多糖对大豆蛋白的修饰及其界面、乳化和凝胶性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多糖对蛋白质的修饰能够改善蛋白质的多种功能性质,可以作为功能配料应用于食品及医药领域,已经受到越来越多的关注。多糖与蛋白质发生相互作用的主要方式有共价接枝和静电相互作用。本文采用高温、短时干热法制备了大豆分离蛋白-麦芽糊精糖基化产物,研究了糖基化产物的乳化性质,为工业化生产蛋白质-多糖糖基化产物提供了一定的理论依据。利用Maillard反应和限制性酶解对大豆蛋白进行两亲性修饰,得到了具有两亲性结构的接枝共聚物,并且考察了其界面和乳化性质。采用反溶剂法制备了大豆蛋白-葡聚糖糖基化产物的纳米颗粒,研究了纳米颗粒的结构、界面和乳化性质。制备了大豆蛋白-葡聚糖糖基化产物凝胶,考察了凝胶的流变学和质构性质。利用蛋白质与多糖的静电相互作用,制备了大豆蛋白/甜菜果胶可溶性复合物,分析了复合物稳定水包油型乳液的机理。本文通过多糖对蛋白质的修饰作用来提高大豆蛋白的界面、乳化和凝胶性质,为其作为功能性配料应用于食品工业提供理论指导。主要研究结果如下:
     (1)采用高温(90、115和140℃)、短时(2h)干热Maillard反应制备了大豆分离蛋白(SPI)-麦芽糊精(MD)糖基化产物样品。利用蛋白质中游离氨基减少的数量和SDS-PAGE证实了糖基化产物的生成,并且发现提高热处理的温度可以增加糖基化产物的接枝度。与SPI、SPI-MD糖基化产物(90和115℃)稳定的水包油型乳液相比,SPI-MD糖基化产物(140℃)稳定的乳液对于pH的改变,离子强度和热处理,均表现出较高的稳定性。这是由于SPI-MD糖基化产物(140℃)具有较高的接枝度,较多的接枝的MD可以吸附到乳液液滴表面,为液滴间提供了较强的空间排斥作用,提高了乳液的稳定性。
     (2)采用胰蛋白酶对β-伴大豆球蛋白(7S)-葡聚糖糖基化产物进行水解,得到了水解度(DH)为2.2%和6.5%的糖基化产物水解物。与7S、7S-葡聚糖糖基化产物和DH为6.5%的糖基化产物水解物相比,DH为2.2%的7S-葡聚糖糖基化产物水解物在油-水界面具有较高的界面压和吸附量。这是由于限制性酶解可以使蛋白质分子展开,暴露出部分疏水基团,导致DH为2.2%的7S-葡聚糖糖基化产物水解物具有较高表面疏水性。与7S、7S-葡聚糖糖基化产物和DH为6.5%的糖基化产物水解物稳定的乳液相比,DH为2.2%的7S-葡聚糖糖基化产物水解物稳定的乳液对于环境因素(pH、离子强度和热处理)的改变,均表现出较高的稳定性,经过4周的储藏后,未出现明显的乳析现象。这是因为DH为2.2%的7S-葡聚糖糖基化产物水解物具有较高的吸附量,较多的接枝的葡聚糖增强了乳液液滴间的空间排斥作用,抑制了乳液的聚集和絮凝。
     (3)利用反溶剂法制备了7S、7S-葡聚糖糖基化产物和DH为2.2%的糖基化产物水解物的纳米颗粒。动态光散射、小角X-光散射和透射电镜结果显示,所有的纳米颗粒均为球形,并且DH为2.2%的7S-葡聚糖糖基化产物水解物纳米颗粒具有核壳结构。此外,与7S、7S-葡聚糖糖基化产物及其纳米颗粒相比,DH为2.2%的7S-葡聚糖糖基化产物水解物纳米颗粒在油-水界面具有较高的界面压和膨胀模量。这是由于DH为2.2%的7S-葡聚糖糖基化产物水解物纳米颗粒具有较高的表面疏水性。DH为2.2%的7S-葡聚糖糖基化产物水解物纳米颗粒稳定的水包油型乳液具有较高的储藏稳定性,经过30天的储藏后,乳液的微观结构未发生明显的变化。
     (4)研究了微生物转谷氨酰胺酶(MTGase)交联7S-葡聚糖糖基化产物的凝胶性。实验发现,与7S、干热7S和7S-葡聚糖混合物形成的凝胶相比,7S-葡聚糖糖基化产物具有较高的储存模量和损耗模量,并且具有较高的硬度、脆性、弹性和内聚性。7S-葡聚糖糖基化产物中的接枝的葡聚糖可以抑制MTGase交联过程中蛋白质分子间发生过度的相互作用,导致形成更加有序的和较强的凝胶网络结构。
     (5)利用MTGase和漆酶(La)交联7S/甜菜果胶(SBP)可溶性复合物,制备了7S-SBP-MTGase、7S-SBP-La和7S-SBP-MTGase-La三种交联产物。实验发现,与7S-SBP、7S-SBP-MTGase和7S-SBP-La稳定的水包油型乳液相比,7S-SBP-MTGase-La稳定的乳液对于添加盐离子和热处理,均表现出较高的稳定性,经过1个月的储藏后,未发生明显的乳析现象。这是由于7S/SBP相继经过MTGase和La的交联后,可以在乳液液滴表面形成具有层层沉积结构的界面膜,增强了液滴间的空间排斥作用,提高了乳液对盐离子和热处理的稳定性。
The functional properties of proteins could be improved by modification ofpolysaccharides. As functional material, protein modified by polysaccharide have gained wideattention because of their potential application in the field of food and medicine.Protein-polysaccharide interactions mostly originated from conjugation and electrostaticinteractions. Soy protein isolate (SPI)-maltodextrin (MD) conjugates were prepared byhigh-temperature, short-time dry-heating Maillard reaction, and the emulsifying properties ofSPI-MD conjugates were investigated in this study, which will provide theoretic supports forindustrialized production of protein-polysaccharide conjugates. The amphiphilic graftcopolymers were synthesized using Maillard reaction and controlled enzymatic hydrolysis.The interfacial and emulsifying properties of the amphiphilic graft copolymers were analyzed.Nanoparticles were prepared from soy protein-dextran conjugates by desolvation method. Thestructure, interfacial and emulsifying properties of the nanoparticles were investigated. Thetexture and gelation properties of soy protein-dextran conjugates gels were investigated. Thesoluble complexes of soy protein/sugar beet pectin (SBP) were formed by electrostaticinteractions. The stability mechanism of emulsions stabilized by soy protein/SBP complexeswas also investigated. The main results are as follows:
     (1) SPI-MD conjugates were synthesized using Maillard reaction under high-temperature(90,115and140°C), short-time (2h) dry-heating conditions. The loss of free amino groups inproteins and SDS-PAGE profile confirmed that SPI-MD conjugates were formed and higherdry-heated temperatures could increase the glycosylation degree. The emulsifying propertiesof SPI and SPI-MD conjugates were evaluated in oil-in-water emulsions. The emulsionsstabilized with SPI-MD conjugates (synthesized at140°C) exhibited higher emulsifyingstability and excellent storage stability against pH, ionic strength and thermal treatmentcompared with SPI-MD conjugates (synthesized at90,115°C), and SPI stabilized emulsions.This might be due to a greater proportion of conjugated MD in SPI-MD conjugates(synthesized at140°C) because of the higher glycosylation degree, and more conjugated MDon the droplet surface could provide steric effect and enhance the stability of the droplets inthe emulsions.
     (2) A emulsifier was prepared by conjugating soy β-conglycinin and dextran underdry-heated Maillard reaction followed by trypsin hydrolysis with the DH at2.2%and6.5%.Hydrolysates of β-conglycinin-dextran conjugates DH2.2%had a much higher interfacialpressure and fraction of protein adsorption at the oil-water interface compared withβ-conglycinin, β-conglycinin-dextran conjugates and hydrolysates of β-conglycinin-dextranconjugates DH6.5%. This might be due to controlled enzymatic hydrolysis could induceprotein unfolding and hydrophobic regions exposed to exterior, which could lead to increasein surface hydrophobicity of hydrolysates of β-conglycinin-dextran conjugates DH2.2%.Hydrolysates of β-conglycinin-dextran conjugates DH2.2%were capable of forming a fineemulsion against the changes of pH, ionic strength and thermal treatment, which remainedstable during4weeks of storage compared with β-conglycinin, β-conglycinin-dextranconjugates and hydrolysates of β-conglycinin-dextran conjugates DH6.5%stabilizedemulsions. This might be due to hydrolysates of β-conglycinin-dextran conjugates DH2.2%had much higher fraction of protein adsorption, which could led to more conjugated dextranon the droplet surface and improve the steric repulsion between the droplets, thus dropletaggregation and flocculation were inhibited.
