TGF-β_1/Smads信号转导途径在肺肌成纤维细胞分化中的作用及IFN-γ、地塞米松的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、Smads蛋白在TGF-β_1体外诱导肺成纤维细胞向肌成纤维细胞分化中作用
     目的:肺肌成纤维细胞在肺纤维化发生机制中起重要作用,其分化标志是α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的表达。研究发现TGF-β_1可通过Smads蛋白家族成员传递信号发挥生物作用,因此本研究主要探讨在TGF-β_1诱导肺成纤维细胞向肌成纤维细胞分化过程中,各Smad蛋白对α-SMA基因表达的调控作用。
     方法:
     1、体外培养人胚胎肺成纤维细胞(HFL-F),TGF-β_1干预后通过Western blot及RT-PCR分析α-SMA基因mRNA和蛋白水平表达的变化,同时用免疫荧光法观察细胞形态改变。
     2、构建含人α-SMA基因启动子序列的荧光素酶报告基因质粒(p895-Luc)和Smad2突变表达质粒(pSmad2~(mut)):以人基因组DNA为模板用PCR扩增人α-SMA基因启动子-895~+9bp序列,插入到pGal3-basic质粒的MluⅠ和XhoⅠ酶切位点之间形成p895-Luc。突变Smad2序列是通过以pCS_2-Smad2质粒为模板用PCR方法获取,然后将其插入到经BglⅡ和XhoⅠ酶切后的pCS_2-Smad2质粒片段形成pCS_2-Smad2~(mut)。Smad2、Smad3、Smad7和Smad3~(mut)表达质粒为他人惠赠。
     3、用Fugene6.0将p895-Luc分别和各种Smad表达质粒瞬时共转染至HFL-F中,TGF-β_1干预后测定其荧光素酶和β—半乳糖苷酶的活性。
     4、用Fugene6.0将各种Smad表达质粒瞬时转染至HFL-F中,TGF-β_1干预后通过Western blot分析α-SMA基因的蛋白表达。
     结果:
     1、5ng/ml TGF-β_1作用4天能诱导肺成纤维细胞向肌成纤维细胞分化。
     2、过表达Smad3能增强TGF-β_1诱导的α-SMA基因启动子活性和其蛋白表达,而过表达Smad3~(mut)能抑制这种增强作用,但没有使其恢复到基础水平,两者对α-SMA基因的基础表达没有影响。
     3、过表达Smad2和Smad2~(mut)不影响TGF-β_1对α-SMA基因启动子活性及蛋白表达的
I: The Role of Smads Signaling during Lung Fibroblasts-Myofibroblasts
    Differentiation Induced by Transforming Growth Factor-β_1 in vitro
    Objective: Myofibroblasts play an important role in the fibrotic pathogenesis.The
    expression of alpha-smooth muscle actin (α -SMA) is a marker of differentiation of
    myofibroblasts. A family of cytoplasmic proteins called Smads is found to mediate
    intracellular signaling of TGF-β_1. So, the present study was undertaken to further
    explore the role of Smads signaling in the regulation of α -SMA gene expression
    during lung fibroblasts-myofibroblasts differentiation induced by TGF-β_1.
    Methods:
    1、 Human fetal lung fibroblasts(HFL-F) were cultured in vitro. After induced by
    TGF-β_1, Western blot, RT-PCR was used to analyses α -SMA gene protein and
    mRNA expression. And cell morphological transformation was investigated by
    immunofluorescent technique.
    2、 Construction of luciferase reporter plasmid containing human a-SMA gene
    promote (p895-Luc) and mutant Smad2 plasmid (pSmad2~(mut)): The human a-SMA
    gene promoter (-895~+9bp) was cloned by PCR from human genomic DNA and
    was inserted into vector pGa(?)3-basic at MluI-XhoI site and form p895-Luc. Smad2~(mut)
    were generated by PCR-based mutagenesis from pCS_2-Smad2 plasmid DNA and PCR
    products were inserted into the Bgl II -Xho I sites of pSmad2 plasmid. Other plasmids
    including pSmad2, pSmad3, pSmad7 and pSmad3~(mut) were provided kindly.
    3, p895-Luc was performed transient co-transfection with different Smad expression
    plasmids by using Fugene 6.0 reagent in HFL-F, respectively. The lucifease and
    β-galactosidase activities were measured after treated by TGF-β_1.
    4, The different Smad expression plasmids were performed transient transfection by
    using Fugene 6.0 reagent in HFL-F. The α -SMA protein expression was analyses by
    Western blot after treated by TGF-β_1.
    Results:
引文
1. Phan SH. The myofibroblasts in pulmonary fibrosis. Chest. 2001;120: 286S-289S.
    2. Kuhn C, McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis.Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol. 1991;138:1257-1265.
    3. Zhang K, Rekhter MD, Gordon D, et al. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol. 1994;145:114-125.
    4. Zhang H, Gharaee-Kermani M, Zhang K, et al. Lung fibroblast contractile and a-smooth muscle actin phenotypic alterative in bleomycin-induced pulmonary fibrosis. Am J Pathol. 1996;148:527-537.
