SMAD3和SMAD7在瘢痕疙瘩成纤维细胞TGF-β/SMADs信号通路中的介导作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瘢痕疙瘩是多种生长因子刺激成纤维细胞、血管内皮细胞等修复细胞增殖并合成大量细胞外基质的结果。TGF-β在瘢痕疙瘩的形成过程中发挥着关键作用。
     TGF-β与细胞膜上的TGF-β受体结合后,经过其在细胞内的信号介导子--SMADs蛋白家族,将TGF-β的刺激信号传入核内调控基因转录。这就是TGF-β/SMADs信号转导通路。但TGF-β如何影响SMADs、以何种方式影响哪些靶基因等问题尚远未研究清楚。特别是,在TGF-β/SMADs信号传导通路与瘢痕疙瘩的形成的关系研究方面,有关的报道少见,作者在研究过程中仅检索到一篇文献(Chin GS,et al.P.R.S.2001;108;423)。因此,有必要对此进行研究。
     本文对KFB胞膜TGF-βⅠ、Ⅱ受体和TGF-β/SMADs信号传导通路中的SMAD3、7信号介导子的表达及其调控机制进行了研究。并利用反义寡
    
     第四军医大学傅士学位论文
     核苦酸掺入技术,对 TGF-5/SMADS信号通路阻断后的 KFB的增殖与胶原
     合成的影响进行了初步研究。
     首先,利用免疫组织化学(SABC法)和图像分析的方法,观察了 TGF.
     PI、11型受体在体外培养的正常皮肤成纤维细胞(NFB)、KFB中的表达。
     结果发现,两种受体在KFB中染色的阳性着色(棕黄色)均深于NFB细胞
     (P<0.05);当受到 TGF-日;刺激后,KFB阳性着色深于未受刺激的
     K厂以P<0.05)。提示吓B中的 TGF-6I、11型受体高表达,而且这种表达
     可因配体的刺激而上调。
     其次,采用逆转录PCR、Western蛋白印迹杂交、免疫荧光等技术,
     对Smad3、7mRNA及其蛋白在KFB中的表达和调控机制进行了研究。结果
     发现:Smad3mRNA及其蛋白在NFB和KFB中的表达水平并无明显差别,
     但SMAD3蛋白在KFB核内的荧光强度强于NFB。TGF-pl刺激KFB后,Smad3
     ITutN A表达随K卜日 剂量增加(O,5,n,500*m。1几)和时间的延续
     (1,2,4,24,d卜而降低,呈剂量依赖性和时间依赖性。枷d7m趴A
     在 5 pmol/L TGF-P 作用 90。in就上调到对照组的近 3倍,并延续到 24h
     才恢复至大约正常水平。SWhD3表达在兀F-p 作用24h后下降了70%,
     而SAfD7在TGF-日;刺激2小时就达到最高值,说明Smad7 aRNA表达对TGF-
     日;的刺激更为敏感而反应迅速。用蛋白合成阻断剂CHX阻断KFB的蛋白
     合成后,Smad3 mRNA表达下调明显,说明Smad3 mRNA表达具有蛋白合成
     依赖性,而Smad7 mRNA表达不受影响,呈非蛋白合成依赖性,即 Smad7
     可能是SWDS的直接靶基因。
     再次,对SMAD3、7蛋白在KFB中的空间分布进行的研究发现:当KFB
     受到TGF-p 刺激后,SMAD3由胞浆向核内转位,具有剂量和时间信赖性。
     SMAD7在KFB未受刺激时表达很弱,受TGF-日;刺激后,迅速从在胞浆
     聚集。
     4
    