     (3) Nanoparticles were prepared from β-conglycinin, β-conglycinin-dextran conjugatesand hydrolysates of β-conglycinin-dextran conjugates DH2.2%by desolvation method. Allthe nanoparticles exhibited spherical structures, as evidenced by dynamic light scattering,small-angle X-ray scattering and transmission electron microscopy. In addition, thenanoparticles prepared from hydrolysates of β-conglycinin-dextran conjugates DH2.2%hadan obvious core-shell structure. Furthermore, the nanoparticles prepared from hydrolysates ofβ-conglycinin-dextran conjugates DH2.2%showed higher interfacial pressure anddilatational modulus during absorption at the oil-water interface compared with β-conglycininnanoparticles and β-conglycinin-dextran conjugates nanoparticles. Emulsions stabilized withnanoparticles prepared from hydrolysates of β-conglycinin-dextran conjugates DH2.2%hadhigher emulsion stability after30days of storage. There was no significant change in themicrostructure of the emulsions stabilized with hydrolysates of β-conglycinin-dextranconjugates DH2.2%nanoparticles after30day of storage.
     (4) The gelation properties of β-conglycinin-dextran conjugates induced by MTGase was investigated. The gels of β-conglycinin-dextran conjugates exhibited higher G', G'', hardness,fracturability, springiness and cohesiveness values compared to those of dry-heatedβ-conglycinin, β-conglycinin and β-conglycinin-dextran mixture. The conjugated dextran inβ-conglycinin-dextran conjugates could inhibit extensive protein-protein interactions whichmight result in the formation of more ordered and stronger gel network structures duringMTGase cross-linking process.
     (5) β-conglycinin/SBP-MTGase, β-conglycinin/SBP-La and β-conglycinin/SBP-MTGase-La were prepared by MTGase and/or La cross-linking the soluble complexesof β-conglycinin/SBP. β-conglycinin/SBP-MTGase-La stabilized emulsions had higherstability against the changes of ionic strength and thermal treatment compared withβ-conglycinin, β-conglycinin/SBP-MTGase and β-conglycinin/SBP-La stabilized emulsions.This might be because that the soluble complexes of β-conglycinin/SBP were cross-linked byMTGase and/or La, which could form a layer by layer deposition interfacial film, and increaseemulsions stability against ionic strength and thermal treatment due to the steric repulsionbetween the oil drops.
引文
[1]李里特.大豆加工与利用[M].北京:化学工业出版社,2012.
    [2]迟玉杰,朱秀清,李文斌,等.大豆蛋白加工新技术[M].北京:科学出版社,2008.
    [3] Sorgentini D.A., Wagner J.R. Anon M.C. Effects of thermal treatment of soy proteinisolate on the characteristics and structure-function relationship of soluble and insolublefractions [J] Journal of Agricultural and Food Chemistry,1995,43:2471–2479.
    [4] Zhu D., Damodaran S., Lucey, J.A. Physicochemical and emulsifying properties of wheyprotein isolate (WPI)-dextran conjugates produced in aqueous solution [J]. Journal ofAgricultural and Food Chemistry,2010,58:2988–2994.
    [5] Dickinson E., Izgi, E. Foam stabilization by protein-polysaccharide complexes [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,113:191–201.
    [6] Fujiwara K., Oosawa T., Saeki H. Improved thermal stability and emulsifying propertiesof carp myofibrillar proteins by conjugation with dextran [J]. Journal of Agricultural andFood Chemistry,1998,46:1257–1261.
    [7] Diftis N.G., Biliaderis C.G., Kiosseoglou V.D. Rheological properties and stability ofmodel salad dressing emulsions prepared with a dry-heated soybean proteinisolate-dextran mixture [J]. Food Hydrocolloids,2005,19:1025–1031.
    [8] Diftis N., Kiosseoglou V. Improvement of emulsifying properties of soybean proteinisolate by conjugation with carboxymethyl cellulose [J]. Food Chemistry,2003,81:1–6.
    [9] Nakamura S., Kato A., Kobayashi K. Enhanced antioxidative effect of ovalbumin due tocovalent binding of polysaccharides [J]. Journal of Agricultural and Food Chemistry,1992,40:2033–2037.
    [10] Cooper C.L., Dubin P.L., Kayitmazer A.B., et al. Polyelectrolyte-protein complexes [J].Current Opinion in Colloid&Interface Science,2005,10:53–78.
    [11] Schmitt C., Sanchez C., Desobry-Banon S., et al. Structure and technofunctionalproperties of protein-polysaccharide complexes: A review [J]. Critical Reviews in FoodScience and Nutrition,1998,38:689–753.
    [12] Dickinson E. Interfacial structure and stability of food emulsions as affected byprotein–polysaccharide interactions [J] Soft Matter,2008,4:932–942.
    [13] Yeo Y., Bellas E., Firestone W., et al. Complex coacervates for thermally sensitivecontrolled release of flavor compounds [J]. Journal of Agricultural and Food Chemistry,2005,53:7518–7525.
    [14] Espinosa-Andrews H., Sandoval-Castilla O., Vazquez-Torres H., et al. Determination ofthe gum arabic-chitosan interactions by fourier transform infrared spectroscopy andcharacterization of the microstructure and rheological features of their coacervates [J].Carbohydrate Polymers,2010,79:541–546.
    [15] Weinbreck F., Wientjes R.H.W., de Kruif C.G. Rheological properties of wheyprotein/gum arabic coacervates [J]. Journal of Rheology,2004,48:1215–1228.
    [16] Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers [J]. FoodHydrocolloids,2009,23:1473–1482.
    [17] Desfougères Y., Lechevalier, V., Pezennec S., et al. Dry-heating makes hen egg whitelysozyme an efficient foaming agent and enables its bulk aggregation [J]. Journal ofAgricultural and Food Chemistry,2008,56:5120–5125.
    [18] Desfougères Y., Saint-Jalmes A., Salonen A., et al. Strong improvement of interfacialproperties can result from slight structural modifications of proteins: The case of nativeand dry-heated lysozyme [J]. Langmuir,2011,27:14947–14957.
    [19] Desfougères Y., Jardin A., Lechevalier, V., et al. Succinimidyl residue formation in henegg-white lysozyme favors the formation of intermolecular covalent bonds withoutaffecting its tertiary structure [J]. Biomacromolecules,2011,12:156–166.
    [20] Xia N., Wang, J.M. Yang, X.Q., et al. Preparation and characterization of protein fromheat-stabilized rice bran using hydrothermal cooking combined with amylasepretreatment [J]. Journal of Food Engineering,2012,110:95–101.
    [21] Lagrain B., Thewissen B.G., Brijs, K., et al. Mechanism of gliadin-glutenin cross-linkingduring hydrothermal treatment [J]. Food Chemistry,2008,107:753–760.
    [22] Molina E., Defaye A.B., Ledward D.A. Soy protein pressure-induced gels [J]. FoodHydrocolloids,2009,16:625–632.
    [23]朱建华,杨晓泉,熊犍.超声处理大豆分离蛋白热致凝胶功能性质的影响[M].食品与生物技术学报,2006,25:15–20.
    [24]朱建华,杨晓泉,邹文忠,等.超声处理对大豆分离蛋白功特性的影响[J].食品工业科技,2004,25:81–83.
    [25] Kato A., Minaki K., Kobayashi K. Improvement of emulsifying properties of egg whiteproteins by the attachment of polysaccharide through Maillard reaction in dry state [J].Journal of Agricultural and Food Chemistry,1993,42:540–543.
    [26] Jimenez-Casta o L., Villamiel M., Lopez-Fandi o R. Glycosylation of individual wheyproteins by Maillard reaction using dextran of different molecular mass [J]. FoodHydrocolloids,2007,21:433–443.
    [27] Dickinson E., Galazka V.B. Emulsion stabilisation by ionic and covalent complexes ofβ-lactoglobulin with polysaccharides [J]. Food Hydrocolloids,1991,5:281–296.
    [28] Akhtar M., Dickinson E. Whey protein-maltodextrin conjugates as emulsifying agents:An alternative to gum arabic [J]. Food Hydrocolloids,2007,21:607–616.
    [29] Xu K.K., Yao P. Stable oil-in-water emulsions prepared from soy protein-dextranconjugates [J]. Langmuir,2009,25:9714–9720.
    [30] Zhu D., Damodaran S., Lucey J.A. Formation of whey protein isolate (WPI)-dextranconjugates in aqueous solutions [J]. Journal of Agricultural and Food Chemistry,2008,56:7113–7118.
    [31] Zhu D., Damodaran S., Lucey J.A. Physicochemical and emulsifying properties of wheyprotein isolate (WPI)-dextran conjugates produced in aqueous solution [J]. Journal ofAgricultural and Food Chemistry,2010,58:2988–2994.
    [32] Zhang X., Qi, J.R. Li, K.K., et al. Characterization of soy β-conglycinin-dextranconjugate prepared by Maillard reaction in crowded liquid system [J]. Food ResearchInternational,2012,49:648–654.
    [33] Guan J.J., Qiu A.Y., Liu X.Y., et al. Microwave improvement of soy proteinisolate-saccharide graft reactions [J]. Food Chemistry,2006,97:577–585.