    5. Uhal BD, Joshl I, Hughes WF, et al. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol. 1998;275:L1192-L1199.
    6. Wang R, Ramos C, Joshi I, et al. Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. Am J Physiol. 1999;277:L1158-L1164.
    7. Border WA and Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331:1286-1292.
    8. Wang Q, Wang Y, Hyde M, et al. Reductin of bleomycin induced lung fibrosis by transforming growth factor β soluble receptor in hamsters. Thorax. 1999;54:805-812.
    9. Hashimoto S, Gon Y, Takeshita I, et al. Tranaforming growth factor-β_1 induces phenotypic modulation of human lung fibroblasts to myofibroblasts through a c-jun-NH_2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 2001;163:152-157.
    10. Gauldie J, Sime PJ, Xing Z, et al. Transforming growth factor-β gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Curr Top Pathol. 1999;93:35-45.
    11. Zimmerman CM, Padgett RW. Transforming growth factor-β signaling mediators and regulators. Gene. 2000;249:17-30.
    12. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003; 425: 577-84.
    13. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosol immunity and diminished T cell responsiveness to TGF-beta. EMBO J.1999;18:1280-1291.
    14. Weinstein M, Yang X, Li C, et al. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci USA. 1998;95:9378-9383.
    15. Piek E, Ju WJ, Heyer J, et al. Functional chrarcterization of transforming growth factorβ signaling in Smad2 and Smad3-deficient fibroblasts. J Biol Chem. 2001 ;276:19945-19953.
    16. Dennler S, Huet S, Gouthier JM, et al. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene.1999; 18:1643-1648.
    17. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753-791.
    18. Desmouliere A, Geinoz A, Gabbiani F, et al. Transforming growth factor-131 induces a-smooth actin expression in granulation tissue myofibroblaste and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122:103-111.
    19. Roy SG, Nozaki Y, and Phan SH. Regulation of alpha-smooth muscle actin gene expression in myofibroblast differentiation from rat lung fibroblasts. Int J Biochem Cell Biol.2001;33:723-734.
    20. Ronnov-Jessen L and Pertersen OW. Induction of alpha-smooth muscle actin by transforming growth factor-betal in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasis. Lab Invest. 1993;68:696-707.
    21.F 奥斯伯,R布伦特,RE 金斯顿,等.精编分子生物学指南,科学出版社,2000:290-307.
    22. Hexdall L, Zheng CE Stable luciferase reporter cell lines for signal transduction pathway readout using GAL4 fusion ransactivators. Biotechniques.2001;30:1134-11
    23. Blanton JR jr, Bidwell AL, Sanders DA, et al. Plasmid transfection and retroviral transduction of porcine muscle cells for cell-mediated gene transfer. J Anim Sci.2000;78:909-918.
    24. Verrecchia F, Chu ML and Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a comibined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001;276:17058-17062.
    25. Chen SJ, Yuan W, Mori Y, et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad3. J Invest Dermatol. 1999;112:49-57.
    26. Vindevoghel, L, Lechleider, RJ, Kon, A, et al SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor-β. Proc Natl Acad Sci U S A. 1998;95:14769-14774.
    27. Yuan W and Varga J. Transforming growth factor-beta repression of matrix metal proteinase-1 transcription in dermal fibroblasts involves Smad3. J Biol Chem. 2001; 276:38502-38510.
    28. Hu B, Wu Z, phan SH. Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol. 2003;29:397-404.
    29. Rachel AE, Ya CT, Robert S, et al. TGF-β_1 mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Experi Cell Res. 2003;282:90-100.
    30. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003; 425: 577-84.
    31. Yue J, Frey RS, Mulder KM. Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGF-β. Oncogene. 1999;18:2033-2037.
    32. Isaka Y, Akagi Y, Ando Y, et al. Gene therapy by transforming growth factor-βreceptor-IgG Fc chimera suppressed extracellular matrix accumulation in experimental glomerulonephritis.Kidney Int. 1999;55:465-475.
    33. Ueno H, Sakamoto T, Nakamura T, et al. A soluble Transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis in rats. Hum Gene Ther. 2000;11:33-42.
    1. Ward PA, and Hunninghake GW. Lung inflammation and fibrosis. Am J Respir Crit Care Med. 1998;157:S123-S129.
    2. Thannickal VJ, Toews GB, White ES, et al. Mechanisms of pulmonary fibrosis. Annu Rev Med. 2004; 55: 395-417.
    3. Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med. 1998; 157:1301-1315.
    4. Flaherty KR, ColbyTV, Travis WD, et al. Fibroblastic foci in usual interstitial pneumonia: idiopathic versus collagen vascular diseases. Am J Respir Crit Care Med. 2003;167:1410-1415.
    5. Travis WD, Matsui K, Moss H, et al. Idiopathic nonspecific interstitial pneumonia/fibrosis:Prognostic significance of cellular and fibrosing patterns. Am J Surg Pathol. 2000;24:19-33.