     第四军医大学博士学位论文
     在研究 fNfN-Y对 TGF-e/SM-AM-Ak信号通路的影响时,我们发现,
     500U/ml I刚-v旨使Sm叨7 InRNA在作用30ruin 后以非蛋白合成信赖性
     方式上调到刺激前水平的8倍多,并持续达sh之久。IFN-Y还能抑制TGF-
     e;引起的SMAD3向核内转位。说明Iry-Y通过直接促进SMAD7表达,
     抑制TGF-日/ShaD信号转导过程。
     最后,我们将 Smad3、Smad4反义寡核苦酸(AS03,AS04)掺入 KFB
     中,以直接阻断TGF-p;’SMADS信号转导通路,结果发现,AS03、AS04均
     能使 MTT反应 A值下降(P<0.01),并使们-脯氨酸的掺入量降低(P<0.05),
     说明 AS03或 AS04能阻断 TGF日/SMAD信号通路,并抑制 KF增殖与胶原
     合成。
     综上所述,本研究得出如下结论:
     1.TGF-pl、11型受体在 KFB高表达并具有配体依赖性。
     2.yB内可能存在较高水平的磷酸化SMAD3。
     3.KFB存在着与其它细胞类似的 TGF-日/SMDS信号传递过程和调
     控机制。
     4.在KFB中,IFN-Y以非蛋白合成信赖的方式迅速上调SMAD7的
     表达而抑制TG卜p/刁MDS通路信号转导。
     5.Smad3、Smad4反义寡核苦酸能阻断TGF-D/SMAD信号通路并抑制
     KFB的增殖和胶原合成。
     在本研究的基础上,结合目前有关细胞信号转导的进展
It is generally agreed that keloid is characterized by excessive deposition of extracellular matrix and over-proliferated fibroblast. TGF- 3 plays an crucial role in keliod development.
    TGF- 3 initiates signaling through their interaction wiJi TGF- 3 receptor complexes. The SMAD complex, which has been activated by TGF-3 receptors, translocates from the cytoplasm into the nucleus and stimulates gene transcription. But its mechanism ,such as how TGF- 3 regulates the expression of SMADs ,what kinds of cellular gene expression may be activated and how this activation occurs, is still incompletely characterized, especially in the fields of keloid researches.
    The expression and regulation of TGF- 3 I / II receptor and SMAD3 and SMAD7 of keloid-derived fibroblasts(KFB) has been studied. The
    
    
    effects of the Smad3 and Smad4 antisense oligonucleotides, which were used to inhibit endogenous Smad expression, on the proliferation and synthesis of collagen of KFB also have been observed.
    Firstly, the expression of type I and II TGF- P receptor of fibroblasts in vitro has been observed using immunohistochemistry and imaging analysis techniques. The results show that the expression of type I and II TGF- P receptor of KFB is higher than that of NFB(p<0.05).The same results can be obtained between treated and untreated KFB with TGF- P i.
    Secondly, the expression and regulation of SMAD3 , SMAD7 and their rnRNA of KFB have been studied by applying RT-PCR and Western blot and cellular immunofluorescence. The results show that the expression of SMAD3 and its mRNA between KFB and NFB has no difference, But SMAD3-associated fluorescence in nuclear of KFB shows a high degree compared with that of NFB. The Smad3 mRNA expression was reduced in a dose- and time-dependent manner and the levels of SMAD3 were reduced by 70% in KFB exposed to TGF- P ,.The induction of Smad? mRNA were markedly up-regulated by 3 fold of control exposed to 5 pmol/L TGF- P i for 90 min, and By 24 h, it returned to control levels. The expression of SMAD7 were increased maximal value upon incubation with TGF- PI for 2 h. Inhibition of de novo protein synthesis with CHX caused down-regulated Smad3 mRNA levels by TGF- P i In contrast, TGF- P i induction of SmadTmRNA was unaffected by pretreatment with CFDC These results suggest that SmadV gene is a direct target of receptor-activated SMAD signals. Thirdly, the localization of SMAD3 and SMAD7 has been detected. The results indicate that TGF- P i induces a translocation of SMAD3 from the
    