    [34] Sun W.W., Yu S.J., Zeng X.A., et al. Properties of whey protein isolate–dextranconjugate prepared using pulsed electric field [J]. Food Research International,2011,44:1052–1058.
    [35] Matheis G. Phosphorylation of food proteins with phosphorus oxychloride-improvementof functional and mutritional properties: a review [J]. Food Chemistry,1991,39:13–26.
    [36] Zhang K.S., Li, Y.Y., Ren Y.X. Research on the phosphorylation of soy protein isolatewith sodium tripoly phosphate [J] Journal of Food Engineering,2007,79:1233–1237.
    [37]胡磊,杨晓泉,尹寿伟,等.水热磷酸化改性大豆浓缩蛋白乳化性质的研究[J]。现代食品科技,2013,29:472–475.
    [38] Jung S., Roussel-Philippe C., Briggs J. L., et al. Limited hydrolysis of soy proteins withendo-and exoproteases [J]. Journal of the American Oil Chemists’ Society,2004,81:953–960.
    [39] Tsumura K., Saito T., Tsuge K., et al. Functional properties of soy protein hydrolysatesobtained by selective proteolysis [J]. LWT-Food Science Technology,2005,38:255–261.
    [40] Kuipers B.J.H., Alting A.C., Gruppen H., Comparison of the aggregation behavior of soyand bovine whey protein hydrolysates [J]. Biotechnology Advances,2007,25:606–610.
    [41] Kuipers B.J.H., Koningsveld G.A., Alting A.C.m et al. Opposite contributions ofglycinin-and β-conglycinin-derived peptides to the aggregation behavior of soy proteinisolate hydrolysates [J]. Food Biophysics,2006,1:178–188.
    [42] Motoki M., Seguro K. Transglutaminase and its use for food processing [J]. Trends inFood Science and Technology,1998,9:204–210.
    [43] Tang C.H., Wu H., Yu H.P., et al. Coagulation and gelation of soy protein isolatesinduced by microbial transglutaminase [J]. Journal of Food Biochemistry,2006,30:35–55.
    [44] Tang C.H., Jiang Y., Wen Q.B., et al. Effect of transglutaminase treatment on theproperties of cast films of soy protein isolates [J]. Journal of Biotechnology,2005,120:296–307.
    [45] Motoki M., Seguro, K. Transglutaminase and its use for food processing [J]. Trends inFood Science&Technology,1998,9:204–210.
    [46] Tang C.H., Yang M., Liu F., et al. Stirring greatly improves transglutaminase-inducedgelation of soy protein-stabilized emulsions [J]. LWT-Food Science and Technology,2013,51:120–128.
    [47] Caillard R., Mateescu M.A., Subirade M. Maillard-type cross-linked soy proteinhydrogels as devices for the release of ionic compounds: An in vitro study [J]. FoodResearch International,2010,43:2349–2355.
    [48] Sakamoto H., Yamazaki K., Kaga C. et al. Strength enhancement by addition ofmicrobial transglutaminase during Chinese noodle processing [J]. Nippon ShokuhinKagaku Kaishi,1996,43,:598–602.
    [49] Thurston C.F. The structure and function of fungal laccases [J]. Microbiology-UK,1994,140:19–26.
    [50] Gianfreda L., Xu F., Bollag J.M. Laccases: a useful group of oxidoreductive enzymes [J].Bioremediation Journal,1999,3:1–25.
    [51] Kuuva T., Lantto R., Reinikainen T., et al. Rheological properties of laccase-inducedsugar beet pectin gels [J]. Food Hydrocolloids,2003,17:679–684.
    [52] Mattinen M.L, Hellman M., Permi P., et al. Effect of protein structure onlaccase-catalyzed protein oligomerization [J]. Journal of Agricultural and FoodChemistry,2006,54:8883–8890.
    [53] Jung J.Y., Wicker, L. Laccase mediated conjugation of heat treated β-lactoglobulin andsugar beet pectin [J]. Carbohydrate Polymers,2012,89:1244–1249.
    [54] Hudson B.J.F., Ames J.M. Biochemistry of food proteins [M]. Elsevier SciencePublishers,1992,99–153.
    [55] Friedman M. Food browning and its prevention: An overview [J]. Journal of Agriculturaland Food Chemistry,1996,44:631–653.
    [56] Juliet A.G. The Maillard reaction in food: Progress made, challengesa head conferencereport from the eighth international symposium on the Maillard reaction [J]. Trends inFood Science&Technology,2006,17:324–330.
    [57] Diftis N., Kiosseoglou V. Physicochemical properties of dry-heated soy proteinisolate-dextran mixtures [J]. Food Chemistry,2006,96:228–233.
    [58] Neirynck N., Van der Meeren P., Bayarri Gorbe S. Improved emulsion stabilizingproperties of whey protein isolate by conjugation with pectins [J]. Food Hydrocolloids,2004,18:949–957.
    [59] Einhorn-Stoll U., Ulbrich M., Sever S., et al. Formation of milk protein-pectin conjugateswith improved emulsifying properties by controlled dry heating [J]. Food Hydrocolloids,2005,19:329–340.
    [60] Xu C.H., Yang X.Q., Yu S.J. The effect of glycosylation with dextran chains of differinglengths on the thermal aggregation of β-conglycinin and glycinin [J]. Food ResearchInternational,2010,43:2270–2276.
    [61] Haar R.T., Schols H.A., Gruppen H. Effect of saccharide structure and size on the degreeof substitution and product dispersity of α-lactalbumin glycated via the Maillard reaction[J]. Journal of Agricultural and Food Chemistry,2011,59:9378–9385.
    [62] O’Regan J., Mulvihill D.M. Preparation, characterisation and selected functionalproperties of sodium caseinate-maltodextrin conjugates [J]. Food Chemistry,2009,115:1257–1267.
    [63] Miralles B., Martinez-Rodriguez A., Santiago A. The occurrence of a Maillard-typeprotein-polysaccharide reaction between β-lactoglobulin and chitosan [J]. FoodChemistry,2007,100:1071–1075.
    [64] Turgeon S.L., Laneuville S.I. Modern biopolymer science: bridging the divide betweenfundamental treatise and industrial application [M]. Elsevier,2009,327–363.
    [65] Schmitt C., Aberkane L., Sanchez C. Handbook of Hydrocolloids [M].2nd ed.Woodhead Publishing,2009,420–476.
    [66] Xia J, Dubin P.L. Macromolecular complexes in chemistry and biology [M]. SpringerVerlag,1994,247–271.
    [67] Schmitt C., Sanchez C., Thomas F., et al. Complex coacervation between β-lactoglobulinand acacia gum in aqueous medium [J]. Food Hydrocolloids,1999,13:483–496.
    [68] Ducel V., Richard J., Saulnier P., et al. Evidence and characterization of complexcoacervates containing plant proteins: application to the microencapsulation of oildroplets [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,232:239–247.
    [69] Lee A.C., Hong Y.H. Coacervate formation of α-lactalbumin-chitosan andβ-lactoglobulin-chitosan complexes [J]. Food Research International,2009,42:733–738.
    [70] Weinbreck F., de Vries R., Schrooyen, P. Complex coacervation of whey proteins andgum arabic [J]. Macromolecules,2003,4:293–303.
    [71] Plashchina I.G., Zhuravleva I.L., Antonov Y.A. Phase behavior of gelatin in the presenceof pectin in water-acid medium [J]. Polymer Bulletin,2007,58:587–596.
    [72] Santipanichwong R., Suphantharika M,. Weiss J., et al. Core-shell biopolymernanoparticles produced by electrostatic deposition of beet pectin onto heat-denaturedβ-lactoglobulin aggregates [J] Journal of Food Science,2008,73:23–30.
    [73] Jones O.G., Decker E.A., McClements D.J. Thermal analysis of β-lactoglobulincomplexes with pectins or carrageenan for production of stable biopolymer particles [J].Food Hydrocolloids,2010,24:239–248.
    [74] Weinbreck F., Nieuwenhuijse H., Robijn G.W., et al. Complex formation of wheyproteins: exocellular polysaccharide EPS B40[J]. Langmuir,2003,19:9404–9410.
    [75] Weinbreck F., Nieuwenhuijse H., Robijn G.W., et al. Complexation of whey proteinswith carrageenan [J]. Journal of Agricultural and Food Chemistry,2004,52:3550–3555.
    [76] Wang X.Y., Lee J.Y., Wang Y.W., et al. Composition and rheological properties ofβ-lactoglobulin/pectin coacervates: effects of salt concentration and initialprotein/polysaccharide ratio [J]. Biomacromolecules,2007,8:992–997.
    [77] Wang X.Y., Ruengruglikit C., Wang Y.W. Interfacial interactions of pectin with bovineserum albumin studied by quartz crystal microbalance with dissipation monitoring: effectof ionic strength [J]. Journal of Agricultural and Food Chemistry,2007,55:10425–10431.
    [78] Girard M., Schaffer-Lequart C. Attractive interactions between selected anionicexopolysaccharides and milk proteins [J]. Food Hydrocolloids,2008,22:1425–1434.