    6. Bjoraker JA, Ryu JH, Edwin MK, Myers JL, Tazelaar HD, Schoreder DR,Offord KP. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1998;157:99-203.
    7. Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134:136-151.
    8. Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med. 2001;345:517-525.
    9. King Jr TE, Schwarz MI, Brown K, et al. Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med. 2001;164:1025-1032.
    10. Kuhn C, McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis.ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol. 1991;138:1257-1265.
    11. Zhang K, Rekhter MD, Gordon D, et al. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol. 1994;145:114-125.
    12. Broekelmann TJ, Limper AH, Colby TV, et al. Transforming growth factor-β_1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA. 1991;88:6642-6646.
    13. Coker RK, Laurent GJ, Jeffery PK, et al. Localisation of Transforming growth factor-β_1 and β_2 mRNA transcripts in normal and fibrotic human lung. Thorax. 2001;56:549-556.
    14. Gauldie J, Sime PJ, Xing Z, et al. Transforming growth factor-β gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Curr Top Pathol. 1999;93:35-45.
    15. Coker Rk, Laurent GJ, Shahzerde S, et al. Transforming growth factor-β_1, β_2, and 83 stimulate fibroblast procollagen production in vitro but are differentially expressed during bleomycin-induced lung fibrosis. Am J Pathol. 1997;150:981-991.
    16. Mitchell J, Woodcock MJ, Reynolds S, et al. a-smooth muscle actin in paraenchymal cells of bleomycin-injured rat lung. Lab Invest. 1989;60:643-650.
    17. Giri SN, Hyde DM, and Hollinger MA. Effect of Transforming growth factor-β on a bleomycin induced accumulation of lung collagen in mice. Thorax. 1993;48:959-966.
    18. Wang Q, Wang Y, Hyde DM, et al. Reduction of bleomycin induced lung fibrosis by transforming growth factor-β soluble receptor in hamsters. Thorax. 1999;54:805-812.
    19. Zimmerman CM, Padgett RW. Transforming growth factor-β signaling mediators and regulators. Gene. 2000;249:17-30.
    20. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003; 425: 577-84.
    21. Zhao J, Shi W, Wang YL, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002;282:L85-L593.
    22. Bonniaud P, Kolb M, Galt T, et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-β-mediated pulmonary fibrosis. J Immunology. 2004;173:2099-2108
    23. Woesser JF. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Archives of Biochemistry and Biophysics. 1961;93:440-447.
    24. Selman M, Montano M, Montfort I, et al. New model of diffuse interstitial pulmonary fibrosis in the rat. Exp Mol Pathol. 1985; 43: 375-387.
    25. Sausville EA, Peisach J, Horwitz SB. Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry. 1978; 17: 2740-2746.
    26. Sausville EA, Stein RW, Peisach J, et al. Properties and products of the degradation of DNA by bleomycin and iron(II). Biochemistry. 1978; 17: 2746-2754.
    27. Lindenschmidt RC, Tryka AF, Godfrey GA, et al. Intratracheal versus intravenous administration of bleomycin in mice: Acute effects. Toxicol Apple pharmacol. 1986;85:69-77.
    28. Kumar RK, Watkins S_TG and Lykke AWJ. Pulmonary responses to bleomycin-induced injury:Am immunopathologic and electron microscopic study. Exp pathol. 1985;80:2833-43.
    29. James H, Harrison JR and Lazo JS. High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J Pharmo Exp Thera. 1987; 243:1185-1194.
    30. Border WA and Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331:1286-1292.
    31. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosol immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 1999;18:1280-1291.
    32. Ashcroft L, Yang X, Glick AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired inflammatory response. Nat Cell Biol. 1999;1:260-266.
    33. Schnabl B, Kweon YO, Frederick JP, et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001;34:89-100.
    34. Yue J, Frey RS, Mulder KM. Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGF-β. Oncogene. 1999;18:2033-2037.
    35. Hashimoto S, Gon Y, Takeshita I, et al. Tranaforming growth factor-β_1 induces phenotypic modulation of human lung fibroblasts to myofibroblasts through a c-jun-NH_2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 2001;163:152-157.
    36. Liu T, Dhanasekaran SM, Jin H, et al. FIZZ1 stimulation of myfibroblast differentiation. Am J Pathol. 2004;164:1315-1326.
    37. Zhang K, Rekhter MD, Gordon D, et al. Co-expression of a-smooth muscle actin and type I collagen in fibroblast-like cells of rat lungs with bleomycin-induced pulmonary fibrosis: a combined immunohistochemical and in situ hybridization study. Am J Pathol. 1994; 145: 114-125.
    38. Abe R, Donnelly SC, Peng T, et al. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001; 166:7556-7562.
    39. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001; 105:369-377.
    1. Kuhn C 3rd, McDonald JA. The role of the myofibroblast in idiopathic pulmonary fibrosis: ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol. 1991;138:1257-65.
    2. Zhang K, Rekhter MD, Gordon D,et al. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis: A combined immunohistochemical and in situ hybridization study. Am J Pathol. 1994;145:114-125.