    cytoplasm into the nucleus in a dose- and time- dependent manner and a accumulation of SMAD7-specific immunofluorescence in the cytoplasm of KFB.
    Fourthly, the opposite effects of IFN- y on TGF- P /SMAD signal transduction pathway of KFB also has been investigated. We found that IFN-Y could increase Smad? mRNA levels at least 8 fold over the basal level . This increase was maximal 30 min after IFN- Y addition and still present after 8h. It was unaffected by the protein-synthesis inhibitor CHX. IFN- Y also inhibited the translocation of SMAD3 caused by TGF- 3 i.It indicates IFN-Y may cause the inhibition of TGF- P /SMAD signaling by increasing the expression of Smad7 mRNA directly.
    Finally, the SmadS mRNA antisense oligonucleotide were added directly to the monolayer cultures of KFB, both of the MTT reaction A values and 3H-proline incorporation were decreased. The similar effects were found in the Smad4 mRNA antisense oligonucleotide. These results suggest the disruption of TGF- P /SMAD signaling by the SmadS or Sad4 mRNA antisense oligonucleotide can inhibit the proliferation and the synthesis of collagen of KFB. Conclusion:
    1. The levels of type I> II TGF- P receptors expression is higher in KFB.
    2. The activated-SMAD3 may be in a higher level in KFB than in NFB.
    3. The similar mechanism of TGF- P /SMDA is present in KFB , NFB and others.
    4. The inhibition of TGF- P /SMAD signaling can be caused by IFN- Y , which can increase the expression of Smad? mRNA directly.
    
    5. The disruption of T
引文
1. Coleman C, Tuan TL, Buckley S, et al. Contractility , transforming growth factor-beta and plasmin in fetal skin fibroblasts: role in scarless wound healing .J pediatr Res, 1998; 43: 403-409
    2. Peled ZM, Rhee SJ, Hsu M, et al. The ontogeny of scarless healing II : EGF and PDGF-B gene expression in fetal rat skin and fibroblasts as a function of gestational age. Ann Plast Surg , 2001; 47:417-424
    
    
    3. Kennedy CL, Diegelmann RF, Haynes JH, et al. Proinflammatory cytokines differentially regulate hyaluronan synthesis isoforms in fetal and adult fibroblasts. J Pediatr Surg, 2000; 35: 874-879
    4. Burt DW, Law AS. Evolution of the transforming growth factor-beta superfamily. Prog Growth Factor Res, 1994 ; 5(1) :99-118
    5. Massague J. TGF-beta signal transduction. Ann Rev Biochem. 1998; 67:753-791
    6. Odekon LE, Blasi F, Rifkin DB. Requirement for receptor-bound urokinase in plasma-dependent cellular conversion of latent TGF-beta to TGF-beta. J Cell Biol, 1994; 158(3) :398-407
    7. Massage J. The transforming growth factor-p family. Ann Rev Cell Biol. 1990,6:597
    8. Lawrence DA. Transforming growth factor-β: a overview. Kidney International, 1995, 47(supppl): 519
    9. Sparn MB, Robert AB, Wskefield LM, et al. Some recent advances in the chemistry and biology of TGF-β. J Cell Biol, 1987,105:1039
    10. Lzumi T, Scully SP, Heydemann A, et al. Transforming growth factor-β stimulates type I collagen expression in cultured periosteum-derived cells. J Bone Mine Res, 1992, 7:115
    11. Vollbery TM Sr, George MD, et al. Induction of extracellular matrix gene expression in normal human karatinocytes by transforming growth factor-p is altered by cellular differentiation. Exp Cell Res, 1991:193:93
    