    [79] Girard M., Turgeon S.L., Gauthier S.F. Interbiopolymer complexing betweenβ-lactoglobulin and low-and high-methylated pectin measured by potentiometrictitration and ultrafiltration [J]. Food Hydrocolloids,2002,16:585–591.
    [80] Sanchez C., Despond S., Schmitt C., et al. Food colloids: fundamentals of formulation[M]. Royal Society of Chemistry,2001,332–341.
    [81] Rodríguez Patino J.M., Pilosof A.M.R. Protein-polysaccharide interactions at fluidinterfaces [J]. Food Hydrocolloids,2011,25:1925–1937.
    [82] Rodríguez Patino J.M., Carrera C., Molina S.E., et al. Adsorption of soy globulin films atthe air-water interface [J]. Industrial and Engineering Chemistry Research,2004,43:1681–1689.
    [83] Pérez O.E., Carrera C., Pilosof A.M.R., et al. Surface dilatational properties of wheyprotein and hydroxypropyl-methyl-cellulose mixed systems at the airewater interface [J].Journal of Food Engineering,2009,94:274–282.
    [84] Carp D.J., Bartholomai G.B., Pilosof A.M.R. Electrophoretic studies for determining soyproteins-xanthan gum interactions in foams [J]. Colloids and Surfaces B: Biointerfaces,1999,12:309–316.
    [85] Damodaran S., Razumovsky L. Competitive adsorption and thermodynamicincompatibility of mixing of β-casein and gum arabic at the air-water interface [J]. FoodHydrocolloids,2003,17:355–363.
    [86] Ganzevles R.A., Cohen Stuart M.A., van Vliet T., et al. Use of polysaccharides to controlprotein adsorption to the air-water interface [J]. Food Hydrocolloids,2006,20:872–878.
    [87] Ganzevles R.A., Fokkink R., van Vliet T., et al. Structure of mixedβ-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study [J].Journal of Colloid and Interface Science,2008,317:137–147.
    [88] Ducel V., Richard J., Popineau I., et al. Rheological interfacial properties of plantprotein-arabic gum coacervates at the oil-water interface [J]. Biomacromolecules,2005,6:790–796.
    [89] Haar R.T., Westphal Y., Wierenga P.A., et al. Cross-linking behavior and foamingproperties of bovine α-lactalbumin after glycation with various saccharides [J]. Journalof Agricultural and Food Chemistry,2011,59:12460–12466.
    [90] Medrano A., Abirached C., Panizzolo L., et al. The effect of glycation on foam andstructural properties of β-lactoglobulin [J]. Food Chemistry,2009,113:127–133.
    [91] Schmitt C., Kolodziejczyk E, Leser M.E. In: Dickinson E., editor. Food colloids:interactions, microstructure and processing [M]. Royal Society of Chemistry,2005,284–300.
    [92] Schmitt C., Palma da Silva T., Bovay C., et al. Effect of time on the interfacial andfoaming properties of β-lactoglobulin/acacia gum electrostatic complexes andcoacervates at pH4.2[J]. Langmuir,2005,21:7786–7795.
    [93] Schmidt I., Novales B,. BouéF., et al. Foaming properties of protein/pectin electrostaticcomplexes and foam structure at nanoscale [J]. Journal of Colloid and Interface Science,2010,345:316–324.
    [94] Wong B.T., Day L., Augustin M.A. Deamidated wheat protein-dextran Maillardconjugates: Effect of size and location of polysaccharide conjugated on stericstabilization of emulsions at acidic pH [J] Food Hydrocolloids,2011,25:1424–1432.
    [95] Jourdain L., Leser M.E., Schmitt C., et al. Stability of emulsions containing sodiumcaseinate and dextran sulfate: Relationship to complexation in solution [J]. FoodHydrocolloids,2008,22:647–659.
    [96] Ducel V., Richard J., Popineau Y., et al. Rheological interfacial properties of plantprotein-arabic gum coacervates at the oil-water interface [J]. Biomacromolecules,2005,6:790–796.
    [97] Cho Y.H., McClements D.J. Theoretical stability maps for guiding preparation ofemulsions stabilized by protein-polysaccharide interfacial complexes [J]. Langmuir,2009,25:6649–6657.
    [98] Gu Y.S., Decker E.A., McClements D.J. Influence of pH and carrageenan type onproperties of β-lactoglobulin stabilized oil-in-water emulsions [J]. Food Hydrocolloids,2005,19:83–91.
    [99] van den Berg L., van Vliet T., van der Linden E., et al. Breakdown properties andsensory perception of whey proteins/polysaccharide mixed gels as a function ofmicrostructure [J]. Food Hydrocolloids,2007,21:961–976.
    [100] Spotti M.J., Perduca M.J., Piagentini A., et al. Gel mechanical properties of milk wheyprotein-dextran conjugates obtained by Maillard reaction [J]. Food Hydrocolloids,2013,31:26–32.
    [101] Sun W.W., Yu S.J., Yang X.Q., et al. Study on the rheological properties ofheat-induced whey protein isolate-dextran conjugate gel [J]. Food Research International,2011,44:3259–3263.
    [102] van den Berg L., Rosenberg Y., van Boekel M.A.J.S., et al. Microstructural features ofcomposite whey protein/polysaccharide gels characterized at different length scales [J].Food Hydrocolloids,2009,23:1288–1298.
    [103] Laneuville S.I., Turgeon S.L., Sanchez C., et al. Gelation of native β-lactoglobulininduced by electrostatic attractive interaction with xanthan gum [J]. Langmuir,2006,22:7351–7357.
    [104] Markman G., Livney Y.D. Maillard-conjugate based core–shell co-assemblies fornanoencapsulation of hydrophobic nutraceuticals in clear beverages [J]. Food&Function,2012,3:262–270.
    [105] Zhou H.H., Sun X.Y., Zhang L.L., et al. Fabrication of biopolymeric complexcoacervation core micelles for efficient tea polyphenol delivery via a green process [J].Langmuir,2012,28:14553–14561.
    [106] Yeo Y., Bellas E., Firestone W., et al. Complex coacervates for thermally sensitivecontrolled release of flavor compounds [J]. Journal of Agricultural and Food Chemistry,2005,53:7518–7525.
    [107] BédiéG.K., Turgeon S.L, Makhlouf J. Formation of native whey protein isolate-lowmethoxyl pectin complexes as a matrix for hydro-soluble food ingredient entrapment inacidic foods [J]. Food Hydrocolloids,2008,22:863–844.
    [1] Comas D.I., Wagner J.R., Tomas M.C. Creaming stability of oil in water (O/W) emulsions:influence of pH on soybean protein-lecithin interaction [J]. Food Hydrocolloids,2006,20:990–996.
    [2] Roesch R.R., Corredig M. Characterization of oil-in-water emulsions prepared withcommercial soy protein concentrate [J]. Journal of Food Science,2002,67:2837–2842.
    [3] Damodaran S. Protein stabilization of emulsions and foams. Journal of Food Science [J],2005,70:54–66.
    [4] McClements D.J. Protein-stabilized emulsions [J]. Current Opinion in Colloid&InterfaceScience,2004,9:305–313.
    [5] Dickinson E. Interfacial structure and stability of food emulsions as affected byprotein-polysaccharide interactions [J]. Soft Matter,2008,4:932–942.
    [6] Diftis N., Kiosseoglou V. Stability against heat-induced aggregation of emulsions preparedwith a dry-heated soy protein isolate-dextran mixture [J]. Food Hydrocolloids,2006,20:787–792.
    [7] Akhtar M., Dickinson E. Emulsifying properties of whey protein-dextran conjugates atlow pH and different salt concentrations [J]. Colloid and Surface B: Biointerface,2003,31:125–132.
    [8] Akhtar M., Dickinson E. Whey protein-maltodextrin conjugates as emulsifying agents: Analternative to gum arabic [J]. Food Hydrocolloids,2007,21:607–616.
    [9] Wooster T.J., Augustin M.A. The emulsions flocculation stability of protein-carbohydratediblock copolymers [J]. Journal of Colloid Interface Science,2007,313:665–675.
    [10] Kato A., Minaki K., Kobayashi K. Improvement of emulsifying properties of egg whiteproteins by the attachment of polysaccharide through Maillard reaction in dry state [J].Journal of Agricultural and Food Chemistry,1993,42:540–543.
    [11] Jimenez-Casta o L., Villamiel M., Lopez-Fandi o R. Glycosylation of individual wheyproteins by Maillard reaction using dextran of different molecular mass [J]. FoodHydrocolloids,2007,21:433–443.
    [12] Zhu D., Damodaran S., Lucey, J.A. Physicochemical and emulsifying properties of wheyprotein isolate (WPI)-dextran conjugates produced in aqueous solution [J]. Journal ofAgricultural and Food Chemistry,2010,58:2988–2994.
    [13] Dickinson E., Izgi, E. Foam stabilization by protein-polysaccharide complexes [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,113:191–201.
    [14] Fujiwara K., Oosawa T., Saeki H. Improved thermal stability and emulsifying propertiesof carp myofibrillar proteins by conjugation with dextran [J]. Journal of Agricultural andFood Chemistry,1998,46:1257–1261.