    3. Zhang H, Gharaee-Kermani M, Zhang K, et al. Lung fibroblast contractile anda-smooth muscle actin phenotypic alterations in bleomycin-induced pulmonary fibrosis. Am J Pathol. 1996;148:527-537.
    4. King TE, Jr, Schwarz MI, Brown K, et al. Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med. 2001;164:1025-1032.
    5. Nicholson AG, Fulford LG, Colby TV, et al. The relationship between individual histopathologic features and disease progression in Idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2002;166:173-177.
    6. Gauldie J, Sime PJ, Xing Z, et al. Transforming growth factor-β gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Curr Top Pathol. 1999;93:35-45.
    7. Hashimoto S, Gon Y, Takeshita I, et al. Tranaforming growth factor-β_1 induces phenotypic modulation of human lung fibroblasts to myofibroblasts through a c-jun-NH_2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 2001;163:152-157.
    8. Desmouliere A, Geinoz A, Gabbiani F, et al Tranaforming growth factor-β_1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent angrowing cultured fibroblasts. J cell boil. 1993;122:103-111.
    9. Narayanan As, Whithey J, Soiuze A, et al. Effect of gamma-inferon on collagen synthesis by normal and fibrotic human lung fibroblasts. Chest. 1992;101:1326-1331.
    10. Elias JA, Jimenez SA, Freandlich B. Recombinant gamma, alpha, and bete interferon regulation of human lung fibroblast proliferation. Am Rev Respir Dis. 1987; 135: 62-65.
    11. Gurujeyalakshmi G, Giri SN. Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin mouse model of lung fibrosis: downregulation of TGF-beta and procollagen I and III gene expression. Exp lung Res. 1995; 21:791-808.
    12. Hyde DM, Henderson TS, Giri SN et al. The effect of murine gamma interferon on the cellular responses to bleomycin in mice. Exp Lung Res. 1988;14:687-704.
    13. Ziesche R, Hofbauer E, Wattmann K, et al. A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 1999; 341:1264-1269.
    14. Raghu G, Brown KK, Bradford WZ, et al. A Placebo-Controlled Trial of Interferon Gamma-1b in Patients with Idiopathic Pulmonary Fibrosis. N Engl J Med. 2004;350:125-33.
    15. Crstal RG, Bitterman PB, Rennard SI, at al. Interstitial lung diseases of unknown cause:disorders characterized by chronic inflammation of the the lower respiratory tract. N Engl J Med. 1994;310:154-166
    16. Streiter RM. Inflammatory mechanisms are not a minor component of the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Care Med. 2002;165:1206-1207.
    17. Khalil N and O'Connor R. Idiopathic pulmonary fibrosis: current understanding of the pathogenesis and the status of treatment. CMAJ. 2004;171:153-160.
    18. Villarreal FJ, Kim NN, Ungab GD, et al. Identification of functional angiotensin II receptor on cardiac fibroblasts. Circulation. 1993; 88:2849-2861.
    19. Stegemann H, Stalder K. Determination of hydroxyproline. Clin Chim Acta. 1967; 18:267-273.
    20. Hasegawa T, Nakao A, Sumiyoshi K, et al. IFN- fails to antagonize fibrotic effect of TGF-βon keloid-derived dermal fibroblasts. J Derm sci. 2003; 32:19-24.
    21. Yokozeki M, Baba Y, Shimokawa H, et al. Interferon-γ inhibits the myofibroblastic phenotype of rat palatal fibroblasts induced by transforming growth factor-β_1 in vitro. FEBS Letters. 1999; 442:61-64.
    22. Kalra S, Utz JP, Ryu JH. Interferon gamma-1b therapy for advanced idiopathic pulmonary fibrosis. Mayo Clin Proc. 2003;78:1082-1087.
    23. Prasse A, Muller KM, Kurz C, et al. Does interferon-gamma improve pulmonary function in idiopathic pulmonary fibrosis? Eur Respir J. 2003; 22:906-911.
    24. Ulloa L, Doody J, Masague J. Inhibition of transforming growth factor-β/Smad signalling by the interferon-γ/ State pathway. Nature. 1999; 397:710-713.
    25. Ghosh AK, Yuan W, Mori Y, et al. Antagonistic regulation of type I collagen gene expression by IFN-γ and TGF-β: integration at the level of p300/CBP transcriptional coactivators. J Biol Chem. 2001; 276:11041-11048.
    26. Brenner RE, Felger D, Winter C, et al. Effects of dexamethasone on proliferation, chemotaxis, collagen I, and fibronectin-metabolism of human fetal lung fibroblasts. Pediatr Pulmonol. 2001; 32:1-7.
    1. Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Gene Dev. 1994;8:133-146.
    2. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753-791.
    3. Robert AB, Anzano MA, Lamb LC, et al. Proc Natl Acad Sci USA. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. 1981;78:5339-5343.