    
    12. Hakkinen L, Westermarck J, Kahari VM, et al. Human granulation tissue fibroblasts show enhanced proteoglycan gene expression and altered response to TGF-β1. J Dent Res, 1996,75(10) : 1767
    13. Mailhot JM, Schuster GS, Garnick JJ, et al. Human periodontal ligament and gingival fibroblast response to TGF-β1 stimulation. J Clin Periodontal, 1995,22:679
    14. Begue-Kirn C, Smith A, Loriot M, et al: Comparative analysis of TGF-βs, BMPs, IGF, msxs, fibronectin, osteonectin and bone sialoprotein gene expressions during normal and in vitro induced odontoblast differentiation. Int J Dev Biol, 1994,38:405
    15. Muller G, Behreus J, Nussbaumer U, et al. Inhibitory action of transforming growth factor-β on endothelial cells. Proc Natl Acad Sci USA, 1987,84:5600
    16. Lwasaki BM, Nakahara H, Nakata K, et al. Regulation of proliferation and osteochondrogenic differentiation of periosteum-derived cells by TGF-β and bFGF. J Bone Joint Surg, 1995, 77A(4) :543
    17. 金伯泉,李恩善,许辉等.细胞与分子免疫学,世界图书出版社,1995;137
    18. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-pi gene results in mutifocal inflammatory disease. Nature, 1992,359:693
    19. Rong H, Tang XM, Zhao Y, et al. Postsurgical intraperitoneal exposure to glore powders modulates inflame mator and immune-related cytokine production. Wound Rep Reg, 1997, 5:
    
    89-96
    20. Border WA, Noble NA. Transforming growth factor β in tissue fibrosis. New Engl J Med, 1993, 331:1286-1292
    21. Pierce GF, Berg JV, Rudolph R, et al. Platelet derived growth factor BB and transforming growth factor beta-1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds. Am J Pathol, 1991, 138:629-646
    22. Miller EJ. Collagen structure and function. In: Cohen IK, Diegelmann RF, Lindblad WJ, eds. Wound healing: biochemical and clinical aspects. Philadelphia: Saunders, 1992: 130-151
    23. Rudolph R, Vand Berg J, Ehrlich HP. Wound contraction and scar contracture. In: Cohen IK, Diegel mann RF, Lindblad WJ, eds. Wound healing: bioche mical and clinical aspects. Philadelphia: Saunders, 1992:1771-194
    24. 付小兵,盛志勇.软组织创伤修复基础研究的现状与展望.解放军医学杂志, 1997, 22:12-13
    25. Steenfos HH. Growth factors and wound healing. Scand J Plast Reconstr Hand Surg, 1994, 28: 95-105
    26. Peltonen J, Kahari L, Jaakkola S, et al. Evaluation of transforming growth factor β and type I procollagen gene expression in fibrotic disease by in situ hybridixation. J Invest Dermatol. 1990, 94:365-371
    27. Russell SB, Truping KM, Rodriguez Eaton S, et al. Reduced growth factor requirment of keloid derived fibroblasts may account for tumor growth. Pro Natl Acade Sci USA, 1988;85(2) :587
    
    
    28. David A, Bettinger, Dome R. The effect of TGF-β on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg, 1996:98:827-832
    29. Lin RY, Sullivan KM, Argenta PA, et al. Exogenous TGF-β amplifies its own expression and induces scar formation in a modol of human fetal skin repair. Ann surg, 1995; 222:146-154
    30. Chang J, Longacker MT, Lorenz HP, et al. Fetal and adaut sheep fibroblast TGF-β gene expression in vitro: effects of hypoxia and gestational age. Surg Forum. 1993; 79:720-722
    31. Lorenz HP, Chang J, Longaker MT, et al. Transforming growth factor-β1 and β2 Synergistically increase expression of collagen type I and type III in fetal but not adault offibroblasts. Surg Forum. 1993; 79:723-725
    32. Serini G, Gabbiani G. Modulation of a smooth muscle actin expression in fibroblasts by transforming growth factor β isoforms: an in vivo and in vitro study. Wound Rep Reg, 1996, 4:278-287
    33. Cox DA. Transforming growth factor beta 3. Cell Biol Tnt, 1995, 19:357-371
    34. Shah M, Foreman DM, Terguson MW. Neutralisation of TGF-β1 and β2 or exogenous addition of TGF-β3 to cutanous rate wound scarring. J Cell Sci, 1995; 108:985-1002
    35. Schmid P, Itin P, Cherry G, et al. Enhanced expression of trans forming growth factor-β type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J. Pathol. 1998;
    