    [15] Diftis N.G., Biliaderis C.G., Kiosseoglou V.D. Rheological properties and stability ofmodel salad dressing emulsions prepared with a dry-heated soybean proteinisolate-dextran mixture [J]. Food Hydrocolloids,2005,19:1025–1031.
    [16] Diftis N., Kiosseoglou V. Improvement of emulsifying properties of soybean proteinisolate by conjugation with carboxymethyl cellulose [J]. Food Chemistry,2003,81:1–6.
    [17] Dickinson E., Galazka V.B. Emulsion stabilisation by ionic and covalent complexes ofβ-lactoglobulin with polysaccharides [J]. Food Hydrocolloids,1991,5:281–296.
    [18] Diftis N. Kiosseoglou V. Physicochemical properties of dry-heated soy proteinisolate-dextran mixtures [J]. Food Chemistry,2006,96:228–233.
    [19] Zhu D., Damodaran S. Lucey J.A. Formation of whey protein isolate (WPI)-dextranconjugates in aqueous solutions [J]. Journal of Agricultural and Food Chemistry,2008,56:7113–7118.
    [20] Goodno C.C., Swaisgood H.E., Catignani G.L. A fluorimetric assay for available lysinein proteins [J]. Analytical Biochemistry,1981,115:203–211.
    [21] Guan J.J., Zhang T.B., Hui M., et al. Mechanism of microwave-accelerated soy proteinisolate-saccharide graft reactions [J]. Food Research International,2011,44:2647–2654.
    [22] Laemmli U.K. Cleavage of structural proteins during assembly of head ofbacteriophage-t4[J]. Nature,1970,227:680–685.
    [23] El fadil E.B., Hiroyuki A., Matsudomi N., et al. Effect of polysaccharide conjugation ortransglutaminase treatment on the allergenicity and functional properties of soy protein[J]. Journal of Agricultural and Food Chemistry,1998,46:866-871.
    [24]晏纪成. EHF血清蛋白凝胶盘状电泳用Schiff试剂染色法的探讨[J].川北医学院学报,1997,6:77-78.
    [25] Shepherd R., Robertson A., Ofman D. Dairy glycoconjugate emulsifiers:Casein-maltodextrins [J]. Food Hydrocolloids,2000,14:281–286.
    [26] McClements D.J. Critical review of techniques and methodologies for characterization ofemulsion stability [J]. Critical Reviews in Food Science and Nutrition,2007,47:611–649.
    [27] Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers [J]. FoodHydrocolloids,2009,23:1473–1482.
    [28] Desfougères Y., Saint-Jalmes A., Salonen A., et al. Strong improvement of interfacialproperties can result from slight structural Modifications of proteins: The case of nativeand dry-heated lysozyme [J]. Langmuir,2011,27:14947–14957.
    [29] Qian C., Decker E.A., Xiao H., et al. Comparison of biopolymer emulsifier performancein formation and stabilization of orange oil-in-water emulsions [J]. Journal of theAmerican Oil Chemists’ Society,2011,88:47–55.
    [30] Euston S.R., Finnigan S.R., Hirst R.L. Kinetics of drop aggregation in heated wheyprotein-stabilised emulsions: Effect of polysaccharides [J]. Food Hydrocolloids,2002,16:499–505.
    [31] O’Regan J., Mulvihill D.M. Preparation, characterisation and selected functionalpropertie of sodium caseinate-maltodextrin conjugates [J]. Food Chemistry,2009,115:1257–1267.
    [32] Cao Y., Dickinson E., Wedlock D. Creaming and flocculation in emulsions containingpolysaccharides [J]. Food Hydrocolloids,1990,4,185–195.
    [33] Xu K.K., Yao P. Stable oil-in-water emulsions prepared from soy protein-dextranconjugates [J]. Langmuir,2009,25:9714–9720.
    [1] Dickinson E., McClements D.J. Advances in Food Colloids [M]. London: BlackieAcademic&Professional,1995: pp26–79.
    [2] Dalgleish D.G., Dickinson E., Rodriguez Patino J.M. Interfacial structures and colloidalinteractions in protein-stabilized emulsions [M]. Food emulsions and foams: interfaces,interactions and stability. Royal Society of Chemistry, Cambridge, U.K.. In: Proceedingsof a conference, Seville, Spain,16-18March1998: pp.1–16
    [3] Damodaran S. Protein stabilization of emulsions and foams [J]. Journal of Food Science,2005,70(3): R54–R66.
    [4] Dickinson E. Adsorbed protein layers at fluid interfaces: interactions, structure and surfacerheology [J]. Colloids and Surfaces B-Biointerfaces,1999,15(2):161–176.
    [5] McClements D.J. Protein-stabilized emulsions [J]. Current Opinion in Colloid&InterfaceScience,2004,9(5):305–313.
    [6] Wilde P., Mackie A., Husband F., et al. Protein and emulsifiers at liquid interfaces [J].Advances in Colloid and Interface Science,2004,108-109:63–71.
    [7] Pongsawatmanit R., Harnsilawat T., McClements D.J. Influence of alginate, pH andultrasound treatment on palm oil-in-water emulsions stabilized by β-lactoglobulin [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,287:59–67.
    [8] Dickinson, E. Interfacial structure and stability of food emulsions as affected byprotein-polysaccharide interactions [J]. Soft Matter,2008,4:932–942.
    [9] Comas D.I., Wagner J.R., Tomas M.C. Creaming stability of oil in water (O/W) emulsions:influence of pH on soybean protein-lecithin interaction [J]. Food Hydrocolloids,2006,20:990–996.
    [10] Roesch R.R., Corredig M. Characterization of oil-in-water emulsions prepared withcommercial soy protein concentrate [J]. Journal of Food Science,2002,67:2837–2842.
    [11] Kobayashi K., Kato A., Matsudomi N. Developments in novel functional food materialsby hybridization of soy protein to polysaccharides [J]. Nutritional Science Soy Protein,Japan,1990,11:23–28.
    [12] Diftis N.G., Biliaderis C.G., Kiosseoglou V.D. Rheological properties and stability ofmodel salad dressing emulsions prepared with a dry-heated soybean proteinisolate-dextran mixture [J]. Food Hydrocolloids,2005,19:1025–1031.
    [13] Diftis N., Kiosseoglou V. Improvement of emulsifying properties of soybean proteinisolate by conjugation with carboxymethyl cellulose [J]. Food Chemistry,2003,81:1–6.
    [14] Diftis N., Kiosseoglou V. Physicochemical properties of dry-heated soy proteinisolate-dextran mixtures [J]. Food Chemistry,2006,96:228–233.
    [15] Diftis N., Kiosseoglou V. Stability against heat-induced aggregation of emulsionsprepare with a dry-heated soy protein isolate-dextran mixture [J]. Food Hydrocolloids,2006,20:787–792.
    [16] Mahmoud M. L. Physicochemical and functional properties of protein hydrolysates innutritional products [J]. Food Technology,1994,48:89–95.
    [17] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymaticmodification [J]. Trends Food Science&Technology,1996,7:120–125.
    [18] Jung S., Roussel-Philippe C., Briggs J. L., et al. Limited hydrolysis of soy proteins withendo-and exoproteases [J]. Journal of the American Oil Chemists’ Society,2004,81:953–960.
    [19] Lamsal B. P., Jung S., Johnson, L. A. Rheological properties of soy protein hydrolysatesobtained from limited enzymatic hydrolysis [J]. LWT-Food Science Technology,2007,40:1215–1223.
    [20] Ven C. V. D., Gruppen H., Bont D. B. A., et al. Emulsion properties of casein and wheyprotein hydrolysates and the relation with other hydrolysate characteristics [J]. Journal ofAgricultural and Food Chemistry,2001,49:5005–5012.
    [21] Qi M., Hettiarachchy N. S., Kalapathy U. Solubility and emulsifying properties of soyprotein isolates modified by pancreatin [J]. Journal of Food Science,1997,62:1110–1115.
    [22] Wu W. U., Hettiarachcchy N. S., Qi, M. Hydrophobicity, solubility, and emulsifyingproperties of soy protein peptides prepared by papain modification and ultrafiltration [J].Journal of the American Oil Chemists’ Society,1998,75:845–849.
    [23] Nagano T., Hirotsuka M., Mori H., et al. Dynamic viscoelastic study on the gelation of7S globulin from Soybeans [J]. Journal of Agricultural and Food Chemistry,1992,40,941–944.
    [24] Adler-Nissen J. Enzymic Hydrolysis of Food Proteins [M]. London: Applied SciencePublishers,1986: p427.
    [25] Haskard C.A., Li-Chan E.C.Y. Hydrophobicity of bovine serum albumin and ovalbumindetermined using uncharged (PRODAN) and anionic (ANS) fluorescent probes [J].Journal of Agricultural and Food Chemistry,1998,46:2671–2677.
    [26] Akhtar M., Dickinson E., Mazoyer J., et al. Emulsion stabilizing properties ofdepolymerised pectin [J]. Food Hydrocolloids,2002,16:249–256.
