receptors (PPARs):nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res,2000,49:497~505
    [86]Straus DS, Glass CK. Cyclopentenone prostaglandins:new insights on biological activities and cellular targets. Med Res Rev,2001,21:185~210
    [87]Bishop-Bailey D, Wray J. Peroxisome proliferator-activated receptors:a critical review on endogenous pathways for ligand generation. Prostaglandins Other Lipid Mediat,2003,71:1~22
    [88]Willson TM, Brown PJ, Sternbach DD, et al. The PPARs:from orphan receptors to drug discovery. J Med Chem,2000,43:527~550
    [89]Guo B, Koya D, Isono M, et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit TGF-beta 1-induced fibronectin expression in glomerular mesangial cells. Diabetes,2004,53(1):200~208
    [90]Wang W, Liu F, Chen N. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists attenuate the profibrotic response induced by TGF-betal in renal interstitial fibroblasts. Mediators Inflamm,2007,2007:62641
    [91]Zhang GY, Cheng T. Zheng MH, et al. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist inhibits transforming growth factor-betal and matrix production in human dermal fibroblasts. J Plast Reconstr Aesthet Surg,2010,63(7):1209~1216
    [92]Yamanaka O, Saika S, Ohnishi Y, et al. Inhibition of p38MAP kinase suppresses fibrogenic reaction in conjunctiva in mice. Mol Vis,2007,18:1730~1739
    [93]Jung SA, Lee HK, Yoon JS, et al. Upregulation of TGF-beta-induced tissue transglutaminase expression by PI3K-Akt pathway activation in human subconjunctival fibroblasts. Invest Ophthalmol Vis Sci,2007,48(5):1952~1958
    [94]Cheng HC, Ho TC, Chen SL, et al. Troglitazone suppresses transforming growth factor beta-mediated fibrogenesis in retinal pigment epithelial cells. Mol Vis, 2008,18(14):95~104
    [95]Pan H, Chen J, Xu J, et al. Antifibrotic effect by activation of peroxisome proliferator-activated receptor-gamma in corneal fibroblasts. Mol Vis, 2009,10(15):2279~2286
    [96]Yamanaka O, Miyazaki K, Kitano A, et al. Suppression of injury-induced conjunctiva scarring by peroxisome proliferator-activated receptor gamma gene transfer in mice. Invest Ophthalmol Vis Sci,2009,50(1):187~93
    [1]金惠明.细胞分子病理生理学.郑州:郑州大学出版社,2002:247-261
    [2]Khaw PT, Chang L, Wong TT, et al. Modulation of wound healing after glaucoma surgery. Curr Opin Ophthalmol,2001,12(2)143~148
    [3]Atreides SP, Skuta GL, Reynolds AC. Wound healing modulation in glaucoma filtering surgery. Int Ophthalmol Clin,2004,44(2):61~106
    [4]Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol,2003,48(3):314~346
    [5]Denk PO, Hoppe J, Hoppe V, et al. Effect of growth factor on the activation of human Tenon's capsule fibroblasts. Curr Eye Res,2003,27(1):35~44
    [6]Tomasek JJ, Cabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol,2002,3(5):349~363
    [7]Cordeiro MF, Reichel MB, Gay JA, et al. Transforming growth factor-betal,-beta2, and -beta3 in vivo:effects on normal and mitomycin C-modulated conjunctival scarring. Invest Ophthalmol Vis Sci,1999,40:1975~1982
    [8]Corderio MF. Beyond mitomycin:TGF-β and wound healing. Prog Reyin Eye Res,2002,21:75~89
    [9]Derynck R, Zhang YE. Smad-dependent and Samd-independent pathways in TGF-β family signaling. Nature,2003,425(6958):577~548
    [10]Mehra A, Wrana JL. TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol,2002,80(5):605~622
    [11]Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway:role in extracellular matrix gene expression and regulation. Inves Dermatol,2002,118(2):211~215
    [12]Yao K, Ye PP, Tan J, et al. Involvement of PI3K/Akt pathway in TGF-beta2-mediated epithelial mesenchymal transition in human lens epithelial cells. Ophthalmic Res,2008,40(2):69-76
    [13]Jung SA, Lee HK, Yoon JS, et al. Upregulation of TGF-beta-induced tissue transglutaminase expression by PI3K-Akt pathway activation in human subconjunctival fibroblasts. Invest Ophthalmol Vis Sci,2007,48(5):1952~1958
    [14]Lien SC, Usami S, Chien S, et al. Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-betal-induced phenotypic0 modulation of 10T1/2 cells to smooth muscle cells. Cell Signal,2006,18(8):1270~1278
    [15]Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res,2000,261(1):44~51