    152(2) :485-493
    36. Lee TY, Chin GS, KimWJ, et al. Expression of transforming growth factor beta 1, 2 and 3 proteins in keloids. Ann Plast. Surg, 1999, 43:179
    37. Chin GS, Liu W, Peled Z, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of Smad3 in keloid fibroblasts. Plast Reconstr Surg 2001;108(2) :423-9
    38. Gold LI, Sung JJ, Siebert JW, et al. Type I (RI) and Type II (RII) receptors for transforming growth factor-β isoforms are expressed subsequently to transforming growth factor-β ligands during excisional wound repair. Am J Pathol, 1997; 150; 209-222
    39. Wrana JL, Tran H, Attisano L, et al. Two distinct transmembrance serine/threonine kinases from drosophila melanogaster form an activin receptor complex. Mol Cell Biol,1994;14(2) :944-950
    40. 万秋红。TGF-β超家族信号转导机制研究进展。国外医学分子生物学分册, 2000;22(1) : 137-142
    41. Lin HY, Wang XF, Ng-Eaton E, et al. Expression cloning of the TGF-beta type II receptor, a functional transmembrance serine/threonine kinase. Cell, 1992;68:775
    42. Chen C, Wang XF, Sun L. Expression of transforming growth factor beta ( TGFbeta ) type III receptor restores autocrine TGFbeta I activity in human breast cancer MCF-7 cells [J]. J Biol Chem. 1997:272:12862-12867
    
    
    43. Raftery LA, Twombly V, Wharton K, Gelbart WM 1995 Genetics screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics. 139 (1) : 241-254.
    44. Savage C, Das P, Finelli AL, Townsend SR, et al. 1996 Caenorhabditis elegansgenes Sma-2, Sma-3, and Sma-4. define a conserved family of transforming growth factor β pathway components. Proc Natl Acad Sci USA. 93 (2) : 790-794.
    45. Derynck R, Gelbart WM, Harland RM, et al. 1996 Nomenclature: Vertebrate mediators of TGF βfamily signals. Cell. 87 (3) : 173.
    46. Heldin CH, Miyazono K, ten DijkeP. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997;390 (6659) :465-471
    47. Topper JN, Cai J, Qiu Y, et al. Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Pro Natl Acad Sci, 1997;94(17) :9314-9319
    48. Nakao A, Afrakhte M, Moren A, et al. Identification of smad7, a TGF beta-inducible autagonist of TGF-beta signalling. Nature, 1997:389(6651) :631-635
    49. Imamura T, Takase M, Nishihara A, et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature, 1997; 389(6651) : 622-626
    50. Schiffer M, Von Gersdorff G, Bitzer M, et al. Smad proteins and transforming growth factor beta signalling. Kidney Int. 2000; 58(suppl77) :S45-52
    51. Baker JC, Harland RM. A novel mesoderm inducer, Madr2, functions
    