    4. Massague JA, Liu HF. Smads: TGF-β singnaling through the Smad pathway. Trends in cell biology. 1997; 17:187-192.
    5. Zimmerman CM, Padgett RW. Transforming growth factor-β signaling mediators and regulators. Gene. 2000;249:17-30.
    6. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003; 425: 577-84.
    7. Yue, J, Frey, RS, Mulder, KM Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGF-β. Oncogene. 1999;18:2033-2037.
    8. Border WA and Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331:1286-1292.
    9. Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature Transforming growth factor-β1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA. 1995;92:2572-2576.
    10. Hashimoto S, Gon Y, Takeshita I, et al. Tranaforming growth factor-β_1 induces phenotypic modulation of human lung fibroblasts to myofibroblasts through a c-jun-NH_2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 2001;163:152-157.
    11. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004 Jan;15:1-12.
    12. Kono-Saika S, Ohnishi Y, et al. Smad3 singaling is required for epithelial-mesenchymal transistion of lens epithelium post-injury. Am J Pathol. 2004;164:651-663.
    13. Gauldie J, Sime PJ, Xing Z, et al. Transforming growth factor-β gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Curr Top Pathol. 1999;93:35-45.
    14. Saika S, Zhang H, and Phan SH. Inhibition of myofibroblast apoptosis by tranaforming growth factor-β_1. Am J Respir Cell Mol Biol. 1999;21:658-665.
    15. Isaka Y, Akagi Y, Ando Y, et al. Gene therapy by transforming growth factor-βreceptor-IgG Fc chimera suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int. 1999;55:465-475.
    16. Ueno H, Sakamoto T, Nakamura T, et al. A soluble Transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis in rats. Hum Gene Ther. 2000;11:33-42.
    17. Gin SN, Hyde DM, and Hollinger MA. Effect of Transforming growth factor-β on a bleomycin induced accumulation of lung collagen in mice. Thorax. 1993;48:959-966.
    18. Wang Q, Wang Y, Hyde DM, et al. Reduction of bleomycin induced lung fibrosis by transforming growth factor-β soluble receptor in hamsters. Thorax. 1999;54:805-812.
    19. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001;114:4359-4369.
    20. Shi Y and Massagur J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685-700.
    21. Lutz M, and Knaus P. Integration of the TGF-β pathway into the cellular signaling network. Cell Signal. 2002;14:977-988.
    22. Kretzschmar M, Doody J, Timokhina I, et al A mechanism of repression of TGF-β Smad signaling by oncogenic Ras. Genes Dev. 1999;13:804-816.
    23. De Caestecker MP, Parks WT, Frank CJ, et al. Smad2 transduces signals from receptor serine-threonine and tyrosine kinases. Genes Dev. 1998; 12:1587-1592.
    24. Michael EE, Maureen A McD, Brian KL, et al. Interdependent SMAD and INK signaling in transforming growth factors-mediated transcription. J Biol Chem. 1999;274:37413-37420.
    25. Attisano Land Tuen Lee-Hoeflich S. The Smads. Genome Biol. 2001;2:1-8.
    26. Zawel L, Dai JL, Buckhaults R, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998;1:611-617.
    27. Dennler S, Huet S, Gouthier JM, et al. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene. 1999; 18:1643-1648.
    28. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosol immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 1999;18:1280-1291.
    29. Weinstein M, Yang X, Li C, et al. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci USA. 1998;95:9378-9383.
    30. Piek E, Ju WJ, Heyer J, et al. Functional chrarcterization of transforming growth factorβ signaling in Smad2 and Smad3-deficient fibroblasts. J Biol Chem. 2001; 276:19945-19953.
    31. Kretschmer A, Moepert K, Dames S, et al. Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4. Clin Exp Nephrol. 2003;22:6748-6763.
    32. Verrecchia F, Chu ML and Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a comibined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001;276:17058-17062.
    33. Chen SJ, Yuan, W, Mori, Y, et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad 3. J Invest Dermatol. 1999;112:49-57.
    34. Vindevoghel, L, Lechleider, RJ, Kon, A, et al SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor-β. Proc Natl Acad Sci U S A. 1998;95:14769-14774.
    35. Chen SJ, Yuan W, Lo S, et al. Interaction of Smad3 with a proximal smad-binging element of the human alpha2(I) procollagen gene promoter required for transcriptional activation by TGF-beta. J Cell Physiol. 2001;183:381-392.
    36. Ghosh AK, Yuan W, Mori Y, et al. Antagonistic regulation of type I collagen gene expressionby interferon-gamma and transforming growth factor-beta. Interation at the level of p300/CBP transcriptional coactivators. J Biol Chem. 2000;276:11041-11048.
    37. Zhang W, Ou J, Inagaki Y, et al. Synergistic cooperation between Sp1 and Smad3/Smad4 mediates transforming growth factor beta1 stimulation of alpha 2( I )-collagen(COL1A2) transcription. J Biol Chem. 2000;275:39237-39245.
    38. Poncelet AC and Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2( I )-collagen expression in human glomerular mesangial cells. J Biol Chem. 2001;276:6983-6992.