    [16]Price LS, Collard GJ. Regulation of the cytoskeleton by Rho family GTPases: implication for tumor cell invasion. Semin Cancer Biol,2001,11:167~173
    [17]Takai Y, Sasaki T, Matozaki Y. Small GTP-binding proteins. Physiol Rev, 2001,81:153~208
    [18]Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002,420:629~635
    [19]Hinz B, Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol, 2003,14(5):538~546
    [20]Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases:a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 2004,68(2):320~344
    [21]Zhang W, Liu HT. MAPK pathways in the regulation of cell proliferation in mammalian cells. Cell Res,2002,12(1):9~18
    [22]Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. Cell Sci, 2004,117:4619~28
    [23]Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene,2005,24(37):5742~5750
    [24]Mulder KM. Role of Ras and Mapks in TGFbate signaling. Cytokine Growth Factor Rev,2000,11(1-2):23~25
    [25]Perkins ND. The Rel/NF-kappa B family:friend and foe.Trends Biochem Sci, 2000,25:434~440
    [26]Mercurio F, Zhu HY, Brion W. IKK-1 and IKK-2:Cytokine-Activated IB Kinases Essential for NF-κB Activation. Scienc,1997,278(5339):860~866
    [27]Cordeiro MF, Gay JA, Khaw PT.Human anti-transforming growth factor-beta2 antibody:a new glauocoma anti-scarring agent. Invest Ophthalmol Vis Sci, 1999,40(10):2225~2234
    [28]Mead AL, Wong TT, Cordeiro MF, et al. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci,2003,44(8):3394~3401
    [29]Grisanti S, Szurman P, Warga M, et al. Decorin modulates wound healing in experimental glaucoma filtration surgery:a pilot study. Invest Ophthalmol Vis Sci,2005,46(1):191~196
    [30]Khaw P, Grehn F, Hollo G, et al. A phase III study of subconjunctival human anti-transforming growth factor beta(2) monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy. Ophthalmology, 2007,114(10):1822~1830
    [31]Grehn F, Hollo G, Khaw P, et al. Factors affecting the outcome of trabeculectomy:an analysis based on combined data from two phase III studies of an antibody to transforming growth factor beta2, CAT-152. Ophthalmology, 2007,114(10):1831~1838
    [32]Meyer-ter-vehn T, Sieprath S, Katzenberger B. Contractility as aprerequisite for TGF-β-Induced Myofibroblast Transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci,2006,47(11):4895~4904
    [33]Anderson S, Dicesare L, Tan I, et al. Rho-mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts. Exp Cell Res, 2004,298:574~583
    [34]Honjo M, Tanihara H, Kameda T. Potential role of Rho-associated protein kinase inhibitor Y-27632 in glaucoma filtration surgery. Invest Ophthalmol Vis Sci, 2007,48(12):5549~5557
    [35]Meyer-ter-Vehn T, Katzenberger B, Han H, et al. Lovastatin Inhibits TGF-β-Induced Myofibroblast Transdifferentiation in Human Tenon Fibroblasts. Invest Ophthalmol Vis Sci,2008,49:3955~3960
    [36]Meyer-ter-Vehn T, Gebhart S, Sebald W, et al. P38 Ihibitors prevent TGF-P-induced myofibroblast transdifferentiation in human Tenon fibroblasts. Invest Ophthalmol Vis Sci,2006,47(4):1500~1509
    [37]Nakamura H, Siddiqui SS, Shen X, et al. RNA interference targeting transforming growth factor-β type II receptor suppresses ocular inflammation and fibrosis. Molecular Vision,2004,10:703~711
    [38]陈君毅,孙兴怀.转染Smad7基因的人眼球筋膜囊成纤维细胞的Ⅰ型胶原蛋白肌纤维联接蛋白的改变.中华眼科学,2007,43(2):124-128
    [39]Yamanaka O, Saika S, Ohnishi Y, et al. Inhibition of p38MAP kinase suppresses fibrogenic reaction in conjunctiva in mice. Molecular Vision, 2007,13:1730~1739
    [40]黄圣松,葛坚,王莉娜,等.RNA干扰技术抑制体外培养的人眼球筋膜囊成纤维细胞增殖的初步研究.中华眼科学,2005,41(12):1076-1081
    [41]Cejka D. Losert D, Wacheck V. Short interfering RNA (siRNA):tool or therapeutic. Clin Sci (Lond),2006,110(1):47~58
    [42]Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders.Gene Ther,2006,13(6):559-562
    [43]Bakin AV, Rinehart C, Tomlinson AK, et al. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. Cell Sci,2002,115:3193~206
    [44]Tanaka H, Fujita N, Tsuruo T.3-Phosphoinositide-dependent Protein Kinase-1-mediated IB Kinase (IKKB) Phosphorylation Activates NF-B Signaling. Biol Chem,2005,280(49):40965~40973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700