    in the activin signal transduction pathway. Genes Dev, 1996,10:1880
    52. Lu F. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature, 1996,381:620
    53. Engel ME, McDonnell MA, Law BK, et al. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem, 1999,274(52) : 37413
    54. Massague J. TGF-β signal transduction. Ann Rev Biochem, 1998,67:753
    55. Massague J. TGF-β signal: receptors, transducers, and Mad proteins. Cell, 1996,85:947
    56. Dong C , Li Z, Alvarez R , et al. Microtubule binding to smads may regulate TGF beta activity. Mol Cell, 2000:5:27-34
    57. Tsukazaki T, Chiang TA, Davison AF, et al. SARA, a five domain protein that recruits Smad2 to the TGF beta receptor. Cell, 1998:95(6) :779-791
    58. Yanagisawa K, Osada H, Masuda A , et al. Induction of apopotosis by Smad3 and down-regulation of smad3 expression in response to TGF-beta in human normal epithelial cells. Oncogene, 1998; 17(13) :1743-1747
    59. Zhu H, Kavsak P, Abdollah S, et al. TGF-beta signaling by Smad proteins. Nature, 1999;400(6745) :687-693
    60. Laney JD, Hochstrasser M. Substrate targeting in the ubiquitin system. Cell, 1999,97:427
    61. Zhu-H, Kavsak-P, Abdollah-S, et al. A SMAD ubiquitin ligase
    
    targets the BMP pathway and affects embryonic pattern formation. Nature. 1999,400(6745) : 687
    62. Lin X, Liang M, Feng XH. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of smad2 in transforming growth factor-beta signaling. J Biol Chem, 2000, 275(47) :36818
    63. Lo RS, Massague J. Ubiquitin-dependent degradation of TGF-beta-activated Smad2. Nat Cell Biol, 1999;1:472-478
    64. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J,2000,19(8) :1745
    65. Nagarajan-RP, Liu-J, Chen-Y. Smad3 inhibits transforming growth factor-beta and activin signaling by competing with Smad4 for FAST-2 binding. J-Biol-Chem, 1999, 274(44) : 31229
    66. Verschueren K, Huylebroeck D. Remarkable versatility of Smad proteins in the nucleus of transforming growth factor-beta activated cells. Cytokine Growth Factor Rev, 1999, 10(3-4) :187
    67. Miyazono K. TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev, 2000;11 (1-2) :15-22
    68. Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature, 1998, 396(6710) :491
    69. Stroschein-SL; Wang-W; Luo-K. Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor beta-induced smad-dependent transcriptional activation. J-Biol-Chem,1999 ,274(14) : 9431
    
    
    70. Denissova NG, Pouponnot C, Long J, et al. Transforming growth factor beta-inducible independent binding of SMAD to the Smad7 promoter. Proc Natl Acad Sci,2000, 97(12) :6397
    71. von Gersdorff G, Susztak K, Rezvani F, et al. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem, 2000, 275(15) : 11320
    72. Angel P, Allegretto EA, Okino ST, et al. Onecogene jun encodes a sequence specific transactivator similar to AP-1. Nature, 1988, 322:166
    73. Katai H, Stephenson JD, Simkevich CP, et al. An AP-1-like motif in the first intron of human pro a (I) collagen gene is a critical determinant of its transcriptional activity. Mol Cell Biochem, 1992,118:119
    74. Wong C, Rougier-Chapman EM, Frederick JP, et al. Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol Cell Biol 1999 Mar;19(3) :1821-30
    75. Liberati NT, Datto MB, Frederick JP, et al. Smads bind directly to the Jun family of AP-1 transcription factors .Proc Natl Acad Sci U S A 1999 Apr 27;96 (9) :4844-9
    76. Dennler S, Itoh S, Vivien D, et al. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998 Jun 1:17(11) :3091-3100
    
    
    77. Watanabe-M, Whitman-M. The role of transcription factors involved in TGFbeta superfamily signaling during development. Cell Mol Biol, 1999, 45(5) : 537
    78. Datta PK, Blake MC, Moses HL. Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta-induced physical and functional interactions between smads and Spl. J Biol Chem , 2000,275(51) :40014
    79. Feng XH, Lin X, Derynck R. Smad2, smad3 and smad4 cooperate with Spl to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J, 2000 ,19 (19) : 5178
    80. Hanai J, Chen LF, Kanno T, et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem, 1999,274(44) : 31577
    81. Itoh S, Ericsson J, Nishikawa Ji, et al. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res, 2000,23(21) :4291
    82. Kawabata M, Imamura T, Inoue H, et al. Intracellular signaling of the TGF-beta superfamily by Smad proteins. Ann N Y Acad Sci, 1999,886:73
    83. Attisano L, Wrana JL. Smads as transcriptional co-modulators. Curr Opin Cell Biol, 2000, 12(2) :235
    84. Wotton-D, Lo-RS, Lee-S, et al. Smad transcriptional corepressor. Cell, 1999; 97(1) : 29
    85. Luo-K, Stroschein-SL, Wang-W, et al. The Ski oncoprotein
    