    [27] Lowry O. H., Rosebrough N. J., Far, A. L., et al. Protein measurement with the folinphenol reagent [J]. The Journal of Biological Chemistry,1951,193:265–275.
    [28] Moschakis T., Murray B. S., Dickinson E. Microstructural evolution of viscoelasticemulsions stabilized by sodium caseinate and xanthan gum [J]. Journal of Colloid andInterface Science,2005,284:714–728.
    [29] Dickinson E. Emulsions: an introduction to food colloids [M]. Oxford U. K.: OxfordScience Publishers,1992.
    [30] Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers [J]. FoodHydrocolloids,2009,23:1473–1482.
    [31] McClements D. J. Critical review of techniques and methodologies for characterizationof emulsion stability [J]. Critical Reviews in Food Science and Nutrition,2007,47:611–649.
    [32] Wong B. T., Day L., Augustin M. A. Deamidated wheat protein-dextran Mailardconjugates: Effect of size and location of polysaccharide conjugated on stericstabilization of emulsions at acidic pH [J]. Food Hydrocolloids,2011,25:1424–1432.
    [33] Elizalde B. E., Bartholomai G. B., Pilosof A. M. R. The effect of pH on the relationshipbetween hydrophilic/lipophilic characteristics and emulsification properties of soyproteins [J]. Lebensmittel-Wissenschaft und-Technologie,1996,29:334–339.
    [34] McClements D. J. Food emulsions: Principles, Practices and Techniques [M].2nd ed.,Boca Raton, Florida: CRC Press,2005.
    [35] Qian C., Decker E. A., Xiao H., et al. Comparison of Biopolymer EmulsifierPerformance in Formation and Stabilization of Orange Oil-in-Water Emulsions [J].Journal of the American Oil Chemists’ Society,2011,88:47–55.
    [36] Tsumura K. Improvement of the physicochemical properties of soybean proteins byenzymatic hydrolysis [J]. Food Science Technology Research,2009,15(4):381–388.
    [37] Hur S. J., Decker E. A., McClements D. J. Influence of initial emulsifier type onmicrostructural changes occurring in emulsified lipids during in vitro digestion [J]. FoodChemistry,2009,114:253–262.
    [38] Sarkar A., Goh K. K. T., Singh H. Properties of oil-in-water emulsions stabilized byβ-lactoglobulin in simulated gastric fluid as influenced by ionic strength and presence ofmucin [J]. Food Hydrocolloids,2010,24:534–541.
    [39] Singh H., Sarkar, A. Behaviour of protein-stabilised emulsions under variousphysiological conditions [J]. Advances in Colloid and Interface Science,2011,165:47–57.
    [40] Ye A., Hemar Y., Singh H. Flocculation and coalescence of droplets in oil-in-wateremulsions formed with highly hydrolysed whey proteins as influenced by starch [J].
    Colloids and Surfaces B: Biointerfaces,2004,38:1–9.
    [1] Ko S., Gunasekaran S. Preparation of sub-100-nm β-lactoglobulin (BLG) nanoparticles [J].Journal of Microencapsulation,2006,23:887–898.
    [2] Giroux H.J., Britten M. Encapsulation of hydrophobic aroma in whey proteinnanoparticles [J]. Journal of Microencapsulation,2011,28:337–343.
    [3] Vinagradov S.V., Bronich T.K., Kabanov A.V. Nanosized cationic hydrogels for drugdelivery: Preparation, properties and interactions with cells [J]. Advanced Drug DeliveryReviews,2002,54:223–233.
    [4] Kawashima Y. Nanoparticulate systems for improved drug delivery [J]. Advanced DrugDelivery Reviews,2001,47:1–2.
    [5] Weber C., Coester C., Kreuter, J., et al. Desolvation process and surface characterisationof protein nanoparticles [J]. International Journal of Pharmaceutics,2000,194:91–102.
    [6] Jun J.Y., Nguyen H.H., Paik S.Y.R., et al. Preparation of size-controlled bovine serumalbumin (BSA) nanoparticles by a modified desolvatiion method [J]. Food Chemistry,2011,127:1892–1898.
    [7] Gülseren I., Fang Y., Corredig M. Whey protein nanoparticles prepared with desolvationwith ethanol: Characterization, thermal stability and interfacial behavior [J]. FoodHydrocolloids,2012,29:258–264.
    [8] Teng Z., Luo Y.C., Wang Q. Nanoparticles synthesized from soy protein: Preparation,characterization, and application for nutraceutical encapsulation [J]. Journal ofAgricultural and Food Chemistry,2012,60:2712–2720.
    [9] Langer K., Balthasar S., Vogel V., et al. Optimization of the preparation process forhuman serum albumin (HSA) nanoparticles [J]. International Journal of Pharmaceutics,2003,257:169–180.
    [10] Lim Y.B., Moon K.S., Lee M. Rod-coil block molecules: their aqueous self-assemblyand biomaterials applications [J]. Journal of Materials Chemistry,2008,18:2909–2918.
    [11] Kim B.S., Yang W.Y.; Ryu J.H. et al. Carbohydrate-coated nanocapsules fromamphiphilic rod-coil molecule: binding to bacterial type1pili [J]. ChemicalCommunications,2005,15:2035–2037.
    [12] Yamamoto H. Kuno Y. Sugimoto S., et al. Surface-modified PLGA nanosphere withchitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening ofthe intercellular tight junctions [J]. Journal of Controlled Release,2005,102:373–381.
    [13] Akhtar M., Dickinson E. Emulsifying properties of whey protein-dextran conjugates atlow pH and different salt concentrations [J]. Colloid and Surfaces B: Biointerfaces,2003,31:125–132.
    [14] Lowry O.H., Rosebrough N.J., Farr A.L., et al. Protein measurement with the folinphenol reagent [J]. The Journal of Biological Chemistry,1951,193:265–275.
    [15] Haskard C.A., Li-Chan E.C.Y. Hydrophobicity of bovine serum albumin and ovalbumindetermined using uncharged (PRODAN) and anionic (ANS) fluorescent probes [J].Journal of Agricultural and Food Chemistry,1998,46:2671–2677.
    [16] Small Angle Scattering of X-ray; Guinier A., Fournet G., Eds., Wiley: New York,1955.
    [17] Ward A.F.H., Tordai L. Time dependence of boundary tension of solutions. I. The role ofdiffusion in time effects [J]. Journal of Chemistry Physics,1946,14:453–461.
    [18] Lucassen J., Van den Tempel M. Dynamic measurements of dilatational properties of aliquid interface [J]. Chemical Engineering Science,1972,27:1283–1291.
    [19] Akhtar M., Dickinson E., Mazoyer J., et al. Emulsion stabilizing properties ofdepolymerised pectin [J]. Food Hydrocolloids,2002,16:249–256.
    [20] Puppo C., Chapleau N., Speroni F., et al. Physicochemical modifications ofhigh-pressure-treated soybean protein isolates [J]. Journal of Agricultural and FoodChemistry,2004,52:1564–1571.
    [21] Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymaticmodification [J]. Trends Food Science&Technology,1996,7:120–125.
    [22] Wu W. U., Hettiarachcchy N. S., Qi, M. Hydrophobicity, solubility, and emulsifyingproperties of soy protein peptides prepared by papain modification and ultrafiltration [J].Journal of the American Oil Chemists’ Society,1998,75:845–849.
    [23] Fukushima D. Denaturation of soybean proteins by organic solvents [J]. CerealChemistry,1969,46:156–163.
    [24] Das K.P., Kinsella J.E. Effect of heat denaturation on the adsorption of β-lactoglobulin atthe oil/water interface and on coalescence stability of emulsions [J]. Journal of ColloidInterface Science,1990,139:551–560.
    [25] Receveur-Br chot V., Bourhis J.M., Uversky V.N., et al. Assessing protein disorder andinduced folding [J]. Proteins: Structure, Function and Bioinformatics,2006,62:24–45.
    [26] Small-Angle X-ray Scattering; Glatter O., Kratky O., Eds., A cademic Press: London,1982, pp1–515.
    [27] Dickinson E. Mixed biopolymers at interfaces: competitive adsorption and multilayerstructures [J]. Food Hydrocolloids,2011,25;1966–1983.
    [28] Graham D.E., Phillips M.C. Proteins at liquid interface. III. Molecular structures ofadsorbed films [J]. Journal of Colloid Interface Science,1979,70:427–439.
    [29] Wang J.M., Xia N., Yang X.Q., et al. Adsorption and dilatational rheology ofheat-treated soy protein at the oil-water interface: relationship to structural properties [J].Journal of Agricultural and Food Chemistry,2012,60,3302–3310.
    [30] Rodríguez Patino J.M., Rodríguez Ni o M.R. Interfacial characteristics of foodemulsifiers (proteins and lipids) at the air-water interface [J]. Colloids and Surfaces B:Biointerfaces,1999,15:235–252.
    [31] Rodríguez Patino J.M., Pilosof A.M.R. Protein-polysaccharide interaction at fluidinterfaces [J]. Food Hydrocolloids,2011,25:1925–1937.