    39. Verrecchia F, Tacheau C, Wagner EF, et al. A central role for the JNK pathway in mediating the antagonistic activity of pro-inflammatory cytokines against transforming growth factor-beta-driven SMAD3/4-specific gene expression. J Biol Chem 2003;278:1585-1593.
    40. Yuan W and Varga J. Transforming growth factor-beta repression of matrix metalloproteinase-1 transcription in dermal fibroblasts involves Smad3. J Biol Chem. 2001; 276:38502-38510.
    41. Dennler S, Itoh S, Vivien D, et al. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO. 1998;17:3091-3100.
    42. Datta PK, Blake MC and Moses HL. Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta-induced physical and functional interactions between smads and Sp1. J Biol Chem. 2000;275:40014-40019.
    43. Ashcroft L, Yang X, Glick AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired inflammatory response. Nat Cell Biol. 1999;1:260-266.
    44. Sumiyoshi K, Nakao A, Setoguchi Y, et al. Smads regulate collagen gel contraction by human dermal fibroblasts. Br J Dermatol. 2003;149:464-470.
    45. Liu X, Wen FQ, Kobayashi T, et al. Smad3 mediates the TGF-beta-induced contraction of type collagen gels by mouse embryo fibroblasts. Cell Motil Cytoskeleton. 2003;54:248-253.
    46. Flanders KC, Sullivan CD, Fujii M, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol. 2002;160:1057-1068.
    47. Flanders KC, Major CD, Arabshahi A, et al. Interference with transforming growth factor-beta/Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am J Pathol. 2003;163:2247-2257.
    48. Takagawa S, Lakos G, Mori Y, et al. Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma. J Invest Dermatol. 2003;121:41-50.
    49. Gabriella L, Shinsuke T, and Chen SJ, et al. Targeted disruption of TGF-β/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol. 2004;165:203-217.
    50. Chin GS, Liu W, Peled Z, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of smad 3 in keloid fibroblasts. Plast Reconstr Surg. 2001;108:423-429.
    51. Dong C, Zhu S, Wang T, et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA. 2002;99:3908-3913.
    52. Inagaki Y, Nemoto T, Nakao A, et al. Interaction between GC box binding factors and Smad proteins modulates cell lineage-specific alpha 2( I ) collagen gene transcription. J Biol Chem. 2001;276:16573-16579.
    53. Schnabl B, Kweon YO, Frederick JP, et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001;34:89-100.
    54. Furukawa F, Matsuzaki K, Mori S, et al. p38 MAPKmediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblsts. Hepatology. 2003; 38: 879-889.
    55. Tahashi Y, Matsuzaki K, date M, et al. differential regulationof TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology. 2002;35:49-61.
    56. Dooley S, Delvoux B, Lahme B, et al. Modulation of transforming growth factor response and signaling during transdifferntiation of rat hepatic stellate cells to myofibroblasts. Hepatology. 2000;31:1097-1106.
    57. Runyan CE, Schnaperr HW and Poncelet AC. The PI3K-Akt pathway enhances Smad3-stimulated mesangial cell collaen I expression in response to TGF-beta1. J Biol chem. 2004;279:2632-2639.
    58. Chen R, Huang C, Morinelli TA, et al. Blockade of the effects of TGF-beta1 on mesangial cells by overexperssionof Smad7. J Am Soc Nephrol. 2002;13:887-893.
    59. Li JH, Huang XR, Zhu HJ, et al. Role of TGF-beta signaling in extracellular matrix production under high glucose conditions. Kidnet Int. 2003;63:2010-2019.
    60. Isono M, Chen S, Won HS, et al. smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun. 2002;296:1356-1365.
    61. Hong SW, Isono M, Chen S, et al. Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse.Am J Pathol. 2001;158:1653-1663.
    62. Isono M, Chen S, Won HS, et al. smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun. 2002;296:1356-1365.
    63. Fujimoto M, Maezawa Y, Yokote K, et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun. 2003;305:1002-1007.
    64. Kim JH, Kim BK. Moon KC, et al. Activation of the TGF-beta/Smad signaling pathway in focal segment golmerulosclerosis. Kidney Int. 2003;64:1715-1721.
    65. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15:1-12.
    66. Sato M, Muragaki Y, Saika S, et al. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest. 2003b;112:1486-1494.
    67. Inazaki K, Kanamaru Y, Kojima Y, et al. Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int. 2004 Aug;66:597-604.
    68. Saika S, Okada Y, Miyamoto T, et al. Smad translocation and growth suppression in lens epithelial cells by endogenous TGFbeta2 during wound repair. Exp Eye Res. 2001;72:679-686.
    69. Saika S, Miyamoto T, and Ishida I, et al. TGFbeta-Smad signaling in postoperative human lens epithelial cells. Br J Ophthalmol. 2002;86:1428-1433.
    70. Saika S, Kono-Saika S, Ohnishi Y, et al. Smad3 singaling is required for epithelial-mesenchymal transistion of lens epithelium post-injury. Am J Pathol. 2004;164:651-663.