    interacts with the Smad proteins to repress TGFbeta signaling. Genes-Dev, 1999,13(17) : 2196
    86. Nagarajan RP, Chen F, Li W, et al. Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB. Biochem J, 2000,348 Pt 3:591
    87. Zimmerman CM, Padgett RW. Transforming growth factor beta signaling mediators and modulators. Gene, 2000, 249(1-2) :17
    88. Kretzschmar M, Doody J, Massague J. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature,1997:389(6651) :618-622
    89. Kretzschmar M, Doody J, Timokhina Z , et al. A mechanism of repression of TGF-beta/Smad signaling by oncogenic Ras. Genes Dev 1999;13(7) :804-816
    90. Lo RS, Wotton D, Massague J, et al. Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J, 2001;20(1) :128-136
    91. Yakymovych I, Ten Dijke P, Heldin CH, et al. Regulation of Smad signaling by protein kinase C. FASEB J, 2001;15(3) :553-555
    92. Ghosh AK, Yuan W, Mori Y, et al. Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta: integration at the level of p300/CBP transcriptional coactivators. J Biol Chem, 2001; 276(14) :11041-11048
    93. Wicks SJ, Lui S, Abdel-Wahab N, et al. Inactivation of Smad-transforming growth factor bata signaling by Ca2+
    
    -Calmodulin-dependent protein kinase II . Mol Cell Biol, 2000:20(21) :8103-8111
    94. Ishisaki A, Yamato K, Hashimoto S, et al. Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein-and activin-mediated growth arrest and apoptosis in B cells. J Biol Chem. 1999 May 7;274 (19) :13637-42.
    95. Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature. 1999 Feb 25;397(6721) :710-3
    96. Bitzer M, von Gersdorff G, Liang D, et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev. 2000 Jan 15; 14(2) : 187-97.
    97. Lehmann K, Janda E, Pierreux CE, et al. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev, 2000 , 14(20) :2610
    98. Wotton-D, Lo-RS, Lee-S, et al. Smad transcriptional corepressor. Cell, 1999, 97(1) : 29
    99. Luo K, Strschrin SL, Wang W, ET AL. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 1999 Sep 1;13(17) :2196-206.
    100. Chen SJ, Yuan WH, Lo S, et al. Interaction of Smad3 with a proximal Smad-binding element of human a 2( I ) procollagen gene promoter required for transcriptional activation by TGF-β. J
    
    Cellular Physiology 2000:138:381-392
    101. Inagaki Y, Truter S, Ramirez F. et al. Transforming growth factor-β stimulates a 2 ( I ) collagen gene expression through a cis-acting element that contains an Spl-binding site. J Biol Chem 1994, 269, 14828-14834
    102. Hao J, Ju H, Zhao S, et al. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 1999;31(3) :667-678
    103. Chin GS, Liu W, Peled Z, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of Smad3 in keloid fibroblasts. Plast Reconstr Surg 2001;108 (2) :423-9
    104. Yuan W, Varga J. Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem. 2001 Oct 19;276 (42) :38502-10.
    105. Reisdorf P, Lawrence DA, Sivan V, et al. Alteration of transforming growth factor-betal response involves down-regulation of Smad3 signaling in myofibroblasts from skin fibrosis. Am J Pathol. 2001 Jul;159(1) :263-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700