    [32] Maldonado-Valderrama J., Rodríguez Patino J.M. Interfacial rheology ofprotein-surfactant mixtures [J]. Current Opinion in Colloid&Interface Science,2010,15:271–282.
    [33] Wong B.T., Day L., Augustin M.A. Deamidated wheat protein-dextran Maillardconjugates: effect of size and location of polysaccaride conjugated on steric stabilizationof emulsions at acidic pH [J]. Food Hydrocolloids,2011,25:1424–1432.
    [34] Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers [J]. FoodHydrocolloids,2009,23:1473–1482.
    [35] McClements D.J. Protein-stabilized emulsions [J]. Current Opinion in Colloid&Interface Science,2004,9:305–313.
    [36] McClements D.J. Critical review of techniques and methodologies for characterization ofemulsion stability [J]. Critical Reviews in Food Science and Nutrition,2007,47:611–649.
    [37] O’Regan J. Mulvihill D.M. Preparation, characterisation and selected functionalproperties of sodium caseinate-maltodextrin conjugates [J]. Food Chemistry,2009,115:1257–1267.
    [1] Friedman M., Brandon D.L. Nutritional and health benefits of soy proteins [J]. Journal ofAgricultural and Food Chemistry,2001,49:1069–1086.
    [2] Renkema J.M.S., van Vliet, T. Concentration dependence of dynamic moduli ofheat-induced soy protein gels [J]. Food Hydrocolloids,2004,18:483–487.
    [3] Tay S.K., Xu G.Q., Perera C.O. Aggregation profile of11S,7S and2S coagulated withGDL [J]. Food Chemistry,2005,91:457–462.
    [4] Molina E., Defaye A.B., Ledward D.A. Soy protein pressure-induced gels [J]. FoodHydrocolloids,2002,16:625–632.
    [5] Tang C.H., Wu H., Chen Z., et al. Formation and properties of glycinin-rich andβ-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase [J].Food Research International,2006,39:87–97.
    [6] Tang C.H., Yang M., Liu F., et al. Stirring greatly improves transglutaminase-inducedgelation of soy protein-stabilized emulsions [J]. LWT-Food Science and Technology,2013,51:120–128.
    [7] Gan C. Y., Ong W.H., Wang L.M., et al. Effects of ribose, microbial transglutaminase andsoy protein isolate on physical properties and in-vitro starch digestibility of yellownoodles [J]. LWT-Food Science of Technology,2009,42:174–179.
    [8] Lew L.C., Bhat R., Easa A.M., et al. Development of probiotic carriers using microbialtransglutaminase-crosslinked soy protein isolate incorporated with agrowastes [J]. Journalof the Science of Food and Agriculture,2011,91:1406–1415.
    [9] Tang C.H., Wu H., Yu H.P., et al. Coagulation and gelation of soy protein isolates inducedby microbial transglutaminase [J]. Journal of Food Biochemistry,2006,30:35–55.
    [10] Tang C.H., Li L., Wang J.L., et al. Formation and rheological properties of ‘cold-set’tofu induced by microbial transglutaminase [J]. LWT-Food Science and Technology,2007,40:579–586.
    [11] Motoki M., Seguro K. Transglutaminase and its use for food processing [J]. Trends inFood Science and Technology,1998,9:204–210.
    [12] Wilcox C.P., Swaisgood H.E. Modification of the rheological properties of whey proteinisolate through the use of an immobilized microbial transglutaminase [J]. Journal ofAgricultural and Food Chemistry,2002,50:5546–5551.
    [13] Wilcox C.P., Clare D.A., Valentine V.W., et al. Immobilization and utilization of therecombinant fusion proteins trypsin-streptavidin and streptavidin-transglutaminase formodification of whey protein functionality [J]. Journal of Agricultural and FoodChemistry,2002,50:3723–3730.
    [14] van den Berg L., van Vliet T., van der Linden E., et al. Breakdown properties andsensory perception of whey proteins/polysaccharide mixed gels as a function ofmicrostructure [J]. Food Hydrocolloids,2007,21:961–976.
    [15] Fang Y.P., Li L.B., Inoue C., et al. Associative and segregative phase separations ofgelatine/Kappa-carrageenan aqueous mixtures [J]. Langmuir,2006,22:9532–9537.
    [16] Park J.M., Muhoberac B.B., Dubin P.L., et al. Effects of protein charge heterogeneity inprotein-polyelectrolyte complexation [J]. Macromolecules,1992,25:290–295.
    [17] Vardhanabhui B., Yucel U., Coupland J.N., et al. Interactions between β-lactoglobulinand dextran sulfate at near neutral pH and their effect on thermal stability [J]. FoodHydrocolloids,2009,23:1511–1520.
    [18] Chung K., Kim J., Cho B., et al. How does dextran sulfate prevent heat inducedaggregation of protein?: the mechanism and its limitation as aggregation inhibitor [J].Biochimica et Biophysica Acta,2007,1774:249–257.
    [19] de Jong S., Klok H.J., van de Velde F. The mechanism behind microstructure formationin mixed whey protein-polysaccharide cold-set gels [J]. Food Hydrocolloids,2009,23:755–764.
    [20] de Jong S., van de Velde F. Charge density of polysaccharide controls microstructure anddeformation properties of mixed gels [J]. Food Hydrocolloids,2007,21:1172–1187.
    [21] Gan C.Y., Cheng L.H., Easa A. M. Physicochemical properties and microstructures ofsoy protein isolate gels produced using combined cross-linking treatments of microbialtransglutaminase [J]. Food Research International,2008,41:600–605.
    [22] Gan C.Y., Latiff A.A., Cheng L.H., et al. Gelling of microbial transglutaminasecross-linked soy protein in the presence of ribose and sucrose [J]. Food ResearchInternational,2009,42:1373–1380.
    [23] Akhtar M., Dickinson E. Emulsifying properties of whey protein-dextran conjugates atlow pH and different salt concentrations [J]. Colloids and Surfaces. B, Biointerfaces,2003,31:125–132.
    [24] Gerrard J.A., Brown P.K. Protein cross-linking in food: Mechanisms, consequences,applications [J]. International Congress Series,2002,1245:211–215.
    [25] Md Yasir S.B., Sutton K.H., Newberry M. P., et al. The impact of Maillard cross-linkingon soy proteins and tofu texture [J]. Food Chemistry,2007,104:1502–1508.
    [26] Oliver C.M., Melton L.D., Stanley R.A. Creating proteins with novel functionality viathe Maillard reaction: A review [J]. Critical Reviews in Food Science and Nutrition,2006,46:337–350.
    [27] Spotti M.J., Perduca M.J., Piagentini A., et al. Gel mechanical properties of milk wheyprotein-dextran conjugates obtained by Maillard reaction [J]. Food Hydrocolloids,2013,31:26–32.
    [28] Bourne M.C. Texture profile analysis [J]. Food Technology,1978,7:62–66.
    [29] Diftis N., Kiosseoglou V. Physicochemical properties of dry-heated soy proteinisolate-dextran mixtures [J]. Food Chemistry,2006,96,228–233.
    [30] Kasapis S., Morris E.R., Norton I.T., et al. Phase equilibra and gelation ingelatin/maltodextrin systems-Part Ι: gelation of individual components [J]. CarbohydratePolymers,1993,21:243–248.
    [31] Gon alves M.P., Torres D., Andrade C.T., et al. Rheological study of the effect of Cassiajavanica galactomannans on the heat-set gelation of a whey protein isolate at pH7[J].Food Hydrocolloids,2004,18:181–189.
    [32] Tabilo-Munizaga G.T., Barbosa-Canovas G.V. Rheology for the food industry [J].Journal of Food Engineering,2005,67:147–156.
    [33] Kang I.J., Matsumura Y., Ikura K., et al. Gelation and gel properties of soybean glycininin a transglutaminase-catalyzed system [J]. Journal of Agricultural and Food Chemistry,1994,42:159–165.
    [34] Desfougeres Y., Saint-Jalmes A., Salonen A., et al. Strong improvement of interfacialproperties can result from slight structural modifications of proteins: the case of nativeand dry-heated lysozyme [J]. Langmuir,2011,27:14947–14957.
    [35] ak r E., Daubert C.R., Drake M.A., et al. The effect of microstructure on the sensoryperception and textural characteristics of whey protein/κ-carrageenan mixed gel [J].Food Hydrocolloids,2012,26:33–43.
    [36] Abbasi S.,&Dickinson E. Influence of sugars on higher pressure induced gelation ofskin milk dispersions [J]. Food Hydrocolloids,2001,15:215–219.
    [37] Clark A.H., Ross-Murphy S.B. Modern biopolymer science [M]. Biopolymer networkassembly: measurement and theory. In S. Kasapis, I. T. Norton,&J. B. Ubbink (Eds.).London: Elsevier,2009: pp.1–27.
    [38] Renkema J.M.S., van Vliet T. Heat-induced gel formation by soy proteins at neutral pH[J]. Journal of Agricultural and Food Chemistry,2002,50:1569–1573.