    71. Zhao J, Shi W, Wang YL, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002;282:L85-L593.
    72. Bonniaud P, Kolb M, Galt T, et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-β-mediated pulmonary fibrosis. J Immunology. 2004;173:2099-2108
    73. Hu B, Wu Z, phan SH. Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol. 2003,29:397-404.
    74. Rachel AE, Ya CT, Robert S, et al. TGF-β_1 mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Experi Cell Res. 2003;82:90-100.
    75. Ju H, Hao J, Zhao S, et al. Effect of AT1 receptor blockade on cardiac collagen remodeling after myocardial infarction. Cardiovase Res. 1997;35:223-232.
    76. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin generation.Circulation. 1997;96:4065-4082.
    77. Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-βfunction blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106:130-135.
    78. Sun Y, Zhang JQ, Zhang J, et al. Angiotensin II, Transforming growth factor-β_1 and repair in the infracted heart. J Mol Cell cardiol. 1998;30:1559-1569.
    79. Hao J, Ju H, Zhao S, et al. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol. 1999;31:667-678.
    80. Wang B, Hao J, Jones SC, et al. Decreased Smad7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol. 2002;282:H1685-696.
    81. Hao J, Wang B, Jones SC, et al. Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol Heart Circ Physiol. 2000;279:H3020-30.
    82. Wakefield LM and Roberts AB. TGF-beta signaling:positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002;12:22-29.
    83. Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002;109:1607-1615.
    84. Monteleone G, Kumberove A, Croft NM, et al. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001;108:601-609.
    85. Inagaki Y, Nemoto T, Kushida M, et al. Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology. 2003; 38:890-899.
    86. Huang M, Sharma S, Zhu LX, et al. IL-7 inhibits fibroblast TGF-βproduction and signaling in pulmonary fibrosis. J Clin Invest. 2002;109:931-937.
    87. Lan HY, Mu W, TomitaN, Tomita N, et al. Inhibition of renal fibeosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO Model. J Am Soc Nephrol. 2003;14:1535-1548.
    88. Terada Y, Hanada S, Nakao A, et al. Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int. 2002;61:94-98.
    89. Nakao A, Fujii M, Matsumura R, et al.Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J Clin Invest. 1999;104:5-11.
    90. Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats.Gastroenterology. 2003;125:178-191.
    91. Ashenbrenner JK, Sollinger HW, Becker BN, et al. 1,25-OH(2)D(3) alters the transforming growth factor-beta signaling pathway in renal tissue. J Surg Res. 2001;100:171-175.
    92. Kanasaki K, Koya D, Sugimoto T, et al. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline inhibits TGF-beta-mediated plasminogen activator inhibitor-1 expression via inhibition of Smad pathway in human mesangial cells. J Am Soc Nephrol. 2003;14:863-872.
    93. Wendling J, Marchand A, Mauviel A, et al. 5-Fluorouracil blocks transforming growth factor-beta-induced alpha2 type I collagen gene(COL1A2)expression in human fibroblasts via c-JUN NH2-terminal kinase/activator protein-1 activation. Mol pharmacol. 2003;64:707-713.
    94. Laping NJ, Grygielko E, Mathur A, et al. Inhibition of TGF-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol. 2002; 62:58-64.
    95. Byfield SAD, Major C, Laping NJ, et al. SB-505124 is a selective inhibitor of TGF-βtype I receptorsALK4,ALK5 and ALK7. MolPharmacol. 2004;65:744-752.
    96. Pines M and Nagler A. Halofuginone: a novel antifibrotic therapy. Gene Pharmacol. 1998;30:445-450.
    97. Xavier S, Piek E, Fujii M, et al. Amelioration of radiation-induced fibrosis: inhibition of TGF-β signaling by halofuginone. J Biol Chem. 2004; 279: 15167-15176.
    98. McGaha TL, Phelps RG, Spiera H, et al. Halofuginone, an inhibitor of type- I collagen synthesis and skin sclerosis, blocks transforming-growth factor-beta mediated Smad3 activation in fibroblasts. J Invest Dermatol. 2002;118:461-470.
    99. Pines M, Snyder D, Yarkoni S, et al. Halofuginone to treat fibrosis in chronic graft-versus-host disease and scleroderma. Biol Blood Marrow Transplant. 2003;9:417-425.
    100. Bruck R, Genina O, Aeed H, et al. Halofuginone to prevent and treat thioacetamide -induced liver fibrosis in rats.hepatology. 2001;33:379-386.
    1 Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med. 2001;345:517-525.
    2 King Jr TE, Schwarz MI, Brown K, et al. Idiopathic pulmonary fibrosis: relationship betweenhistopathologic features and mortality. Am J Respir Crit Care Med. 2001;164:1025-1032.
    3 Kuhn C, McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis, ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol.1991;138:1257-1265.
    4 Zhang K, Rekhter MD, Gordon D, et al. Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol.1994;145:114-125.
    5 Mitchell J, Woodcock MJ, Reynolds S, et al. a-smooth muscle actin in paraenchymal cells of bleomycin-injured rat lung. Lab Invest. 1989; 60:643-650.