    [39] Lau M.H., Tang J., Paulson A.T. Texture profile and turbidity of gellan/gelation mixedgels [J]. Food Research International,2000,33:665–671.
    [40] Guo J., Zhang Y., Yang X.Q. A novel enzyme cross-linked gelation method forpreparing food globular protein-based transparent hydrogel. Food Hydrocolloids,2012,26,277–285.
    [1] Dickinson E., Galazka, V.B. Emulsion stabilization by ionic and covalent complexes ofβ-lactoglobulin with polysaccharides [J]. Food Hydrocolloids,1991,5:281–296.
    [2] Guzey D., McClements D.J. Impact of electrostatic interactions on formation and stabilityof emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes [J].Journal of Agricultural and Food Chemistry,2007,55:475–485.
    [3] Suzuki S., Kondo T. Interactions of gelatin-Acacia microcapsules with surfactants [J].Colloids and Surfaces,1982,4:163–171.
    [4] Goldberg M., Langer R., Jia X.Q. Nanostructured materials for applications in drugdelivery and tissue engineering [J]. Journal of Biomaterials Science-Polymer Edition,2007,18:241–268.
    [5] Madene A., Jacquot M., Scher J., et al. Flavour encapsulation and controlled release–Areview [J]. International Journal of Food Science and Technology,2006,41:1–21.
    [6] Renard D., Robert P., Lavenant L., et al. Biopolymeric colloidal carriers for encapsulationor controlled release applications [J]. International Journal of Pharmaceutics,2002,242:163–166.
    [7] Kloser G.M., Sheuring J.J. Reliability of the reichert-meissl and polenske methods fordetecting substitute fats in ice cream [J]. Journal of Dairy Science,1954,37:647–647.
    [8] Pettersson A., Johnsson L., Brannas E., et al. Effects of rapeseed oil replacement in fishfeed on lipid composition and self-selection by rainbow trout (Oncorhynchus mykiss)[J].Aquaculture Nutrition,2009,15:577–586.
    [9] Schmitt C., Sanchez C., Desobry-Banon S., et al. Structure and technofunctionalproperties of protein-polysaccharide complexes: A review [J]. Critical Reviews in FoodScience and Nutrition,1998,38:689–753.
    [10] Hattori M., Okada Y., Takahashi K. Functional changes in beta-lactoglobulin uponconjugation with carboxymethyl cyclodextrin [J]. Journal of Agricultural and FoodChemistry,2000,48:3789–3794.
    [11] Flanagan J., Singh H. Conjugation of sodium caseinate and gum arabic catalyzed bytransglutaminase [J]. Journal of Agricultural and Food Chemistry,2006,54:7305–7310.
    [12] Kato A., Wada T., Kobayashi K., et al. Ovomucin food protein conjugates preparedthrough the transglutaminase reaction [J]. Agricultural and Biological Chemistry,1991,55:1027–1031.
    [13] Kato A. Industrial applications of Maillard-type protein-polysaccharide conjugates [J].Food Science and Technology Research,2002,8:193–199.
    [14] Kim H.J, Choi S.J., Shin W.S., et al. Emulsifying properties of bovine serumalbumin-galactomannan conjugates [J]. Journal of Agricultural and Food Chemistry,2003,51:1049–1056.
    [15] Selinheimo E., Lampila P., Mattinen M.L., et al. Formation of protein-oligosaccharideconjugates by laccase and tyrosinase [J]. Journal of Agricultural and Food Chemistry,2008,56:3118–3128.
    [16] Walsh D.J., Cleary D., McCarthy E., et al. Modification of the nitrogen solubilityproperties of soy protein isolate following proteolysis and transglutaminase cross-linking[J]. Food Research International,2003,36:67–683.
    [17] James J., Simpson B.K. Application of enzymes in food processing [J]. Critical Reviewsin Food Science and Nutrition,1996,36:437–463.
    [18] Boeriu C.G., Oudgenoeg G., Spekking W.T.J., et al. Horseradish peroxidase-catalyzedcross-linking of feruloylated arabinoxylans with casein [J]. Journal of Agricultural andFood Chemistry,2004,52:6633–6639.
    [19] Chen T.H., Vazquez-Duhalt R., Wu C.F., et al. Combinatorial screening forenzyme-mediated coupling. Tyrosinase-catalyzed coupling to create protein-chitosanconjugates [J]. Biomacromolecules,2001,2:456–462.
    [20] Faergemand M., Otte J., Qvist K.B. Enzymatic cross-linking of whey proteins by aCa2+-independent microbial transglutaminase from Streptomyces lydicus [J]. FoodHydrocolloids,1997,11:19–25.
    [21] Kuuva T., Lantto R., Reinikainen T., et al. Rheological properties of laccase-inducedsugar beet pectin gels [J]. Food Hydrocolloids,2003,17:679–684.
    [22] Littoz F., McClements D.J. Bio-mimetic approach to improving emulsion stability:Cross-linking adsorbed beet pectin layers using laccase [J]. Food Hydrocolloids,2008,22:1203–1211.
    [23] Tianhong Chen H.D.E., Wu L.Q., Payne G.F. In vitro protein-polysaccharide conjugation:Tyrosinase-catalyzed conjugation of gelatin and chitosan [J]. Biopolymers,2002,64:292–302.
    [24] Fork J.E., Finlayson J.S. ε-(γ-glutamyl) lysine cross-link and the catalytic role oftransglutaminase [J]. Advances in Protein Chemistry,1977,31:2–120.
    [25] Ikeuchi T., Aoki T., Yoshida T., et al. Functional improvements to beta-lactoglobulin bypreparing an edible conjugate with cationic saccharide using microbial transglutaminase(MTGase)[J]. Bioscience Biotechnology and Biochemistry,2008,72:1227–1234.
    [26] Oosterveld A., Beldman G., Voragen A.G.J. Oxidative cross-linking of pecticpolysaccharides from sugar beet pulp [J]. Carbohydrate Research,2000,328:199–207.
    [27] Rombouts F.M., Thibault J.F. Enzymatic and chemical degradation and the fine-structureof pectins from sugar-beet pulp [J]. Carbohydrate Research,1986,154:189–203.
    [28] Ralet M.C., Thibault J.F., Faulds C.B., et al. Isolation and purification of feruloylatedoligosaccharides from cell walls of sugar-beet pulp [J]. Carbohydrate Research,1994,263:227–241.
    [29] Guillon F., Thibault J.F. Further characterization of acid-and alkali-soluble pectins fromsugar beet pulp. Lebensmittel Wissenschaft and Technologie,1988,21:198–205.
    [30] Nakauma M., Funami T., Noda S., et al. Comparison of sugar beet pectin, soybeansoluble polysaccharide, and gum arabic as food emulsifiers.1. Effect of concentration,pH, and salts on the emulsifying properties [J]. Food Hydrocolloids,2008,22:1254–1267.
    [31] Leroux J., Langendorff V., Schick G., et al. Emulsion stabilizing properties of pectin [J].Food Hydrocolloids,2003,17:455–462.
    [32] Micard V., Thibault J.F. Oxidative gelation of sugar-beet pectins: use of laccases andhydration properties of the cross-linked pectins [J]. Carbohydrate Polymers,1999,39:265–273.
    [33] Gianfreda L., Xu F., Bollag J.M. Laccases: A useful group of oxidoreductive enzymes [J].Bioremediation Journal,1999,3:1–25.
    [34] Mattinen M.L., Kruus K., Buchert J., et al. Laccase-catalyzed polymerization oftyrosine-containing peptides [J]. FEBS Journal,2005,272:3640–3650.
    [35] Mattinen M.L, Hellman M., Permi P., et al. Effect of protein structure onlaccase-catalyzed protein oligomerization. Journal of Agricultural and Food Chemistry,2006,54:8883–8890.
    [36] Nagano T., Hirotsuka M., Mori H., et al. Dynamic viscoelastic study on the gelation of7S globulin from Soybeans [J]. Journal of Agricultural and Food Chemistry,1992,40,941–944.
    [37] Li X.Y., Fang Y.P., Al-Assaf S., et al. Complexation of bovine serum albumin and sugarbeet pectin: structural transitions and phase diagram [J]. Langmuir,2008,28:10164–10176.
    [38] Qian C., Decker E.A., Xiao H., et al. Comparison of biopolymer emulsifier performancein formation and stabilization of orange oil-in-water emulsions [J]. Journal of theAmerican Oil Chemists’ Society,2011,88:47–55.
    [39] Fang Y.P., Li L.B., Inoue C., et al. Associative and Segregative Phase Separations ofGelatin/Kappa-carrageenan Aqueous Mixtures [J]. Langmuir2006,22:9532–9537.
    [40] McClements D.J. Food Emulsions: Principles, Practice, and Techniques, CRC Press:Boca Raton, FL,2004.
    [41] McClements D.J. Protein-stabilized emulsions [J]. Current Opinion in Colloid&Interface Science,2004,9:305–313.
    [42] Dickinson E. Flocculation of protein-stabilized oil-in-water emulsions [J]. Colloid andSurfaces B: Biointerfaces,2010,81:130–140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700