    6 Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S and Horie T. Tranaforming growth factor-β_1 induces phenotypic modulation of human lung fibroblasts to myofibroblasts through a c-jun-NH_2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 2001;163: 152-157.
    7 Hashimoto S, Gon Y, Takeshita I, et al. IL-4 and IL-13 induce myofibroblastic phenotype of human lung fibroblasts through a c-jun NH_2-terminal kinase-dependent pathway. J Allergy Clin Immunol. 2001;107:1001-1008.
    8 Gauldie J, Sime PJ, Xing Z, et al. Transforming growth factor-β gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis. Curr Top Pathol. 1999;93:35-45.
    9 Sime PJ, O'Reilly KMA. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin immunol. 2001;99:308-319.
    10 Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol. 2002;3:349-363.
    11 Zimmerman CM, Padgett RW. Transforming growth factor-β signaling mediators and regulators. Gene. 2000;249:17-30.
    12 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature. 2003; 425: 577-84.
    13 Piek E, Ju WJ, Heyer J, et al. Functional chrarcterization of transforming growth factorβ signaling in Smad2 and Smad3-deficient fibroblasts. J Biol Chem. 2001;276:19945-19953.
    14 Hu B, Wu Z, phan SH. Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol. 2003;29:397-404.
    15 Rachel AE, Ya CT, Robert S, et al. TGF-β_1 mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Experi Cell Res. 2003;282:90-100.
    16 Roy SG, Nozaki Y, Phan SH, et al.egulation of a-smooth muscle actin gene expression in myofibroblst differentiation from rat lung fibroblasts. Int J Biochem Cell Biol. 2001;33:723-734.
    17 Hautmann MB, Madsen CS and Owens GK. A transforming growth factor β(TGF-β)control element drivers TGF-β-induced stimulation of smooth muscle alpha-actin gene expression in concert with two CArG elements J Biol Chem. 1997;272:10948-10956.
    18 Nozaki Y, Liu T, Hatano K et al. Induction of telomerase activity in fibroblasts from bleomycin-injured lungs. Am J Respir Cell Mol Biol. 2000;23:460-465.
    19 Blasco MA. Telomerase beyond telomeres. Nat Rev Cancer. 2002;2:627-633.
    20 Liu T, Ullenbruch M, Nozaki Y, et al. Regulation of telomerase activity in lung fibroblasts. Am J Respir Cell Mol Biol. 2002;26:534-540.
    21 Hui YL. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells Curr Opin Nephrol Hypertens. 2003;12: 25-29.
    22 Abe R, Donnelly SC, Peng T, et al. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001; 166:7556-7562.
    23 Hashimoto N, Jin H, Liu T, et al. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest. 2004; 113:243-252.
    24 Carlos R, Montano M, Jorge GA, et al. Fibroblasts from idiopathic fibrosis and normal lungs differ in growth rate, apopsis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol. 2001;24:591-598.
    25 Selman M, Ruiz V, Cabrera S, et al. Localization of tissue inhibitor of metalloproteinases (TIMPs)-1,-2,-3,and-4 in idiopathic pulmonary fibrosis. TIMPs/collagenases imblances in the fibrotic lung microenvironment. AM J Physiol. 2000;117;684-94.
    26 Selman M, Ruiz V, Cabrera S, et al. TIMPs-1,-2,-3,and-4 in idiopathic pulmonary fibrosis. A prevailing non degradative lung microenvironment? AM J Physiol. 2000;279:L562-L574.
    27 Zhang H, Gharaee-Kermani M, Zhang K, et al. Lung fibroblast contractile anda-smooth muscle actin phenotypic alterative in bleomycin-induced pulmonary fibrosis. Am J Pathol. 1996;148:527-537.
    28 Hinz B, Celetta G, Tomasek JJ, et al. a-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12:2730-2741.
    29 Uhal BD, Joshl I, Hughes WF, et al. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol. 1998;275:L1192-L1199.
    30 Wang R, Ramos C, Joshi I, et al. Human lung myofibroblast-derived induces of alveolar epithelial apoptosis identified as angiotensin peptides. Am J Physiol. 1999;277:L1158-L1164.
    31 Desmoulierer A, Redard M, Darby I, et al. Apoptosis mediates the decrerase in cellularity during the transtion between granulation tissue and scar. Am J Pathol. 1995;146:56-66.
    32 Zhang H, Gharaee-Kermani, Phan SH. Regulation of lung fibroblast a-smooth muscle actin expression, contractile phenotype and apoptosis by IL-1β. J Immuno. 1997;158:1392-1399.
    33 Zhang H, and Phan SH. Inhibition of myofibroblast apoptosis by tranaforming growth factor-β_1. Am J Respir Cell Mol Biol. 1999;21:658-665.
    34 Naftali K, John AB, Peter BB, et al. Idiopathic pulmonary fibrosis. AM J Respir Cell Mol Biol. 2003;29:S98-S101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700